Category Archives: New South Wales

Bourkes Gorge Spoil Dump #2 Restoration – Kosciuszko National Park

 Elizabeth MacPhee and Gabriel Wilks

Bourkes Gorge Spoil Dump #2 is one of two large spoil dumps created during construction of the Murray 1 Pressure Tunnel between 1962 and 1966 to carry water from the Geehi Reservoir to the Murray 1 Pipelines.  These pipelines deliver water to the Murray 1 Power Station on the western side of Kosciuszko National Park near the township of Khancoban.  At this site during Scheme construction, approximately 300 000 m3 of unconsolidated rock spoil was removed from the tunnel access point on a rail siding and dumped in the steep valley of a tributary creek flowing to Bogong Creek.

 The site prior to rehabilitation. Bourkes Gorge Spoil Dump #2 was one long unstable rock slope devoid of native vegetation with scrap metal, timber and concrete jutting out along erosion scars. It was too steep to stand on, with a slope height of 60m and an angle of approximately 380. The spoil dump was 150m wide across the valley and extended about 250m upstream, blocking the tributary creek. As a result, an 8m washout scar was left in the southern side of the spoil dump with continual erosion down the creek, eroding particularly during peak flows.

Fauna and vegetation surveys were conducted on and in the surrounding forest. Three fauna species listed as vulnerable under the NSW Threatened Species Conservation Act 1995 (TSC Act) were identified in the surrounding forest – the Yellow-bellied Glider Petaurus australis, Gang-gang Cockatoo Callocephalon fimbriatum and the Eastern False Pipistrelle Falsistrellus tasmaniensis. (Schultz, M unpublished). Habitat requirements for nesting and roosting of these species did not occur within the site.  The Spotted Tree Frog Litoria spenceri is listed as Critically Endangered by the International Union for Conservation of Nature (IUCN) and is also listed in the Federal Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) and the TSC Act. This species was known to occur in the vicinity of site, but surveys had recorded a dramatically declining population (Hunter & Gillespie 1999). It was not recorded on or around the site during the fauna survey in 2008. Weeds such as Blackberry (Rubus sp.) and willow (Salix spp.) occurred at the top edge of the site and minimal vegetation was found on the majority of the spoil.

Objectives of the restoration works :

  • Re-shaping the spoil dump to a more stable slope.
  • Constructing an environment that favoured revegetation and habitation of site-indigenous flora and fauna species.
  • Integrating the site into the surrounding tall montane forest
  • Constructing a channel to enable high water flow events to move across the site without scouring or rendering the site unsafe.
  • Slowing high flow events to limit the scour effects on the downstream environment.
  • Safely managing contamination or general construction waste found at the site

Treatments. Works were undertaken from December 2009 to April 2010. Stabilisation works consisted of reshaping the spoil dump and lining 300m of artificial creek line. The resulting land form was planted with 50,000 tubestock in 2010 – 2011 and had specific management practices applied to minimise potential impact on the Spotted Tree Frog.

Plant species used in the revegetation had to be sourced from plants as cuttings, seed or division from the surrounding environment, capable of being commercially propagated due to the number required, and robust enough to withstand the more extreme conditions found on site than in surrounding forest. One rare species Bertya findalyii was found colonising the edge of the site and so was incorporated into the planting list.

Results.

Erosion Control.  The rehabilitation of the Bourkes Gorge #2 spoil dump resulted in 43,300 m3 of rock soil being re-shaped to reduce slope and direct water flow, reducing the potential for surficial erosion and mass slumping. Slope angles were reduced from around 38ْ to between 26ْ and 30ْ  (URS, 2009). Around 560M3 of concrete reinforced with structural synthetic fibre and on site rock was used to form the water channel. In the three years since rehabilitation, there have been two major flood events in the region – October 2010 and March 2012. The Jagungal weather station in Kosciuszko NP recorded 6, 12 and 24 hour duration rainfall intensities exceeding the 100 year Average Recurrence Interval (ARI) intensity. There was no evidence of erosion or slumping at Bourkes Gorge Site following these events.

Revegetation.  Assessment of the vegetation was done two years after planting by Greening Australia Capital Region using BioMetric (http://www.environment.nsw.gov.au/papers/BioMetricOpManualV3-1.pdf).  This monitoring has shown outstanding survival and growth rates – with 35% cover by 19 native species, with virtually nil weed. (Species are listed in Table 1 ).

Lesson learned: Rock spoil in high altitude, steep conditions with no organic matter in a compacted and unstable condition will not naturally revegetate, even if left for a fifty year period.  Applying site appropriate techniques such as re-shaping for stability, allowing for water flow, moving compacted rock to create air pockets and allow water infiltration, and adding the essential ingredients of organic matter, nutrients and plant material can trigger successful site revegetation. Covering the ground with a layer of organic matter such as rice straw ameliorates temperature extremes on site, allowing young seedlings to survive and flourish.

Acknowledgements. Thanks are extended to the restoration team at Kosciuszko National Park, including the many contractors who participated.  We also thank Nicki Taws and Angela Calliess (Greening Australia Capital Region) who undertook the formal vegetation monitoring.

 

After earthworks, planting niches are filled with compost

After earthworks, planting niches are filled with compost

Main slope at Bourkes Gorge #2 spoil dump

Main slope at Bourkes Gorge #2 spoil dump

Liz MacPhee pictured at Bourkes spoil dump one year after planting

Liz MacPhee pictured at Bourkes spoil dump one year after planting

Table 1. Vegetation data recorded on a 50m transect approximately 2 years after treatment.  (Data from Greening Australia Vegetation Monitoring Former Snowy-Hydro Sites Kosciuszko National Park).

Scientific name

Common name

Tube stock

Direct seeding

Transplants from within site

Trees  

 

 

 

Eucalyptus dalrympleana Mountain Gum

X

   
Eucalyptus delegatensis Alpine Ash

X

X

 
Eucalyptus globulus v bicostata Southern Blue Gum

X

   
Eucalyptus viminalis Manna Gum

X

   
Lomatia fraseri Tree Lomatia

X

   
Shrubs  

 

 

 

Acacia dealbata Silver Wattle

x

   
Acacia melanoxylon Blackwood wattle

X

   
Bedfordia arborescens Blanket leaf

X

   
Bossiaea foliosa Leafy Bossiaea

X

   
Bertya findlayii Alpine Bertya

X

   
Cassinia longifolia Shiny Cassinia

X

   
Coprosma hirtella Rough Coprosma

X

   
Coprosma quadrifida Prickly Currant Bush

X

   
Daviesia mimosoides subsp. laxiflora Mountain bitter pea  

X

 
Helichrysum stirlingii Ovens Everlasting

X

   
Kunzea ericoides Burgan

X

   
Leptospermum grandiflorum Mountain Tea Tree

X

   
Leptospermum obovatum River Tea Tree

X

   
Polyscias sumbucifolia Elderberry Panax

X

   
Pomaderris aspera Hazel Pomaderris

X

   
Prostanthera lasianthos Mint bush

X

   
Forbs  

 

 

 

Derwentia derwentiana Derwents Speedwell

X

   
Dianella tasmanica Mauve Flax lily      
Senecio linearifolius Tall Senecio

X

   
Stellaria pungens Prickly starwort

X

   
Ferns        
Polystichas proliferatum Mother Shield-fern

X (divisions)

   
Blechnum spp. fern    

X

Grasses  

 

 

 

Poa ensiformis  

X

X

 
Poa  helmsii Broad leafed snow grass

X

X

 
Poa sieberiana Tussock grass

X

X

Yarrangobilly Native Seed and Straw Farm

Elizabeth MacPhee and Gabriel Wilks

Yarrangobilly Caves is a tourist destination within Kosciusko National Park (KNP), New South Wales. The Yarrangobilly Caves Wastewater Treatment Plant (WTP) has been established to treat greywater produced at the tourist centre, to stop nitrogen moving into the limestone karst system of the caves.

To optimise benefits from the WTP, the Rehabilitation team undertook the planting of locally native grass species in the discharge area, with a view to producing seed and weed-free mulch for use in the KNP Former Snowy Sites restoration program.

Effluent is initially treated using a bacterial blivet and then undergoes an ultra-violet treatment process so that it is within a “greywater” classification. It is then stored in a 200,000 litre tank and released under pressure to a discharge area. Prior to being discharged the effluent is diluted with fresh water to an average ratio of 7:3 (effluent:fresh water) in order to reduce the total nitrogen in the irrigated water to around 10 mg/L, which has been used as a threshold figure for nutrient loading. Once at the right concentration, the effluent is discharged in a large flat sedimentary rock area of about 1 ha in size.  The irrigation area in which the plant species are grown is approximately 0.5 ha.

Vegetation treatments. From 2006 to 2010, some 20,000 plants of a number of species of the grass genus Poa were planted in the discharge area of the WTP, at 50cm spacings (Fig 1).  The four main species were: Poa costiniana; P. fawcettiae, P. sieberiana and P. ensiformis; all native to KNP. Over the last 6 years, more than 300 kilos of highly viable Poa spp. seed has been collected and used in restoration works across the Park. The thatch (seed heads and cut off straw) has also been harvested and used as mulch on some of the sites.

Other species needed for rehabilitation in KNP have also been planted in the site over the last two years. Bossiaea foliosa and Lomandra longifolia have been grown for seed production and a variety of difficult to germinate shrubs have been grown to provide cutting material for propagation.

Soil sampling and soil treatments. Sampling was conducted prior to and after plant harvest to gauge the soil’s physical and nutrient status.  The samples (10cm cores of topsoil and subsoil) were sent to the Environmental and Analytical Laboratories at Charles Sturt University for analysis of Total Phosphorus and Total Nitrogen. (ammonia and nitrates as Nitrogen and phosphorus as Phosphorus (Bray)).

As early soil tests showed that pH reduced, Lime was applied to the discharge area in 2010 at 1 – 1.5 tonnes to to raise topsoil pH approximately 1 unit.

Results.

Seed and mulch production: Within the first 18 month period, nearly 100 kilos of seed was collected. To date over 300 kilos of highly viable Poa spp. seed has been collected and used in rehabilitation across the park, with the 2011/2012 harvest producing approximately 58 kilograms of seed. In the 2012-12 harvest, an estimated 288 kilograms of thatch was removed for use as mulch in restoration areas in the Park.

Soil fertility. More nitrogen and phosphorus was discharged during the 2011/2012 season than could be removed by plants season, with the native species having naturally low nutrient removal rates. Annual soil monitoring and peizometer monitoring of the ground water is keeping track of the use and movement of nitrogen in this landscape and to monitor any changes in soil chemistry.

 Suggestions for improvements:

  • Review irrigation scheduling to ensure the bulk of irrigation is occurring from November to March when nutrient uptake will be at its highest (rather than in the cooler months).
  • De-thatch the grass species at the start of spring to encourage fresh re-growth and therefore improve nutrient uptake over the spring and summer months
  • Test effluent on a regular basis to assess salt load;
  • Further treat effluent to reduce the nitrogen, phosphorous and sodium load;
  • Monitor and adjust pH as required; and
  • Reseed bare patches to maximise nutrient uptake by plants.

 In 2012 a progressive replacement planting program commenced, where sections of the oldest plants were poisoned and replaced with young plants. This continual renewal replanting will ensure the plantation remains actively growing, taking up maximum levels of nutrient and producing high quality seed and mulch.

Acknowledgements.  Funding for this project came from The Former Snowy Sites Rehabilitation project with soil and plant nutrient data provided by D.M McMahon (2008, 2012): Environmental Monitoring Use of Effluent for Irrigation, Yarrangobilly Caves, NSW. Environmental Consultants (agronomy) Wagga, Wagga.

Yarrangobilly grasses ready for harvesting

Yarrangobilly grasses ready for harvesting

The plantings are mainly four local species of Poa

The plantings are mainly four local species of Poa

Slopes2Summit Bushlinks Project

Keywords – landscape, connectivity, restoration, revegetation, NSW southwest slopes

The Slopes2Summit (S2S) Bushlinks project commenced in August 2012 and is in the first stage of implementing on-ground works to build landscape-scale connectivity across private lands in the southwest Slopes of NSW – from the wet and dry forest ecosystems of the upper catchment and reserves to the threatened Grassy Box Woodlands of the lower slopes and plains (Fig 1.).

Fig 1. Map of the S2S area and priority landscapes for Bushlinks

Fig 1. Map of the S2S area and priority landscapes for Bushlinks

The increasing isolation of plant and animal populations in “island” reserves scattered through an agricultural landscape is a recognised threat to the long term viability and resilience of ecosystems under potential impact of climate change. If we can increase the viable breeding habitat through off-reserve remnant conservation, and increase the habitat for dispersal by increasing connectivity, we may be able to influence the trajectory for some of our species – the Squirrel Glider (Petaurus norfolcensis)) and threatened woodland birds in particular.

The S2S Bushlinks Project is attempting to address connectivity issues through the following approaches:

1. Cross property planning. Foster and encourage cross property planning for habitat connectivity between neighbours, community, Landcare and/or subcatchment groups resulting in more integrated on-ground works projects, and raising awareness of the benefits of connectivity for wildlife.

2. On-ground investment in connectivity. The project is partnering with farmers and land managers to support and encourage fencing and revegetation in strategic places in the landscape with the objective of increasing habitat connectivity.  S2S Bushlinks applies scientific principles to the site assessments and evaluation, which then sets the level of investment in a site.  High scoring sites receive the highest rates of rebate, but the provision of low levels of public investment in sites that may not be of high priority is important for fostering participation in revegetation of any sort to encourage the culture of caring for the land.

Site assessment and scoring for funding level uses the following criteria:

  • Connectivity and landscape value – Does the site link to or create new patches of habitat according to principles of habitat connectivity? (Fig 2)  Is there existing vegetation in 1000ha radius around the site in an optimal range of 30-60%?
  • Area : perimeter ratio – Bigger blocks of revegetation are more cost-efficient and better habitat than linear strips of revegetation, and the project scoring encourages landholder to go bigger and wider in order to qualify for a higher level of funding.
  • Habitat Values – Does the site have existing values like old paddock trees, rocky outcrops or intact native ground layer, and therefore become a more valuable site? Is it in the more fertile, productive parts of the landscape and therefore of more productivity benefit for wildlife as well?
  • Carbon value – The scoring is based on the size of the revegetation and rainfall zone. The CFI Reforestation tool is being used to value the collective potential carbon sequestration of the Bushlinks project.

The emphasis on cross-property planning flows through to the implementation of on-ground works. Landholders are encouraged to work with neighbours and the site evaluation system is used to assess site value without the property boundaries – cooperation makes the site bigger and usually increases the connectivity value, and therefore scores higher.

3. Review and adaptive management process. The site assessment is to be reviewed in July 2013 against the objectives – did it work to prioritise sites well – did we invest wisely? The scientists and experts are then able to work closely with Holbrook Landcare to adjust the project eligibility, assessment and evaluation criteria to continually improve the outcomes in subsequent funding years.

4. Monitoring framework. As part of the in-kind contribution to the project, S2S partners Dr Dave Watson, CSU Albury and Dr. Veronica Doerr, CSIRO are working towards a framework for the long-term monitoring of landscape scale connectivity for continental-scale initiatives like Great Eastern Ranges (GER).  As part of a GER Environmental Trust Project in 2013, an expert panel workshop will be convened to begin this process in 2013.

The framework will then be used to pilot a project-scale design for Bushlinks, which will allow us to measure ecological outcomes.

Bushlinks will contribute to the Slope2Summit portal of the Atlas of Living Australia, supported by the Slopes2Summit facilitator. To develop community participation in monitoring and evaluation, participants and the wider community will be encouraged to contribute wildlife sightings and other data to the atlas.

The S2S partnership applied for funds through the Australian Governments Clean Energy Futures Biodiversity Fund in 2011 and was successful in the 2011/12 funding year for a six year project. Holbrook Landcare Network is managing the S2S Bushlinks Project on behalf of the Slopes2Summit and the Great Eastern Ranges Initiative, in partnership with Murray CMA.

Contact: Kylie Durant, Bushlinks Project Officer, Holbrook Landcare Network, PO Box 121 Holbrook, NSW 2644 Australia. Tel: +61 2 6036 3121

Fig 2. Summary of the connectivity model outlined in Doerr, V.A.J., Doerr, E. D and Davies, M.J. (2010) Does Structural Connectivity Facilitate Dispersal of Native Species in Australia’s Fragmented Terrestrial Landscapes? CEE Review 08-007 (SR44). Collaboration for Environmental Evidence: www.environmentalevidence.org/SR44.html

Fig 2. Summary of the connectivity model outlined in Doerr, V.A.J., Doerr, E. D and Davies, M.J. (2010) Does Structural Connectivity Facilitate Dispersal of Native Species in Australia’s Fragmented Terrestrial Landscapes? CEE Review 08-007 (SR44). Collaboration for Environmental Evidence: http://www.environmentalevidence.org/SR44.html

Fig 3. Revegetation in the farming landscape in the Southwest Slopes of NSW

Fig 3. Revegetation in the farming landscape in the Southwest Slopes of NSW

 

 

West Hume Landcare Group – Taking stock, 24 years on

Judy Frankenberg

Key words: agricultural landscape restoration, community involvement, salinity, threatened species

The West Hume Landcare Group was formed in 1989 as a community response to land degradation in the area. Funding to employ a coordinator for three years was obtained in 1990. This enabled a high level of project activity in addition to tree planting, including a roadside vegetation survey, farm planning workshops, demonstration sites for ground water recharge and discharge management, and perennial pasture establishment. In the first 5 years of its existence, the group organised nearly 250 different events, attracted funding of over $500,000 and managed 17 different projects.

The second 5 years saw a period of consolidation – then, from late 1997, the employment of a full time project officer enabled  the development of a Land and Water Management Plan.  By early 2000 the Group had attracted a total of $1,000,000 in project funding over 11 years.

“Taking Charge of Recharge” was the largest project undertaken by the West Hume Landcare Group, commencing in 2001. It involved 80 properties, with a total of 170,009 local trees and shrubs planted on 370 ha.  Some 93 ha of remnant vegetation were fenced over the two years of the project. This project was the climax of a very busy 12 years of the Landcare Group’s life, during which 400,000 trees and shrubs were planted in a wide variety of projects across the landcare area – in addition to direct seeding and natural regeneration.  This revegetation had a variety of purposes, including recharge and discharge management, corridor linkages between remnants, vegetation connections specifically designed to strengthen the local (threatened) Squirrel Glider (Petaurus norfolcensis) population, and livestock shelter.

Many of the planting projects initially involved only small numbers of trees, with a low proportion of shrubs.  They were important in giving landholders confidence that tree planting was a credible farm management activity and in their ability to succeed in species selection and establishment.  The Landcare group provided a lot of support in species selection, and, as the demand for shrubs grew, the nurseries responded by increasing their availability.

Nearly all revegetation in West Hume has used local species, and as far as possible these were grown from locally sourced seed.  The diversity of shrub species used increased over the years as knowledge and availability of the local flora improved.

Roadside survey. Local knowledge was greatly increased following the roadside survey carried out by 38 landholder volunteers.  They surveyed 460 km of road, recording floristics, conservation value and causes of degradation.  A total of 111 native species were recorded, including 28 shrubs, but very few road sections had greater than 50% shrub cover.  Many of the shrubs. grasses and forbs recorded are considered rare in the landcare area.  Knowledge of the whereabouts of these small remnants has allowed seed collection and propagation of some of them in seed production areas on local properties and at the Wirraminna Environmental Centre at Burrumbuttock.  The need for this local source of seed has been emphasised by the observation that in the case of a few acacia species, local forms are different from those growing in neighbouring areas.

Landcare survey. Landholder views about the importance of vegetation was shown in a landcare survey carried out in 1999. A majority of the 60% of respondents considered that dieback of trees and the lack of shrubs, understorey and wildflowers was of concern and there was a clear concern expressed about the decline of native birds in the area.

When the “Taking Charge of Recharge” project was funded in 2001, the response of landholders was enthusiastic.  The group members were eager to take advantage of the high level of incentives available in this project to increase the scale of planting beyond that generally undertaken previously.  While the prime purpose of the funding was for recharge management, members were keen to establish local species in ecologically appropriate sites.  Ecological and botanical skills within the group were able to support the species choices.

This confidence in the value and feasibility of large revegetation projects has been continued in subsequent years when the Murray CMA has offered good incentives for large area plantings.

Contact:  Judy Frankenberg, +61 2 6026 5326, Email: judy@frankenberg.com.au

Fig 1. School student volunteers planting in block AA on ‘Warrangee’ in 1995.

Fig 1. School student volunteers planting in block AA on ‘Warrangee’ in 1995.

Fig 2. Resulting tree and shrub habitats created from 1995 planting on block AA, 2013.

Fig 2. Resulting tree and shrub habitats created from 1995 planting on block AA, 2013.

Fig 3. ‘Corridors of green’ project, 2013, planted in 1994, “Warrangee” .

Fig 3. ‘Corridors of green’ project, 2013, planted in 1994, “Warrangee” .

Holbrook Landcare “Rebirding the Holbrook Landscape” – assessing performance and learning in action

Chris Cumming and  Kylie Durant

Key words: tree dieback, lerps, restoring the agricultural landscape, community involvement, Holbrook Landcare Network

Holbrook producers established Holbrook Landcare Network in 1988.  It was one of the first Landcare groups in Australia, covering initially 171,000 ha of productive agricultural land in the upper reaches of the Murray Darling Basin. The organisation has directly managed grants of more than $6M across more than 85 projects to address NRM and agricultural issues including salinity and erosion control, soil and pasture management the protection of wildlife habitat.

Of the habitat projects, one of the most successful has been the “Rebirding Project”. A recognition of the importance of birds in the landscape occurred in 1994, when there was widespread concern in Holbrook over eucalypt tree dieback and the potential loss of paddock trees in the landscape. Holbrook Landcare commissioned a survey that identified 41% of the trees in the district were showing signs of dieback, and initiated (with support from our own extension staff and Greening Australia) education programs to inform landholders about the causes of dieback, including the link between cycles of lerp and other insect attack exacerbated by the loss of insectivorous birds.

In 1999 the group was successful in gaining funding for the “Rebirding the Holbrook Landscape to mitigate dieback” revegetation program through the Australian Governments Natural Heritage Trust (NHT), with the aim of drawing birds back onto farms and reducing eucalypt tree dieback.

Actions undertaken. Bird surveys were undertaken at 94 study sites in remnant vegetation on hills, flats and along creek lines. Education components succeeded in engaging the community and increased community knowledge and awareness of habitat issues in Holbrook.  The research information was used to recommend specific guidelines for the revegetation component, including ideal patch size (min 6ha), distance to remnant (1km), position in the landscape and habitat values.

The Rebirding on-ground projects (1999 – 2002) achieved 2150ha of remnant and revegetation work and put 475,000 plants back in the landscape across 118 properties – estimated at 80% of the Holbrook landholders.

Outcomes achieved. Measuring success of the program was very important to the community. A partnership with CSIRO Sustainable Ecosystems gave rise to a research project measuring bird use of plantings and remnant vegetation on local farms in 2004 to 2006.  This found that a range of bird species rapidly colonised planted areas and showed evidence of breeding activity, a positive message about the early signs of success of the Rebirding project. Tree health monitoring is ongoing by the community. Current ANU research is showing the positive benefit of the revegetation work in the landscape at the site, farm and landscape scale. The science is therefore indicating that yes, “rebirding” of the Holbrook landscape is underway, and HLN will continue to look to science to help us with the longer term outcomes for birds and tree health, and provide the feedback to us to adaptively manage our programs for the best outcomes.

The lessons and recommendations that come from the research are being applied directly to inform the design of subsequent programs such as the current major biodiversity project being managed by Holbrook Landcare – the “Slopes to Summit Bushlinks Project”.

Contacts: Chris Cumming (Executive Officer) and Kylie Durant,  Holbrook Landcare Network, PO Box 181 Holbrook NSW, Australia.  2644 Tel: +61 2 6036 3121, Email: kyliedurant@holbrooklandcare.org.au.

Paddock tree health field day, Holbrook, 2011.

Paddock tree health field day, Holbrook, 2011.

Before planting habitat blocks at Woomargama station, Holbrook.

Before planting habitat blocks at Woomargama station, Holbrook.

Stands of trees and shrubs established at Woomargama station, Holbrook.

Stands of trees and shrubs established at Woomargama station, Holbrook.

Macquarie University – Turpentine/Ironbark forest Regeneration

John Macris 

Key words: Bush Regeneration, Privets, Pittosporum, in-situ conservation.

Less than 5% of the original extent of Turpentine/Ironbark forest of the Sydney Basin Bioregion remains and so this forest type is listed is listed as critically endangered under the Commonwealth EPBC Act. Weed management and rehabilitation of remnants are priority conservation actions under the Act.

A 3.5 ha remnant of Turpentine/Ironbark forest located on the Macquarie University Campus has been the focus of a bush regeneration program that commenced in 2010.  Prior to the works, the site was variable in condition, with a core area near a watercourse having relatively high species diversity including Blackthorn (Bursaria spinosa) and the rare shrub Epacris purpurascens, while edges of this area contained a diversity of weed species.  An upslope area was more highly disturbed as it had been used as a breeding enclosure for research into rare rock wallabies until around 2005.

Works to date. Commencing in Autumn 2010, contract bush regeneration works included culling of the over-represented native Sweet Pittosporum (Pittosporum undulatum) in the core area, and removal of invasive weeds, principally a dense mid-story of the woody weeds Large-leaved Privet (Ligustrum lucidum) and Small-leaved Privet (L. sinense) throughout the treatment area.  Any large Privet logs were retained as habitat. Pampas Grass was removed from around the perimeter and, in a few places, Lantana  (Lantana camara) was also removed, although some has been retained as an interim small bird habitat in a few locations. Follow up work has mainly focused on a range of herbaceous weeds including Ehrhardta (Ehrhardta erecta), and gradual exhaustion from the seed bank of the problem woody weed species.

Results Prior to works, we estimated that about 10% of remnant was in relatively good condition.  About 2.5 years on, we now estimate that about 15% – 20% of the area is now in a resilient condition. Native species regenerating include a range of native grasses and forbs including Blady Grass (Imperata cylindrica), Basket Grass (Oplismenus aemulus), Weeping Grass (Microlaena stipoides), Tufted Hedgehog Grass (Echinopogon caespitosus),Blue Flax Lily (Dianella caerulea), Plume Grass (Dichelachne sp.), Finger Grass (Digitaria parviflora) Bordered Panic Grass (Entolasia marginata), Pastel Flower (Pseuderanthemum variabile) and Kidney Weed (Dichondra repens). Tree saplings including Turpentine (Syncarpia glomulifera) and Smooth-barked Apple (Angophora costata) have been uncovered and are developing in height. The colonizing shrub Kangaroo Apple Solanum aviculare has rapidly developed a rudimentary native mid story in the areas cleared of dense Privet.

Woody weed domination of the understorey before the works commenced

Same view 2years later (2012) showing ground stratum regeneration

Lessons learned. To create a robust weed buffer to the regeneration area, we decided it was important to start work in upslope areas, even though they were disturbed by the previous animal research enclosure (e.g. artificial soil profiles).  Due to same competing uses, such areas have been challenging stablise against weed resurgence, but a management edge is being established gradually.

Acknowledgements.  Sixty per cent of the first 15 months funding for the project was provided by Sydney Metropolitan CMA through their Saving Sydney’s Biodiversity Program with the rest covered by the University.  Subsequent work has been funded under Macquarie University’s Biodiversity restoration programs. Warren Jack from the contractor Sydney Bush Regeneration Company contributed much of the above species list of ground layer regeneration.

Contact: John Macris, Macquarie University. john.macris@mq.edu.au Tel: +61 (0)2 9850 4103

Regeneration of Lismore bushland cemetery, north coast NSW.

Key Words: bush regeneration, selective herbicides, transplanting, cemetery management

Since 2006, Lismore City Council’s Lismore Memorial Gardens (LMG) has been restoring and managing a 1.5ha  patch of regrowth Forest Red Gum (Eucalyptus tereticornis) grassy open forest in Goonellabah, north coast NSW – primarily for use as a bushland cemetery.  The site was part of a registered Koala corridor  and was in a highly weedy condition prior to the commencement of the project, with the understorey dominated by Lantana (Lantana camara) and most trees having at least one multi-stemmed Camphor Laurel (Cinnamomum camphora) encircling it.

Bush regeneration works. In 2006 the lantana was mechanically cleared and Camphor Laurels were stem-injected with glyphosate herbicide. After woody weed removal, the ground stratum rapidly responded with a germination flush of herbaceous weeds, mainly Blue Billygoat Weed (Ageratum houstonianum), Farmers Friends (Bidens pilosa) and Broad-leaved Paspalum (Paspalum mandiocanum) although some native herbaceous species were also regenerating, particularly Basket Grass (Oplismenus aemulus), Weeping Grass (Microlaena stipoides) and Kidney Weed (Dichondra repens).

Subsequent detailed spot spraying with herbicides was undertaken; in the first few years on a monthly basis by volunteers, and more recently by a horticulture-trained LMG staff member after some workplace tuition in bush regeneration methods.

1. Resilient areas. Herbaceous weed was systematically sprayed with broad-leaf selective herbicides (Dicamba/MCPA plus surfactant) or glyphosate.  Three larger patches consolidated with native species fairly rapidly, while other areas in poorer condition colonised with fewer species or took longer to convert to native dominance.  There are now 69 species on site that  are characteristic of this ecosystem (including 8 tree species, 15 grasses, 5 sedges, 8 twiners/climbers, 5 ferns and 1 moss).  About 20 of these species have been added to the list since the start of the project and all existing species have vastly increased in cover and density. The intermittent watercourse area regenerated over time with wetland herbaceous species largely including Persicaria spp. and Cyperus exaltatus.

View of central area of the site after control of woody weed. (Camphor chipmulch was initially spread in error then later removed to allow natural regeneration)

Same area two years later, showing extensive regeneration of native grasses and forbs

2. Highly weedy edge.  Standard bush regeneration approaches over at least 2 years in an edge site proved intractable due to high weed contamination and low native richness. A trial was conducted in 2009to see if scalping and revegetation (using transplanting and direct seeding ) could reduce the amount of weed control required and improve native vegetation establishment. This involved removal by a grader of 10 cm of the weedy topsoil, with the remaining subsoil broken up with a backhoe and hand raked. Sods containing multiples of 10 species were taken from the healthier parts of the cemetery and transplanted to the raked site in mid- to late-September 2009, resulting in a total of 145 plants in each of three zones (one transplanted only, one transplanted plus direct seeded with 10 species and one neither transplanted nor seeded). Seven weeks later, when germination from the sods had occurred, it was observed that 17 species (i.e. seven more) had been transplanted (Table 1.) Very few individual transplants died.

Top10cm of weedy topsoil removed and subsoil broken up before transplanting native grass and forb sods

Subsequent monitoring found that all the two scalped and revegetated zones, while requiring monthly weed control initially, had consolidated to a very low weed state by 9 months.  There was little visible difference between them except that the seeded one contained two more species not present in the unseeded site. Within 18 months, both zones had very high cover levels of native vegetation, particularly native grasses, and weed control demand was substantially lower than adjacent edge sites treated with conventional spot spray methods alone.  The non-transplanted or seeded zone remained with low species diversity and was more exposed to weed cover.  It has since become an access track and requires higher weed control inputs than the adajacent revegetated areas.

Nine months after transplanting. With some weed control requirement, natives now well established and commencing a process of steady recolonisation

Lessons learned. The bush regeneration treatments have converted a weed-dominated site to a recognisable Forest Red Gum grassy open forest with a diverse understorey. Cemetery operations are ongoing with the condition of the bushland showing an improvement with each year. Evidence of wildlife use of the habitat is increasing. This is due to ongoing management support, continuing volunteer inputs and the deployment of staff with some training in weed and bushland management.  Although a range of highly problematic weeds (including Asian Copperburr,  Acalypha australis, Prairie Grass, Bromus uniloides, and Hairy Commelina, (Commelina bengahlensis ) were initially not adequately addressed and are now requiring additional treatment; the site is now a pleasure to be in and is a wonderful demonstration site for not only restoration techniques but also the district’s grassy understorey species, once so widespread but now rarely conserved .

Contact: Tein McDonald 06 6682 2885 Email: teinm@ozemail.com.au – or Kris Whitney, Manager, Lismore Memorial Gardens, Email:  Kris.Whitney@lismore.nsw.gov.au

Sustainable Streets Program, Byron Shire Council, NSW

Graeme Williams

Byron Shire Council’s ‘Sustainable Streets’ program aims to foster community-inspired sustainable behaviour change at a neighbourhood level. The program consists of regular neighbourhood gatherings and sustainability education workshops on topics, including: organic gardening; bush-friendly backyards; rainwater harvesting; solar power and energy efficiency; ethical shopping; green cleaning and, cooking with local produce.  .

Activities. In each participating neighbourhood, residents get together for sustainability workshops and build bonds in the neighbourhood, whilst raising points to fund their own local sustainability project. Currently seven streets in neighbourhoods across Byron and Tweed Shire Councils have participated in the Sustainable Streets program, including: Brunswick Heads; Mullumbimby; South Golden Beach; Mullum Creek; Murwillumbah; Cabarita Beach; Uki.

Analyses of the street’s consumption of energy, water and ecological footprint (i.e. the number of planets needed if everyone lived that lifestyle) were made prior to the program and calculated again after 6 months. (Results are shown in Table 1.)

Table 1. Decreases in energy, water and eco footprint of residents in participating Sustainable Streets in the Tweed-Byron area.

Location of Street Energy Water Eco Footprint
South Golden Beach 5.0% decrease 43.0% decrease 5.5% decrease
Uki 13.0% decrease 23.0% decrease 14.5% decrease
Mullumbimby Creek 13.5% decrease 62.0% decrease 21.0% decrease
Cabarita 26.0% decrease 23.0% decrease 20.5% decrease
Brunswick Heads 12.3% decrease 41.5% decrease 15.3% decrease

Results to date.

Energy. Participants have changed to Greenpower, with 8 families having installed their own solar power system. Other changes have been changing consumption patterns including turning off standbys, installing low wattage lights, wearing jumpers instead of turning on heaters, manual operation of electric hot water boosters, adjusting pool pumps minimum use or converting to a natural pool and insulative cooking.

Water. Five families have installed water tanks, others use shower timers, less frequent bigger clothes and dish washing loads.

Food and garden. Participants have converted to efficient composting or worm farms or installed poultry. Others meet more regularly for neighbourhood food and plant swaps and and buy more local food from a nearby organic farmer and at the Farmer’s markets.

Fuel emissions. Changes included reducing air travel, downsizing the family to more fuel efficient models, increased carpooling and pushbike use.

Environment. Nine families cleared their land of invasive weeds

Lessons. A major aspect of the project has been the strengthening of social connections in the neighbourhood, with many participants drawn into the program to ‘get to know their neighbours’. In an increasingly isolated society, the enhancement of social capital has been one of the most significant achievements of the program and platform to develop local sustainability. It is hoped that additional streets will be launched in the future.

Contact Byron Shire Council’s Sustainability Officer on 6626 7305. Also see http://www.byron.nsw.gov.au/sustainable-streets-program to access the ‘Sustainable Streets doco’ which can be borrowed from local libraries.

Sustainable Streets residents (Photo Byron Shire Council)

Brunswick Heads Sustainable Streets participants (Photo Byron Shire Council)

Rotary Park regeneration project, Lismore NSW

Tein McDonald

Key words: Dry rainforest, regeneration, Anredera cordifolia, long term project, flying-foxes.

Rainforest regeneration works at the 11.5 ha dry rainforest remnant, Rotary Park, Lismore, commenced in in June 1985 under the leadership of Keith King, the then Parks and Gardens Supervisor for Lismore City Council, and inspired by the success of John Stockard at Wingham Brush.

The site, surrounded by residential areas and bordered by a main road, was considered (prior to treatment) so degraded by weed vines that many considered it beyond redemption. The canopy was infested with vines including Madeira Vine (Anredera cordifolia), Asparagus africanus and A. plumosus and Morning glory (Ipomoea spp.) (Fig 1).  Within the forest, the ground was blanketed by Tradescantia (Tradescantia fluminensis) and Madiera Vine tuberlings, with Large- and Small-leaved Privet (Ligustrum spp.) dispersed throughout more degraded areas and edges and gaps often dominated by Lantana (Lantana camara).

Works and results. The project initially trialed minimal disturbance techniques promoted by the bush regeneration movement in Sydney but soon found that higher levels of disturbance were needed to trigger regeneration and render the tuberlings of Madeira Vine and other weed susceptible to herbicide spray.  Adapting the Wingham Method to local conditions, Keith King and the regeneration team led by Rosemary Joseph radically transformed the rainforest into a relatively healthy dry rainforest patch over a period of 10-15 years, although primary work in some parts of the site is still not completed.

Lessons learned.  Prior to primary work being completed, populations of  Grey-headed Flying-fox (Pteropus poliocephalus) and Black Flying-fox (P.  alecto) have established roosts in the forest.  This added significantly to the work load as it increased the density and number of weed species, with new species including by Flying-foxes including Giant Devil’s Fig (Solanum chrysotrichum) and tropical fruits such as Guava (Psidium guajava).  When the trees were stripped of foliage by the flying-foxes, the trees were then used as roots by White Ibis (Threskiornis molucca). This contributed additional ammonia which resulted in deteriorated working conditions for regenerators.  While the project remains on a maintenance budget, current budgets have been insufficient to complete the primary work on other parts of the site.

Acknowledgements. The site is managed by Lismore City Council who have funded the project since its inception.

Contact: Rosemary Joseph  c/o Lismore City Council Martin.Soutar@lismore.nsw.gov.au

Canopy Gap at Rotary Park dry rainforest, Lismore in 1987 (prior to restoration works). (Photo Rosemary Joseph)

Same canopy gap at Rotary Park dry rainforest, Lismore in 1988 (1 year after primary clearing). (Photo Rosemary Joseph)

Same  canopy gap at Rotary Park dry rainforest, Lismore in 2006. (Photo Rosemary Joseph)

Fingal Headland Maritime Themeda Grassland Restoration

Keywords: Grassland, Themeda Grasslands on Sea-cliffs and Headlands, headland ecosystems, bush regeneration, Fingal Head Coastcare, Plectranthus cremnus

Kieran Kinney

Fingal Head, whose first inhabitants are members of the Cudginburra Clan, is a famous beauty spot in the far north coast of NSW, heavily utilised for recreation such as fishing, surfing, whale and dolphin watching and family outings. It is estimated that upwards of 50,000 visitors per annum use the site. As a result of this and other impacts including unfettered goat grazing (commencing around the lighthouse in the late 19th century), the site has many management challenges, including extensive gully and rill erosion, trampling of native vegetation, wildflower harvesting and weed invasion.

Prior to treatment, the ground cover layer was almost completely dominated by a form of the exotic Buffalo Grass (Stenotaphrum secundatum) and a suite of other weeds including Bitou Bush (Chrysanthemoides monilifera ssp rotundata). Because similar headlands in the region (Norries Head and Hastings Point Headland) support the State-listed  Endangered Ecological Community Themeda Grasslands on Sea-cliffs and Headlands it is assumed that Kangaroo Grass (Themeda triandra) was native to the site and became locally extinct due to the history of grazing and weed invasion.

Project works: In 2009 Fingal Head Coastcare determined that work to address the serious weed problems should commence and that trials be undertaken to reintroduce Kangaroo Grass.  Several small plots (100m² ea.) were sprayed with herbicide and slashed (Fig 1). Regenerating weed was regularly removed.

Fig 1: Trial plot 1 –  Natural regeneration within patch of treated Buffalo Grass

The plots were sown with Kangaroo Grass seed collected from other headlands in the region. The material used is a genetically distinct coastal form of Kangaroo Grass that exhibits a unique decumbent growth habit. Ripe fruiting culms were distributed in quadrats as well as randomly over the plots.

In addition to the Kangaroo Grass trials, efforts were made to plant a variety of typical Grass and Forbland species, including Golden Everlasting Daisy (Xerochrysum bracteatum), Evolvulus alsinoides and Chamaechrista maritima. These were propagated in the Fingal Coastcare nursery from seed and stock sourced at nearby headlands.

Results. Regeneration of native species  was extensive across the plots (Figures 2a and 2b). Regenerating native species included Prickly Couch (Zoyzia macrantha), Native Violet (Viola banksii), Angled Lobelia (Lobelia alata) Plectranthus (Plectranthus cremnus) and Beach Bean (Canavalea rosea).

Fig 2a: Typical Buffalo Grass infestation prior to commencement of trials.

Fig 2b: Example of regeneration of native grasses Prickly Couch and Blady Grass after works (Plot 1, 2011).

Both the Kangaroo Grass  and the Everlasting Daisy (Figure 3) have since naturalised on the site. However, the plots revealed very poor rates of germination of Kangaroo Grass, approximately 1 in1000. Germination rates were much higher under controlled nursery conditions

Fig 3: Everlasting Daisy re-established and recruiting on Fingal Headland.

Outcomes and lessons learned The low rate of Kangaroo Grass germination is not regarded as a major impediment to the overall success of the project. As natural processes and cycles come into play, it is probable that Kangaroo Grass will become a significant part of the biota on the headland. That is,  achieving the ultimate aim of a Closed Tussock Themeda Grassland is probably unlikely through reintroduction from the seed sowing methods we used, but may occur naturally over time.

The extensive natural regeneration of the threatened Plectranthus cremnus is a major success of the trials.  This herb species is habitat for a local population of Blue-tongue Lizards and Bearded Dragons. It is a major food source for the reptiles, supplementing their animal diet, which may be very seasonal.

Erosion control has been significantly reduced through active intervention, using hard infrastructure in combination with ‘low key’, passive techniques such as strategic plantings and bush debris.

Local school children are involved in the plantings on an ongoing basis, and have picked up vital local knowledge and site ownership along the way. This project has been a major education experience for the Coastcare group, the Tweed Byron local Aboriginal Land Council and many members of the Fingal Head Community who were previously not aware of this Endangered Ecological Community . The trial areas are now a profusion of wildflowers almost the year round and the Coastcare volunteers receive many compliments from the passing public. During working bees on the site considerable energy is devoted to educating the public about the Grasslands in the hope that this will assist in their protection (and also because it is a lot of fun!)  Anyone who visits the site will be captivated by the delicate beauty of the native flora, the awesome scale of the natural scenery and will surely agree that something special is happening here.

Where to from here?: One of the most challenging and pressing issues facing the headland is uncontrolled pedestrian traffic. Although this may be unavoidable to some extent, it is desirable for the long term health of the ecosystem that some control methods be introduced to the site. Trials have been conducted using bush debris with limited success. More permanent methods would have to be carefully designed and implemented in order to blend with the unique aesthetics of the site. Boardwalk construction has been very successful in key areas, however this type of construction is deemed inappropriate for the grassland proper.  Dense vegetative barriers consisting of tussock forming species such as Spiny Mat Rush (Lomandra longifolia) and Knobbly Club Rush (Isolepis nodosa) are being planted to rationalise the trackways and guide pedestrians away from more sensitive areas.

In terms of the vegetation restoration works, ongoing and extensive follow-up weed control is required and it is envisaged that as each plot is stabilised and achieves manageable levels of autonomy, new areas will be opened up for weed control. It is recommended that a formal Restoration Plan be developed and implemented, perhaps through funding avenues or the involvement of Environmental Science students. This would greatly assist guiding the works over an extended period and help achieve the best possible outcomes for Fingal Headland and the wider community.

Partners and Investors: Fingal Head Coastcare Inc. consulted with the Tweed Shire Council, The Tweed Byron Local Aboriginal Land Council and a number of community groups to plan this project. The community groups include the Fingal Heads Community Association, the Fingal Head Public School, Fingal Rovers SLSC, local businesses and other Tweed Coast Dune care groups.

Contact : Kieran Kinney,  Fingal Head Coastcare Project Manager, 28 Kurrajong Ave Cabarita Beach 2488. Tel:  +61 266763002 Mob: 0457356175.   Email : kierankinney@gmail.com