Category Archives: Sclerophyll communities

Twelve years of healing: Rehabilitating a willow-infested silt flat – Revegetation

Alan Lane

Key words: weed management, National Park, headwall, instability, Salix

The site: Popes Glen Creek is a small permanent stream rising in Memorial Park, Blackheath New South Wales, Australia. It flows through Popes Glen Bushland Reserve and the Greater Blue Mountains World Heritage Area (GBMWHA), joining the Grose and Hawkesbury/Nepean River systems. The upper catchment drains a significant sector of the urban township of Blackheath.

The problem: Decades of erosion from surrounding unsealed roads resulted in a 1ha silt flat forming at the headwaters of the creek and terminating in a highly incised headwall 3m high and 20m wide. Upstream, the silt flat and severely braided creek were populated by a dense forest of mature, multi-trunked specimens of Crack Willow (Salix fragilis), as well as thickets of Purple Ossier (S. purpurea), Small-leaf Privet (Ligustrum spp.), Holly (Ilex aquifolium), Cotoneaster (Cotoneaster spp.) and immature S. fragilis. There was also a ground layer of Montbretia (Crocosmia x crocosmiiflora), Blackberry (Rubus fruticosus agg), English Ivy (Hedera helix), Creeping Buttercup (Ranunculus repens) and Honeysuckle (Lonicera japonica).

This dense and complex infestation of weeds threatened to spread downstream into susceptible remote areas of the GBMWHA, where it would rapidly become extremely difficult to remove and would ultimately threaten the Grose and Hawkesbury-Nepean River systems.

Fig 1. Feb 2005 - the creek bank, dominated by weeds prior to work.

Fig 1. Feb 2005 – the creek bank, dominated by weeds prior to work.

Fig 2. Sept 2014 - same site nearly 10 years later, showing established plantings and some natural regeneration.

Fig 2. Sept 2014 – same site nearly 10 years later, showing established plantings and some natural regeneration.

Works carried out: Phase 1: 2002 – 2008  In 2002, the Pope’s Glen volunteer bushcare group, supported by Blue Mountains City Council and funding from the Urban Run-off Control Program, established trial plantings on four sites (100m2 each) to identify a limited range of local riparian and wetland species and the planting techniques best suited to revegetating and stabilising the silt flat. The species included Red-fruit Saw-sedge (Gahnia sieberiana), three teatree species (Leptospermum lanigerum, L. polygalifolium, and L. juniperinum), Broad-leaved Hakea (Hakea dactyloides), and three ferns (Blechnum nudum, B. watsii and Cyathea australis).

A 3-year grant from the Environmental Trust (2005-2008) then enabled a program of weed removal and replanting, encompassing the upstream half of the silt flat and expanding the list of plant species to about 30.

The weeds were removed progressively in a patchwork to preserve the stability of the silt. The willows were killed by stem injection and felled when dead. Over these 3 years, the volunteer group planted approximately 7000 plants and carried out approximately 1200 hours of site maintenance. This has resulted in a diverse and resilient wetland community, with high levels of plant establishment from both planting and from natural recruitment (Figs 1 and 2).

Phase 2: 2012 – 2018 At the commencement of this phase, stability of the downstream portion of the silt flat and headwall was dependent upon the integrity of the roots of the remaining dense stands of weeds. These could be removed only as part of an integrated program of works to stabilise the silt and the headwall. A second grant from the Environmental Trust (2012-2018) is enabling an integrated, 6-year program of stabilisation, restoration and revegetation to be carried out by a team of experienced contractors, using both “soft” and “hard” engineering strategies.

The volunteer group is responsible for on-going site maintenance, photography, monitoring surface water quality and water table depth and quality, and for surveying vegetation, macro-invertebrates, frogs, birds and stygofauna.

Overall results. The formerly highly degraded silted flat is now a thriving community of wetland and riparian vegetation, home to a rich diversity of small birds, dragonflies and mayflies. Frogs are beginning to populate the site. Water quality has been significantly improved, with up to 85% of faecal coliforms and 75% of nitrate-N removed in the wetland. This improves the water quality in Popes Glen Creek and reduces the pollutant load into the GBMWHA.

Fig 3. Feb 2013 - a portion of the headwall viewed from downstream. (Plunge pool approx.3m below. (Image Damon Baker www.nomadgraphics.com.au).

Fig 3. Feb 2013 – a portion of the headwall viewed from downstream. (Plunge pool approx.3m below. (Image Damon Baker http://www.nomadgraphics.com.au).

Fig 4. Nov 2014 - same site showing heavy retaining wall and spillway now constructed. (Plunge pool has been stabilised with rock armouring.)

Fig 4. Nov 2014 – same site showing heavy retaining wall and spillway now constructed. (Plunge pool has been stabilised with rock armouring.)

Lessons learned and future directions: This is an example of how an apparently overwhelming challenge can be tackled by a dedicated group of volunteers with critical mass, commitment and longevity, provided that the group has support from a body such as a local Council and that it can raise funds to employ skilled assistance as needed. It is anticipated that the ambitious program of rehabilitating the extensive and highly degraded silt flat will be completed within the life of the present grant.

Stakeholders and funding bodies: This work is supported by a grant from the Government of New South Wales through its Environmental Trust and by the Blue Mountains City Council. Unless otherwise stated, photographs have been provided by Alan Lane and Paul Vale.

Contacts: Dr Alan Lane, Coordinator Popes Glen Bushcare Group, PO Box 388, Blackheath NSW 2785, Australia. Ph +61 2 4787 7097; Paul Vale, Deputy Coordinator Popes Glen Bushcare Group, 81 Prince Edward St, Blackheath NSW 2785, Australia. Ph +61 2 4787 8080; and Ray Richardson, Chairman of Steering Committee, Environmental Trust Grant 2011/CBR/0098. Ph +61 2 4759 2534.

Cooks River Naturalisation, Sydney, NSW Australia

By Dan Cunningham

Key words: riparian rehabilitation, revegetation, reconstruction

document

A reach of the Cooks River prior to and after naturalisation

A reach of the Cooks River prior to and after naturalisation

Sydney Water have undertaken a project to convert 1.1km of concreted sections of the Cooks River, Sydney Australia, to a more natural state, substantially improving their potential for aquatic function and the provision of services to surrounding residential areas.

The problem and its causes. Seven kms of the highly urbanised Cooks River were concrete lined in the 1940s in an effort to alleviate flooding and reduce water pollution. Since that time the natural values of the river have declined due to pollution and lack of riparian remnant vegetation.

Community interest in the quality of the environment had increased since the 1940s and, the structure of the concrete began to significantly deteriorate, in 2014 Sydney Water removed sections of deteriorated concrete and undertook environmental rehabilitation of parts of the riparian zone.

Fig 2. Cooks River Naturalisation sites

Fig 2. Cooks River Naturalisation sites

What we did. Between 2007 and 2013 Sydney Water carried out a masterplanning exercise that included asset inspections, hydraulic analysis, stakeholder consultation and concept design development; in order to identify sites along the river that were suited to renewal and naturalisation (Fig 2).

There was little adjacent native vegetation on which to base the design of the revegetation work, but local botanical surveys had resulted in a conceptual map of the catchment’s pre-existing ecological communities, which allowed the project to select species suited to four different habitat types:

  • Freshwater and Brackish Swamp – Lower to mid bank (non- tidal reach) and constructed wetland
  • Clay Plain Scrub Forest – mid bank to upper bank and over bank areas (reference – Third Avenue remnant)
  • Turpentine Ironbark Forest – Selected larger trees
  • Coastal Saltmarsh – Lower to mid bank (tidal reaches) and saltmarsh benches (reference Gough Whitlam Park and Wolli Ck)
Fig 3. Presumed ecological communities prior to clearing

Fig 3. Presumed ecological communities prior to clearing (Source: The Bushplants of the Cook River Valley: D. Benson, D. Ondinea and V.Bear ,1999).

Fig. 4. Profile of bank treatment

Fig. 4. Profile of bank treatment

Fig 5. Concrete lining of

Fig 5. Reasons for works included environmental benefits and deterioration of the concrete.

 Results. The project resulted in the reconstruction of a diversity of native riparian habitat types and improved connectivity for biota between reaches of the river that were previously disconnected. This resulted in massive aesthetic improvement, with local residents conveying much improved local area pride and positivity. The project provides a social amenity, with the provision of pathways, seating, interpretive signage and provides an opportunity for local communities to reinstate a sense of place and reconnect with each other in the context of a natural river. In addition it represents value for money considering that longer asset life produced by the natural system.

Fig 6. Works inlcuded floodways devoid of trees.

Fig 6. Works inlcuded floodways devoid of trees.

Fig 7. Native vegetation now stabilising the  banks.

Fig 7. Planted native vegetation now stabilising the
banks.

Acknowledgement: This summary was first presented to the Symposium ‘Reubilding Ecosystems’ held at the Teachers’ Federation Conference Centre, Sydney by the Australian Association of Bush Regenerators (AABR)

Contact: Dan Cunningham – Program Lead, Waterways Sydney Water, Email: <daniel.cunningham@sydneywater.com.au>

Websites:

http://www.sydneywater.com.au/SW/water-the-environment/what-we-re-doing/current-projects/stormwater-management/stormwater-naturalisation/index.htm

http://www.sydneywatertalk.com.au/crbnp/

Directly transplanting of native monocots from donor areas to suitable reconstruction sites

By Edgar Freimanis

Key words: urban bushland restoration, site remediation, direct return topsoil, plant salvage, transplanting.

Introduction: As a bush regeneration contractor often working adjacent to development sites in the Sydney Region it occurred to me that plants and topsoil earmarked for destruction at a development site could be salvaged and translocated to improve results in nearby or similar restoration areas. Monocots lend themselves to this process due to their comparatively shallow, fibrous and stoloniferous root systems that have adapted to regrowing after disturbance.

Works undertaken and results. Over the years our bush regeneration contract team has translocated monocots at a range of project sites where natural regeneration potential is very low. Typically this technique accompanies our more conventional planting of nursery grown tree and shrub tubestock in these areas. The soils in these recipient areas are usually similar to those of the donor sites from where they were sourced. If weed management is needed, the recipient sites are typically weeded before transplanting takes place. We use hand tools such as shovels to dig-up variable sized sections of mostly native grasses and some other native monocotyledonous plant sods from areas that have been designated for development and other similar authorised clearing.

The sods are placed into plastic trays, moved and directly transplanted into parts of adjoining bushland conservation areas that have been designated for reconstruction planting. The transplants can be placed within recipient sites at similar densities to grassy ground layer tubestock plantings, (e.g. at densities of between 1-4-plants per m2, or more) or laid out like turf in continuous sections,

Plant establishment aids such as water retention crystals and fertilisers are also applied to each transplant at planting to assist with plant survival and establishment. The transplants are watered-in initially and on subsequent occasions, depending on prevailing soil moisture conditions, project resources and project timing.

Ongoing follow-up bush regeneration weeding is typically undertaken in the recipient sites, as required. (Fig 1). Monitoring has been confined to ‘before and after’ photo documentation, as shown in the following examples.

Figure 1. A sod of the native grass Entolasia stricta being transplanted at 4 plants/m2 into the old driveway at the Tuckwell Road. (Photo: Ecohort)

Figure 1. A sod of the native grass Entolasia stricta being transplanted at 4 plants/m2 into the old driveway at the Tuckwell Road. (Photo: Ecohort)

1. Tuckwell Road, Castle Hill Shale Sandstone Transition Forest and Sydney Turpentine Ironbark Forest Regeneration and Reconstruction of low residence sections. The recipient site was a rehabilitated old bitumen driveway within an estimated 0.40-hecatre bushland conservation and restoration area Native grasses and other monocots were transplanted from a bushland area that was being cleared for associated road widening works at a density of four plants/m2. (Figs 2 and 3).

Figure 2. Tuckwell Road ‘before’ (note: exotic plants already removed). (Photo: Ecohort)

Figure 2. Tuckwell Road ‘before’ (note: exotic plants already removed). (Photo: Ecohort)

Figure 3. Tuckwell road about 2-years later showing transplanted native monocots and planted native shrubs. (Photo: Ecohort)

Figure 3. Tuckwell road about 2-years later showing transplanted native monocots and planted native shrubs. (Photo: Ecohort)

2. Kellyville (Cumberland Plain Woodland site). The recipient site consisted of an edge of a bushland conservation area, that was subject to earthworks associated with a retirement village development. The recipient site’s soils were ripped to alleviate compaction and topsoiled with local clay-based topsoil. Native grass sods were transplanted from donor areas that were located within the approved development footprint area adjoining the bushland conservation area. The sods were cut into 200-300mm sections and placed in close proximity to on-another, not too dissimilar to a jig-saw puzzle or hand cut turf, to make a continuous grassy layer, with minimal gaps between transplanted sods. The transplanted sods were lightly filled and top-dressed with local topsoil to fill and level out any gaps between the sods, and then trimmed to surrounding ground levels and watered-in well. (Figs 4 and 5)

Figure 4. Native grasses being transplanted, very close together like turf sods at Kellyville. (Photo: Ecohort)

Figure 4. Native grasses being transplanted, very close together like turf sods at Kellyville. (Photo: Ecohort)

Figure 5. Same Kellyvillle site about a year later. (Photo: Ecohort)

Figure 5. Same Kellyvillle site about a year later. (Photo: Ecohort)

3.Spinifex transplanting on coastal sand dunes. In this project the rhizomous native grass sprinfex was transplanted into dunes from nearby areas at Corrimal Beach in the Wollongong local government area, as a part of works associated with Council’s 2013 Dune Management Implementation Plan. The spinifex transplanting works were undertaken in conjunction with weed control and tubestock reconstruction planting works.(Figs 6 and 7)

Figure 6. Spinifex being transplanted into a section of dune at 2-4-plants per m2. (Photo: Ecohort)

Figure 6. Spinifex being transplanted into a section of dune at 2-4-plants per m2. (Photo: Ecohort)

Figure 7. Section of spinifex that has established from previous transplanting. (Photo: Ecohort)

Figure 7. Section of spinifex that has established from previous transplanting. (Photo: Ecohort)

Benefits and characteristics of direct transplanting include:

  • Reduction of lengthy plant propagation and seed collection phases;
  • Avoidance of seed maturity restrictions and clashes with project construction phases;
  • Guaranteed achievement of local provenance material;
  • Ability to obtain species that are difficult to propagate or collect seed from;
  • Potential inclusion of other plant species from donor to recipient sites (translocated as seed in the soil of transplanted sods);
  • Achievement of similar densities to tubestock planting or turf-laying;
  • Ease of implementation (transplanting monocots is a technique that has been long-practiced by bush regenerators, gardeners and horticulturists);
  • Ability to conduct the treatments on a small scale using hand tools, or large scale using heavy machinery.

Barriers and challenges to direct transplanting include:

  • Timing/gaining consent difficulties relating to compatibility of works between donor and recipient sites;
  • Convincing consent authorities of the efficacy of this method;
  • Technical issues: proximity of donor and recipient sites;
  • Cost, (including maintenance and watering) which can be higher than other methods;
  • Difficulty in transplanting some monocots;
  • Potential for soil pathogen spread.

Acknowledgements:  This summary was originally presented to the November 2014 Symposium ‘Rebuilding Ecosystems’ held at the Teachers’ Federation Conference Centre, Sydney by the Australian Association of Bush Regenerators (AABR)

Contact: Edgar Freimanis, Ecohort, ( PO Box 6540 Rouse Hill NSW Australia 2156 Tel: +61 418 162-970 Email: ed @ecohort.com)

Slopes2Summit Bushlinks Project

Keywords – landscape, connectivity, restoration, revegetation, NSW southwest slopes

The Slopes2Summit (S2S) Bushlinks project commenced in August 2012 and is in the first stage of implementing on-ground works to build landscape-scale connectivity across private lands in the southwest Slopes of NSW – from the wet and dry forest ecosystems of the upper catchment and reserves to the threatened Grassy Box Woodlands of the lower slopes and plains (Fig 1.).

Fig 1. Map of the S2S area and priority landscapes for Bushlinks

Fig 1. Map of the S2S area and priority landscapes for Bushlinks

The increasing isolation of plant and animal populations in “island” reserves scattered through an agricultural landscape is a recognised threat to the long term viability and resilience of ecosystems under potential impact of climate change. If we can increase the viable breeding habitat through off-reserve remnant conservation, and increase the habitat for dispersal by increasing connectivity, we may be able to influence the trajectory for some of our species – the Squirrel Glider (Petaurus norfolcensis)) and threatened woodland birds in particular.

The S2S Bushlinks Project is attempting to address connectivity issues through the following approaches:

1. Cross property planning. Foster and encourage cross property planning for habitat connectivity between neighbours, community, Landcare and/or subcatchment groups resulting in more integrated on-ground works projects, and raising awareness of the benefits of connectivity for wildlife.

2. On-ground investment in connectivity. The project is partnering with farmers and land managers to support and encourage fencing and revegetation in strategic places in the landscape with the objective of increasing habitat connectivity.  S2S Bushlinks applies scientific principles to the site assessments and evaluation, which then sets the level of investment in a site.  High scoring sites receive the highest rates of rebate, but the provision of low levels of public investment in sites that may not be of high priority is important for fostering participation in revegetation of any sort to encourage the culture of caring for the land.

Site assessment and scoring for funding level uses the following criteria:

  • Connectivity and landscape value – Does the site link to or create new patches of habitat according to principles of habitat connectivity? (Fig 2)  Is there existing vegetation in 1000ha radius around the site in an optimal range of 30-60%?
  • Area : perimeter ratio – Bigger blocks of revegetation are more cost-efficient and better habitat than linear strips of revegetation, and the project scoring encourages landholder to go bigger and wider in order to qualify for a higher level of funding.
  • Habitat Values – Does the site have existing values like old paddock trees, rocky outcrops or intact native ground layer, and therefore become a more valuable site? Is it in the more fertile, productive parts of the landscape and therefore of more productivity benefit for wildlife as well?
  • Carbon value – The scoring is based on the size of the revegetation and rainfall zone. The CFI Reforestation tool is being used to value the collective potential carbon sequestration of the Bushlinks project.

The emphasis on cross-property planning flows through to the implementation of on-ground works. Landholders are encouraged to work with neighbours and the site evaluation system is used to assess site value without the property boundaries – cooperation makes the site bigger and usually increases the connectivity value, and therefore scores higher.

3. Review and adaptive management process. The site assessment is to be reviewed in July 2013 against the objectives – did it work to prioritise sites well – did we invest wisely? The scientists and experts are then able to work closely with Holbrook Landcare to adjust the project eligibility, assessment and evaluation criteria to continually improve the outcomes in subsequent funding years.

4. Monitoring framework. As part of the in-kind contribution to the project, S2S partners Dr Dave Watson, CSU Albury and Dr. Veronica Doerr, CSIRO are working towards a framework for the long-term monitoring of landscape scale connectivity for continental-scale initiatives like Great Eastern Ranges (GER).  As part of a GER Environmental Trust Project in 2013, an expert panel workshop will be convened to begin this process in 2013.

The framework will then be used to pilot a project-scale design for Bushlinks, which will allow us to measure ecological outcomes.

Bushlinks will contribute to the Slope2Summit portal of the Atlas of Living Australia, supported by the Slopes2Summit facilitator. To develop community participation in monitoring and evaluation, participants and the wider community will be encouraged to contribute wildlife sightings and other data to the atlas.

The S2S partnership applied for funds through the Australian Governments Clean Energy Futures Biodiversity Fund in 2011 and was successful in the 2011/12 funding year for a six year project. Holbrook Landcare Network is managing the S2S Bushlinks Project on behalf of the Slopes2Summit and the Great Eastern Ranges Initiative, in partnership with Murray CMA.

Contact: Kylie Durant, Bushlinks Project Officer, Holbrook Landcare Network, PO Box 121 Holbrook, NSW 2644 Australia. Tel: +61 2 6036 3121

Fig 2. Summary of the connectivity model outlined in Doerr, V.A.J., Doerr, E. D and Davies, M.J. (2010) Does Structural Connectivity Facilitate Dispersal of Native Species in Australia’s Fragmented Terrestrial Landscapes? CEE Review 08-007 (SR44). Collaboration for Environmental Evidence: www.environmentalevidence.org/SR44.html

Fig 2. Summary of the connectivity model outlined in Doerr, V.A.J., Doerr, E. D and Davies, M.J. (2010) Does Structural Connectivity Facilitate Dispersal of Native Species in Australia’s Fragmented Terrestrial Landscapes? CEE Review 08-007 (SR44). Collaboration for Environmental Evidence: http://www.environmentalevidence.org/SR44.html

Fig 3. Revegetation in the farming landscape in the Southwest Slopes of NSW

Fig 3. Revegetation in the farming landscape in the Southwest Slopes of NSW

 

 

West Hume Landcare Group – Taking stock, 24 years on

Judy Frankenberg

Key words: agricultural landscape restoration, community involvement, salinity, threatened species

The West Hume Landcare Group was formed in 1989 as a community response to land degradation in the area. Funding to employ a coordinator for three years was obtained in 1990. This enabled a high level of project activity in addition to tree planting, including a roadside vegetation survey, farm planning workshops, demonstration sites for ground water recharge and discharge management, and perennial pasture establishment. In the first 5 years of its existence, the group organised nearly 250 different events, attracted funding of over $500,000 and managed 17 different projects.

The second 5 years saw a period of consolidation – then, from late 1997, the employment of a full time project officer enabled  the development of a Land and Water Management Plan.  By early 2000 the Group had attracted a total of $1,000,000 in project funding over 11 years.

“Taking Charge of Recharge” was the largest project undertaken by the West Hume Landcare Group, commencing in 2001. It involved 80 properties, with a total of 170,009 local trees and shrubs planted on 370 ha.  Some 93 ha of remnant vegetation were fenced over the two years of the project. This project was the climax of a very busy 12 years of the Landcare Group’s life, during which 400,000 trees and shrubs were planted in a wide variety of projects across the landcare area – in addition to direct seeding and natural regeneration.  This revegetation had a variety of purposes, including recharge and discharge management, corridor linkages between remnants, vegetation connections specifically designed to strengthen the local (threatened) Squirrel Glider (Petaurus norfolcensis) population, and livestock shelter.

Many of the planting projects initially involved only small numbers of trees, with a low proportion of shrubs.  They were important in giving landholders confidence that tree planting was a credible farm management activity and in their ability to succeed in species selection and establishment.  The Landcare group provided a lot of support in species selection, and, as the demand for shrubs grew, the nurseries responded by increasing their availability.

Nearly all revegetation in West Hume has used local species, and as far as possible these were grown from locally sourced seed.  The diversity of shrub species used increased over the years as knowledge and availability of the local flora improved.

Roadside survey. Local knowledge was greatly increased following the roadside survey carried out by 38 landholder volunteers.  They surveyed 460 km of road, recording floristics, conservation value and causes of degradation.  A total of 111 native species were recorded, including 28 shrubs, but very few road sections had greater than 50% shrub cover.  Many of the shrubs. grasses and forbs recorded are considered rare in the landcare area.  Knowledge of the whereabouts of these small remnants has allowed seed collection and propagation of some of them in seed production areas on local properties and at the Wirraminna Environmental Centre at Burrumbuttock.  The need for this local source of seed has been emphasised by the observation that in the case of a few acacia species, local forms are different from those growing in neighbouring areas.

Landcare survey. Landholder views about the importance of vegetation was shown in a landcare survey carried out in 1999. A majority of the 60% of respondents considered that dieback of trees and the lack of shrubs, understorey and wildflowers was of concern and there was a clear concern expressed about the decline of native birds in the area.

When the “Taking Charge of Recharge” project was funded in 2001, the response of landholders was enthusiastic.  The group members were eager to take advantage of the high level of incentives available in this project to increase the scale of planting beyond that generally undertaken previously.  While the prime purpose of the funding was for recharge management, members were keen to establish local species in ecologically appropriate sites.  Ecological and botanical skills within the group were able to support the species choices.

This confidence in the value and feasibility of large revegetation projects has been continued in subsequent years when the Murray CMA has offered good incentives for large area plantings.

Contact:  Judy Frankenberg, +61 2 6026 5326, Email: judy@frankenberg.com.au

Fig 1. School student volunteers planting in block AA on ‘Warrangee’ in 1995.

Fig 1. School student volunteers planting in block AA on ‘Warrangee’ in 1995.

Fig 2. Resulting tree and shrub habitats created from 1995 planting on block AA, 2013.

Fig 2. Resulting tree and shrub habitats created from 1995 planting on block AA, 2013.

Fig 3. ‘Corridors of green’ project, 2013, planted in 1994, “Warrangee” .

Fig 3. ‘Corridors of green’ project, 2013, planted in 1994, “Warrangee” .

Holbrook Landcare “Rebirding the Holbrook Landscape” – assessing performance and learning in action

Chris Cumming and  Kylie Durant

Key words: tree dieback, lerps, restoring the agricultural landscape, community involvement, Holbrook Landcare Network

Holbrook producers established Holbrook Landcare Network in 1988.  It was one of the first Landcare groups in Australia, covering initially 171,000 ha of productive agricultural land in the upper reaches of the Murray Darling Basin. The organisation has directly managed grants of more than $6M across more than 85 projects to address NRM and agricultural issues including salinity and erosion control, soil and pasture management the protection of wildlife habitat.

Of the habitat projects, one of the most successful has been the “Rebirding Project”. A recognition of the importance of birds in the landscape occurred in 1994, when there was widespread concern in Holbrook over eucalypt tree dieback and the potential loss of paddock trees in the landscape. Holbrook Landcare commissioned a survey that identified 41% of the trees in the district were showing signs of dieback, and initiated (with support from our own extension staff and Greening Australia) education programs to inform landholders about the causes of dieback, including the link between cycles of lerp and other insect attack exacerbated by the loss of insectivorous birds.

In 1999 the group was successful in gaining funding for the “Rebirding the Holbrook Landscape to mitigate dieback” revegetation program through the Australian Governments Natural Heritage Trust (NHT), with the aim of drawing birds back onto farms and reducing eucalypt tree dieback.

Actions undertaken. Bird surveys were undertaken at 94 study sites in remnant vegetation on hills, flats and along creek lines. Education components succeeded in engaging the community and increased community knowledge and awareness of habitat issues in Holbrook.  The research information was used to recommend specific guidelines for the revegetation component, including ideal patch size (min 6ha), distance to remnant (1km), position in the landscape and habitat values.

The Rebirding on-ground projects (1999 – 2002) achieved 2150ha of remnant and revegetation work and put 475,000 plants back in the landscape across 118 properties – estimated at 80% of the Holbrook landholders.

Outcomes achieved. Measuring success of the program was very important to the community. A partnership with CSIRO Sustainable Ecosystems gave rise to a research project measuring bird use of plantings and remnant vegetation on local farms in 2004 to 2006.  This found that a range of bird species rapidly colonised planted areas and showed evidence of breeding activity, a positive message about the early signs of success of the Rebirding project. Tree health monitoring is ongoing by the community. Current ANU research is showing the positive benefit of the revegetation work in the landscape at the site, farm and landscape scale. The science is therefore indicating that yes, “rebirding” of the Holbrook landscape is underway, and HLN will continue to look to science to help us with the longer term outcomes for birds and tree health, and provide the feedback to us to adaptively manage our programs for the best outcomes.

The lessons and recommendations that come from the research are being applied directly to inform the design of subsequent programs such as the current major biodiversity project being managed by Holbrook Landcare – the “Slopes to Summit Bushlinks Project”.

Contacts: Chris Cumming (Executive Officer) and Kylie Durant,  Holbrook Landcare Network, PO Box 181 Holbrook NSW, Australia.  2644 Tel: +61 2 6036 3121, Email: kyliedurant@holbrooklandcare.org.au.

Paddock tree health field day, Holbrook, 2011.

Paddock tree health field day, Holbrook, 2011.

Before planting habitat blocks at Woomargama station, Holbrook.

Before planting habitat blocks at Woomargama station, Holbrook.

Stands of trees and shrubs established at Woomargama station, Holbrook.

Stands of trees and shrubs established at Woomargama station, Holbrook.

Restoration of Tuart (Eucalyptus gomphocephala) during prescribed burning in southwestern Australia

Katinka Ruthrof, Leonie Valentine and Kate Brown

Key words:  fire, regeneration, coarse woody debris, ashbed

Regeneration of Tuart (Eucalyptus gomphocephala), in many parts of its fragmented distribution in Western Australia, is nominal. Previous work has shown it has specific regeneration niche requirements, recruiting in ashbeds within canopy gaps. We conducted a field trial to determine whether regeneration could be facilitated by creating coarse woody debris (CWD) piles that would become ashbeds during a low-intensity, prescribed burn.

Regeneration experiment. Paganoni Swamp Bushland, a peri-urban Eucalyptus-Banksia woodland, was due for prescribed burning in 2011. Prior to the burn, twelve canopy gaps within the bushland were chosen to have CWD piles built up in the centre (5mx5m wide, 0.5m height). Six gaps were chosen to have no ashbeds, and so had any naturally occurring CDW removed. Adjacent to each plot (whether ashbed or no ashbed), an extra 5mx5m plot was marked out as a control.

The six gaps without ashbeds, and half of the 12 ashbeds, were broadcast with Tuart seed in plots of 5m x 5m following the prescribed burn.  Approximately 375 seeds/per 25m2 plot (after typical forestry seeding practice) were sown within one month of the prescribed burn.

The temperature of the control burn that moved through the area was measured in the gaps using pyrocrayons. These temperature-sensitive crayons were used to draw lines onto ceramic tiles. Five tiles were placed into each gap, either on the surface in the non-ashbed plots, or beneath the CWD piles, totaling 90 tiles.

Results. The majority of CDW piles burnt during the prescribed burning activities.  These piles burnt at high temperatures (~560Co) compared with the control plots (~70 Co). After six months, the ashbeds, especially those that were seeded, contained a significantly higher number of seedlings (0.7/m2 ± 0.3) than ashbeds without added seed (0.01/m2 ± 0.01) or control plots (0.0-0.05/m2 ± 0.0-0.05).

Lessons learned. Tuart regeneration can be facilitated at an operational scale as part of prescribed fire activities, through creation of CWD piles and broadcast seeding. However, higher rates of seeding could be used. Raking the seeds following broadcasting to reduce removal by seed predators may also increase seedling numbers.

Acknowledgements. Thanks go to the  State Centre of Excellence for Climate Change, Woodland and Forest Health, Murdoch University; Western Australian Department of Environment and Conservation; and to Friends of Paganoni Swamp.

Contact: Katinka Ruthrof, Research Associate, Murdoch University, South Street, Murdoch, 6150, Western Australia; Tel: (61-8) 9360 2605; Email: k.ruthrof@murdoch.edu.au

A created coarse woody debris pile within a canopy gap, ready for the prescribed burn

A created coarse woody debris pile within a canopy gap, ready for the prescribed burn

A created ashbed following the prescribed burn

A created ashbed following the prescribed burn

Pyrocrayon markings on - a tile showing the temperature of the prescribed burn

Pyrocrayon markings on – a tile showing the temperature of the prescribed burn

Tuart seedlings recruiting following ashbed creation and broadcast seeding. Note that this is the same ashbed as in Figure 2.

Tuart seedlings recruiting following ashbed creation and broadcast seeding. Note that this is the same ashbed as in Figure 2.

Macquarie University – Turpentine/Ironbark forest Regeneration

John Macris 

Key words: Bush Regeneration, Privets, Pittosporum, in-situ conservation.

Less than 5% of the original extent of Turpentine/Ironbark forest of the Sydney Basin Bioregion remains and so this forest type is listed is listed as critically endangered under the Commonwealth EPBC Act. Weed management and rehabilitation of remnants are priority conservation actions under the Act.

A 3.5 ha remnant of Turpentine/Ironbark forest located on the Macquarie University Campus has been the focus of a bush regeneration program that commenced in 2010.  Prior to the works, the site was variable in condition, with a core area near a watercourse having relatively high species diversity including Blackthorn (Bursaria spinosa) and the rare shrub Epacris purpurascens, while edges of this area contained a diversity of weed species.  An upslope area was more highly disturbed as it had been used as a breeding enclosure for research into rare rock wallabies until around 2005.

Works to date. Commencing in Autumn 2010, contract bush regeneration works included culling of the over-represented native Sweet Pittosporum (Pittosporum undulatum) in the core area, and removal of invasive weeds, principally a dense mid-story of the woody weeds Large-leaved Privet (Ligustrum lucidum) and Small-leaved Privet (L. sinense) throughout the treatment area.  Any large Privet logs were retained as habitat. Pampas Grass was removed from around the perimeter and, in a few places, Lantana  (Lantana camara) was also removed, although some has been retained as an interim small bird habitat in a few locations. Follow up work has mainly focused on a range of herbaceous weeds including Ehrhardta (Ehrhardta erecta), and gradual exhaustion from the seed bank of the problem woody weed species.

Results Prior to works, we estimated that about 10% of remnant was in relatively good condition.  About 2.5 years on, we now estimate that about 15% – 20% of the area is now in a resilient condition. Native species regenerating include a range of native grasses and forbs including Blady Grass (Imperata cylindrica), Basket Grass (Oplismenus aemulus), Weeping Grass (Microlaena stipoides), Tufted Hedgehog Grass (Echinopogon caespitosus),Blue Flax Lily (Dianella caerulea), Plume Grass (Dichelachne sp.), Finger Grass (Digitaria parviflora) Bordered Panic Grass (Entolasia marginata), Pastel Flower (Pseuderanthemum variabile) and Kidney Weed (Dichondra repens). Tree saplings including Turpentine (Syncarpia glomulifera) and Smooth-barked Apple (Angophora costata) have been uncovered and are developing in height. The colonizing shrub Kangaroo Apple Solanum aviculare has rapidly developed a rudimentary native mid story in the areas cleared of dense Privet.

Woody weed domination of the understorey before the works commenced

Same view 2years later (2012) showing ground stratum regeneration

Lessons learned. To create a robust weed buffer to the regeneration area, we decided it was important to start work in upslope areas, even though they were disturbed by the previous animal research enclosure (e.g. artificial soil profiles).  Due to same competing uses, such areas have been challenging stablise against weed resurgence, but a management edge is being established gradually.

Acknowledgements.  Sixty per cent of the first 15 months funding for the project was provided by Sydney Metropolitan CMA through their Saving Sydney’s Biodiversity Program with the rest covered by the University.  Subsequent work has been funded under Macquarie University’s Biodiversity restoration programs. Warren Jack from the contractor Sydney Bush Regeneration Company contributed much of the above species list of ground layer regeneration.

Contact: John Macris, Macquarie University. john.macris@mq.edu.au Tel: +61 (0)2 9850 4103

Regeneration of Lismore bushland cemetery, north coast NSW.

Key Words: bush regeneration, selective herbicides, transplanting, cemetery management

Since 2006, Lismore City Council’s Lismore Memorial Gardens (LMG) has been restoring and managing a 1.5ha  patch of regrowth Forest Red Gum (Eucalyptus tereticornis) grassy open forest in Goonellabah, north coast NSW – primarily for use as a bushland cemetery.  The site was part of a registered Koala corridor  and was in a highly weedy condition prior to the commencement of the project, with the understorey dominated by Lantana (Lantana camara) and most trees having at least one multi-stemmed Camphor Laurel (Cinnamomum camphora) encircling it.

Bush regeneration works. In 2006 the lantana was mechanically cleared and Camphor Laurels were stem-injected with glyphosate herbicide. After woody weed removal, the ground stratum rapidly responded with a germination flush of herbaceous weeds, mainly Blue Billygoat Weed (Ageratum houstonianum), Farmers Friends (Bidens pilosa) and Broad-leaved Paspalum (Paspalum mandiocanum) although some native herbaceous species were also regenerating, particularly Basket Grass (Oplismenus aemulus), Weeping Grass (Microlaena stipoides) and Kidney Weed (Dichondra repens).

Subsequent detailed spot spraying with herbicides was undertaken; in the first few years on a monthly basis by volunteers, and more recently by a horticulture-trained LMG staff member after some workplace tuition in bush regeneration methods.

1. Resilient areas. Herbaceous weed was systematically sprayed with broad-leaf selective herbicides (Dicamba/MCPA plus surfactant) or glyphosate.  Three larger patches consolidated with native species fairly rapidly, while other areas in poorer condition colonised with fewer species or took longer to convert to native dominance.  There are now 69 species on site that  are characteristic of this ecosystem (including 8 tree species, 15 grasses, 5 sedges, 8 twiners/climbers, 5 ferns and 1 moss).  About 20 of these species have been added to the list since the start of the project and all existing species have vastly increased in cover and density. The intermittent watercourse area regenerated over time with wetland herbaceous species largely including Persicaria spp. and Cyperus exaltatus.

View of central area of the site after control of woody weed. (Camphor chipmulch was initially spread in error then later removed to allow natural regeneration)

Same area two years later, showing extensive regeneration of native grasses and forbs

2. Highly weedy edge.  Standard bush regeneration approaches over at least 2 years in an edge site proved intractable due to high weed contamination and low native richness. A trial was conducted in 2009to see if scalping and revegetation (using transplanting and direct seeding ) could reduce the amount of weed control required and improve native vegetation establishment. This involved removal by a grader of 10 cm of the weedy topsoil, with the remaining subsoil broken up with a backhoe and hand raked. Sods containing multiples of 10 species were taken from the healthier parts of the cemetery and transplanted to the raked site in mid- to late-September 2009, resulting in a total of 145 plants in each of three zones (one transplanted only, one transplanted plus direct seeded with 10 species and one neither transplanted nor seeded). Seven weeks later, when germination from the sods had occurred, it was observed that 17 species (i.e. seven more) had been transplanted (Table 1.) Very few individual transplants died.

Top10cm of weedy topsoil removed and subsoil broken up before transplanting native grass and forb sods

Subsequent monitoring found that all the two scalped and revegetated zones, while requiring monthly weed control initially, had consolidated to a very low weed state by 9 months.  There was little visible difference between them except that the seeded one contained two more species not present in the unseeded site. Within 18 months, both zones had very high cover levels of native vegetation, particularly native grasses, and weed control demand was substantially lower than adjacent edge sites treated with conventional spot spray methods alone.  The non-transplanted or seeded zone remained with low species diversity and was more exposed to weed cover.  It has since become an access track and requires higher weed control inputs than the adajacent revegetated areas.

Nine months after transplanting. With some weed control requirement, natives now well established and commencing a process of steady recolonisation

Lessons learned. The bush regeneration treatments have converted a weed-dominated site to a recognisable Forest Red Gum grassy open forest with a diverse understorey. Cemetery operations are ongoing with the condition of the bushland showing an improvement with each year. Evidence of wildlife use of the habitat is increasing. This is due to ongoing management support, continuing volunteer inputs and the deployment of staff with some training in weed and bushland management.  Although a range of highly problematic weeds (including Asian Copperburr,  Acalypha australis, Prairie Grass, Bromus uniloides, and Hairy Commelina, (Commelina bengahlensis ) were initially not adequately addressed and are now requiring additional treatment; the site is now a pleasure to be in and is a wonderful demonstration site for not only restoration techniques but also the district’s grassy understorey species, once so widespread but now rarely conserved .

Contact: Tein McDonald 06 6682 2885 Email: teinm@ozemail.com.au – or Kris Whitney, Manager, Lismore Memorial Gardens, Email:  Kris.Whitney@lismore.nsw.gov.au

Grey Box grassy woodland restoration: Mandilla Reserve, Flagstaff Hill, South Australia

Key Words:  Minimal disturbance, bush regeneration, Eucalyptus microcarpa, volunteer, Bush For Life

The Site:  Grey Box (Eucalyptus microcarpa) Grassy Woodland is listed as an endangered ecological community under the EPBC Act 1999. This ecological community was once widespread on the drier edge of the temperate grassy eucalypt woodland belt of south-eastern Australia. In South Australia, this community occupies less than 3 percent of the area it once did before European settlement. One of the remaining suburban remnants of this community can be found in Mandilla Reserve, Flagstaff Hill, SA. The reserve is surrounded by suburban houses and remains under threat from weed and pest invasion, lack of recruitment of canopy species plus degradation associated with urban encroachment (pollution runoff, rubbish, excessive stormwater). Since 1996 the Bush or Life program together with the City of Onkaparinga have supported community volunteers to care for and manage the bush regeneration work within the reserve. The objective was to restore the highly degraded Grey Box remnant into a woodland community representing the unique diverse vegetation it once housed.

Geoff and Barbara Moss, volunteers at Mandilla Reserve

Works:   Two very dedicated community members adopted the site in 1996 and began visiting on average 3 times per week. They used minimal disturbance bushcare techniques to tackle a carpet of bulb weeds such as Sparaxis (Sparaxis bulbifera), Soursob (Oxalis pes-caprae), Bridal Creeper (Asparagus asparagoides) and Cape Tulip (Moraea flaccida) mixed with highly invasive annual and perennial grass species. In the surrounding degraded areas, some strategic planting was also carried out using Grey Box (Eucalyptus microcarpa), Sticky Hop Bush (Dodonaea viscosa) and Sweet Bursaria (Bursaria spinosa) and local sedge seedlings. Four areas were also hand direct seeded with native grasses to encourage ground cover recruitment and discourage weeds. All seed used was collected on site to ensure local provenance was maintained.

The flourishing Grey Box Grassy Woodland now found on the reserve

Success of the combination of natural regeneration and supplementary plantings

Results After thousands of volunteer hours, extensive regeneration of natives occurred on site. The volunteers’ work has transformed the reserve into a flourishing area of lilies, native grasses and understorey shrubs. Today, the vegetation in the reserve is virtually weed free and even native orchids are beginning to return. In addition, the area that the bushland covers has expanded as a result of the planting and direct seeding. Since these works, natural regeneration has also been observed of native sedges including Senecio, Carex, Juncus and native grasses.

Lessons learned:  Regular follow up for several years is vital to the success of any primary clearance work whether or not minimal disturbance techniques are used. Facilitated regeneration can be successfully used with bush regeneration providing it is strategic and complementary to and considerate of existing natural regeneration processes. Maintenance of the plantings or hand direct seeding is also vital to minimise competition from weeds and ensure their success.

Acknowledgements: This site is owned by the City of Onkaparinga Council and is managed in partnership with Trees For Life who train and support volunteers through its Bush For Life program. Thanks goes to Geoff and Barbara Moss, the site’s main volunteers.

Contact:  Jenna Currie, Bush For Life Regional Coordinator, Trees For Life jennac@treesforlife.org.au