Sea to Hume Fishways – lessons from monitoring

Key words: Fish migration, fishways, monitoring, barriers, River Murray, Native Fish Strategy

Native fish species move along rivers for breeding, dispersal, to access habitat, escape threats and establish new territories. In 2001 the then Murray-Darling Basin Commission approved the construction of fishways (Figs 1 and 2) on all of the Locks and Barrages from Hume Dam to the mouth of the River Murray, thus ensuring continuous fish passage for 2,225 km. It was also vital to undertake monitoring at appropriate scales to determine whether constructed fishways were successfully restoring connectivity along the river for native fish species.

Project aims and methods: In order to assess whether the fishways were being effective, researchers sought to answer four questions:

  1. Are the fishways allowing passage of a full range of size classes and species of fish?
  2. Are the fishways reducing accumulations of fish downstream of the barrier?
  3. Are the fishways contributing to positive changes in the abundance and diversity of native fish in the river?
  4. Are the location, design and operation of the fishways optimised?

To answer these questions, two types of monitoring were performed – compliance monitoring to see if each fishway was working optimally and long-term monitoring to see if the fishway program was having a positive impact on native fish populations. 

Electrofishing and fishway trapping were used to sample fish communities and determine whether they were successfully ascending fishways. Sampled fish were identified and counted, and subsamples measured to enable species/size-specific trends to be identified. Environmental variables such as water temperature, river flow etc. were also recorded for analysis. 

Fig 1. Lock 3 Vertical Slot Fishway 3. (Photo Jarrod McPherson NSW DPI)

Fig 1. Lock 3 Vertical Slot Fishway 3. (Photo Jarrod McPherson NSW DPI)

Fig. 2. Lock 10, vertical slot fishway, assessment cage. (Photo Lee Baumgartner NSW DPI)

Fig. 2. Lock 10, vertical slot fishway, assessment cage. (Photo Lee Baumgartner NSW DPI)


  • From sampling at Lock 8, the original aim for the passage of all fish, for each species, from a minimum of 31 mm long, all medium sized fish from 90 to 600 mm long, and adult Murray Cod (Macculochella peelii) to a maximum of 1000 mm long, was achieved.
  • Young-of-year (less than 1 year old) Bony Herring (Nematalosa erebi), and the juvenile size classes of Un-specked Hardyhead (Craterocephalus stercusmuscarum), Murray Rainbowfish (Melanotaenia fluviatilis) and Australian Smelt (Retropinna semonii) were unable to ascend the fishway.
  • several species smaller than the minimum target design size (40 mm), such as Carp Gudgeon (Hypseleotris spp.), Murray Rainbowfish and Unspecked Hardyhead, previously thought not to be migratory were, in their thousands, unsuccessfully attempting to gain upstream passage through the fishways.
  • Small-bodied fishes numerically dominated the total catch at the Lock 8 fishway and during spring and summer the bulk of these were juveniles and young-of-year. This highlights a need for an additional fishway design criterion that includes seasonal changes in fish sizes and migratory biomass, rather than simply aiming to pass a minimum length criterion alone.
  • At Lock 8 few non-native fish species were captured in the fishway, with the exception of adult Carp (Cyprinus carpio), which had an 87% success rate of negotiating the fishway.
  • Although the new vertical slot fishways at Locks 7, 9 and 10 performed to design specifications, there were species-specific variations in the minimum size of successfully ascending fish. In particular, many smaller Bony Herring and Golden Perch (Macquaria ambigua) could not negotiate the fishways.
  • At fishways constructed at the Barrages at the mouth of the Murray, over 98% of fish collected were small-bodied species which were attempting to use the fishways but were unsuccessful due to the design hydraulics, particularly at the vertical-slot fishways. Nevertheless, some small-bodied species were observed using the fishways during periods of low flow between the Lower Lakes and Coorong.
  • Large-bodied estuarine species such as Black Bream (Acanthopagrus butcherii), Mulloway (Argyrosomus japonicas) and various species of Mullet were noticeably absent from the fishways but were present in the vicinity of the Barrages. A large-scale acoustic tracking program was initiated to determine fish passage success for these species.

Longer term monitoring (at Locks 1-3) showed that:

  • Catches were dominated mostly by small and medium bodied species during low flow conditions. Murray Cod were rarely encountered but the captured population was dominated by large individuals, suggesting that recruitment (survival of fishes from eggs to reproductive stage) opportunities for this species in the lower reaches of the River may be limited.
  • Surveys consistently showed large downstream aggregations of fish, dominated by small-bodied native fish and Carp.
  • Australian Smelt, Bony Herring, Flat-headed Gudgeon (Philypnodon grandiceps), Unspecked Hardyhead, Murray Rainbowfish and Carp Gudgeon remain common in the main channel of the lower River Murray.
  • Differences were observed in the diel (daytime vs night-time) composition of the fish community. Some species and sizes were moving exclusively at night.

Lessons learned and future directions:  While many overseas fishways are designed to pass only a few large-bodied economically important fish species, the Murray River fishways are able to restore passage for the majority of migratory species.

The attempted upstream movement of small-bodied threatened species such as Carp Gudgeons, Murray Rainbowfish and Unspecked Hardyhead was not known before the ‘Sea to Hume’ program, highlighting the need to identify the migratory community prior to fishway construction. The subsequent passage of Carp Gudgeons through modified fishways will assist in restoring the ecological processes of dispersal and recolonisation for this species.

At the Barrages, fishway types identified as being suitable to facilitate small-bodied fish passage include small fish locks (mechanical elevator-style fishways), low-head vertical-slot fishways (which use a sequence of pools and baffles to control water depth and velocity) and rock-ramp fishways (which are more natural looking fishway designs constructed of rock in such a way as to create a sequence of pools separated by rocky ridges to control flow). To be effective and efficient at facilitating the passage of small-bodied fish over a long migration season (potentially August to March) these fishways will need to operate over a broad range of flow and headloss conditions. Securing environmental water allocations and delivering these in a manner that resembles natural seasonal cycles will potentially deliver the greatest ecological benefit.

Observed changes in diel abundance patterns of fish assemblages in the lower Murray River

has important implications for future fish passage studies: both day and night samples are required to adequately describe the migratory community.

Remote passive integrated transponder (PIT) tag reader systems, which have been installed at most of the new fishways, continually monitor for any of the 30,000 fish PIT tagged in the Murray River. Upon completion of the program a tagged fish can now be tracked up and down the River for its whole lifetime, providing important ecological data and also offering community stakeholders the opportunity to be involved in the program.

Restoring fish migration in over 2000 km of river is likely to have flow-on benefits. These will maximise the potential success of other management practices such as habitat restoration and threatened species protection for the rehabilitation of native fish populations in the Murray-Darling Basin.

Stakeholders and Funding bodies: This project was funded through the Murray-Darling Basin Authority’s Native Fish Strategy.

Contacts: Dr Lee Baumgartner, Fisheries NSW, + 61 2 6958 8215,,


Comments are closed.