Category Archives: agricultural lands

Regeneration of indigenous vegetation at Third Reedy Lake as it has dried over summer and autumn 2022

Damien Cook

Introduction.  Third Reedy Lake is a freshwater wetland in the Kerang region in north central Victoria. It is part of the Kerang Wetlands Ramsar Site, which means that it is recognised as being of international significance for wetland conservation as it supports threatened plant and animal species and ecological communities and rookeries of colonial nesting wetland birds.

Prior to European occupation this wetland, along with Middle Lake and Reedy Lake, would have been inundated only when floodwaters came down the Loddon River and caused the intermittent Wandella and Sheep Wash Creeks to flow. At that time the wetland experienced a natural wetting and drying cycle, filling up from floodwaters and drying out completely between floods, which occurred on average once every 3 to 4 years.

In the 1920s, however, this natural wetting and drying cycle was discontinued. Third Reedy Lake became part of the Torrumbarry Irrigation Scheme. Water was diverted out of the Murray River at Torrumbarry Weir and made to flow through a series of natural wetlands including Kow Swamp, the Reedy Lakes, Little Lake Charm and Kangaroo Lake to deliver water to irrigate farms. The lakes and swamps became permanently inundated.  While this meant farmers had a reliable supply of water it also profoundly altered the ecology of the wetlands (Fi. 1).

Figure 1. Third Reedy Lake in February 2013 prior to being bypassed. Continuous inundation for around a century had drowned the native vegetation, leaving only skeletons of trees. (Photo D. Cook)

Trees such as River Red Gum (Eucalyptus camaldulensis) and Black Box (E. largiflorens) were drowned, lake bed plants that relied on a drying cycle could no longer grow and the ecological productivity of the wetlands was massively reduced. The density of wetland birds has been found to be positively correlated to wetland productivity and this metric has been used in a variety of ecological studies to compare the use of different habitats by wetland birds. During bird counts conducted in 2018 the highest density of birds on Third Reedy Lake was about 5 birds/hectare. In contrast the naturally intermittent Lake Bael Bael supported over 60 birds/hectare, a density 12 times higher. While Third Reedy Lake supported a maximum of 17 wetland bird species Lake Bael Bael supported a maximum 38 wetland bird species.

Works undertaken

Hydrological works.  Third Reedy Lake was deemed to be inefficient for moving water due to losses caused by evaporation and so it was intentionally bypassed by the irrigation scheme in 2020. The lake therefore dried for the first time in one hundred years over the summer of 2022. Environmental water will be periodically delivered to the wetland in the future to mimic its natural wetting and drying cycle and assist ecological recovery.

Revegetation works. Over 2000 River Red Gum trees and 1000  understorey plants, including Tangled Lignum (Duma florulenta) and Southern Cane-grass (Eragrostis infecunda), have been planted across the centre of the lake where no natural regeneration was likely to occur in the short to medium term. Members of the local Barapa Barapa and Wemba Wemba Traditional owner communities were employed to plant the trees and other plants (Fig. 2). The Barapa Barapa and Wemba Wemba Traditional Owners have a strong interest in the wetland because of its cultural values.


Figure 2. Uncle Trevor Kirby with a Red Gum he has just planted and guarded at Third Reedy Lake April 2022. . Virtually no native vegetation remained visible on the lake bed immediately after the long inundation. (Photo T. McDonald)

The River Red Gum seedlings have been planted next to dead River Red Gum stumps to replicate the original woodland structure of the wetland (Fig  3). Planting next to the stumps has other advantages; they provide shelter from the wind and sun and soil carbon and moisture levels are highest close to the rotting wood.

Figure 3. River Red Gum seedling planted next to an old red gum stump, Third Reedy Lake May 2022. (Photo D. Cook)

Results to date.  In the first 3 months without inundation the lakebed muds dried out, followed by deep cracking (Fig 2). Planted trees thrived as there was still ample moisture in the sub-soil.  Site inspections in May 2022 revealed that substantial natural regeneration of the wetland has begun (Fig. 4).

After 100 years without drying it was not known if any seed bank of the original lakebed vegetation would have survived. However, 46 native species have been recorded growing on the lakebed since the last of the water evaporated from the lake in April 2022. This includes two threatened species: Floodplain Groundsel (Senecio campylocarpus) and Applebush (Pterocaulon sphacelatum) (Fig. 5) . The germination of Applebush is particularly surprising given that this is only the fourth record of this plant in Victoria, the species being more common in the arid centre of Australia. Other indigenous species that have regenerated on the lakebed are shown in Figs 6 and 7.

Figure 4. Lake bed herbs regenerating after the drying phase, at Third Reedy Lake, May 2022 . A total of 46 native species have been recorded as having regenerated on the lakebed since the last of the water evaporated from the lake in April 2020 (Photo D. Cook)

Figure 5. Among the 46 native species regenerating is Applebush (Pterocaulon sphacelatum) which is particularly surprising as it is listed as endangered in Victoria and known to occur in only three other locations. (Photo Dylan Osler)

Figure 6. Spreading Nut-heads (Sphaeromorphaea littoralis), Third Reedy Lake May 2022. This species is uncommon in the Kerang region, the closest records to Third Reedy Lake being from the Avoca Marshes. (Photo D. Cook)

Figure 7. Golden Everlasting (Xerochrysum bracteatum) and Bluerod (Stemodia florulenta) make an attractive display of wildflowers. These species are uncommon at present but if weeds are controlled adequately, they should recolonise much of the wetland floor. (Photo D. Cook)

River Red Gum regeneration has been localised on the bed of the lake and has mainly occurred on the fringes close to where living Red Gum trees have shed seed. The densest Red Gum regeneration has occurred on a sandy rise close to the inlet of the lake, where the trees have grown rapidly (Figs 8 and 9). Many of the seedlings that have germinated on the edge of the lakebed are being heavily grazed by rabbits or wallabies.

Figure 8. Regenerating Red Gums and native grasses and sedges on a sandy rise near the inlet of Third Reedy Lake, May 2022.(Photo D. Cook)

Figure 9. River Red Gum seedling on cracking clay soil that has germinated near the lake edge. Many of these seedlings are being heavily grazed, probably by rabbits or wallabies. (Photo D. Cook)

The young trees will take many years to develop the hollows required by many species of wildlife, but hopefully the old stumps will persist for some time to provide this important habitat feature (Fig 10). When these trees grow large enough, they will provide shady nesting sites for colonial nesting wetland birds such as Australasian Darter (Anhinga novaehollandiae) (Fig. 10) and Great Cormorant  (Phalacrocorax carbo) and replace the dead standing trees as they rot and fall over.

Figure 10. Australasian Darter chicks on a nest in a live River Red Gum in the creek that joins Middle Lake to Third Reedy Lake. (Photo D. Cook)

Stakeholders: Barapa Barapa, Wemba Wemba, Goulburn-Murray Water, North Central Catchment Management Authority and Kerang Wetlands Ramsar Site Committee

Contact:  Damien Cook, restoration ecologist, Wetland Revival Trust, Email: damien@wetlandrevivaltrust.org

Biological and cultural restoration at McDonald’s Swamp in northern Victoria, Australia

Dixie Patten (Barapa Wemba Working for Country Committee) and Damien Cook (Wetland Revival Trust.

Introduction. McDonald’s Swamp is a 164-ha wetland of high ecological and cultural significance, and is one of the Mid Murray Wetlands in northern Victoria. The restoration this wetland is part of broader project, led by the Indigenous Barapa Wamba Water for Country Committee in collaboration with the Wetlands Revival Trust, to address the loss of thousands of wetland trees and associated understorey  plants that were killed by poor agricultural and water management that caused prolonged water logging and an elevated the saline water table.

Figure 1. Laura Kirby of the Barapa Wamba Water for Country restoration team beside plantings of two culturally important plants that are becoming well established; Common Nardoo (Marsilea drummondii) and Poong’ort (Carex tereticaulis). (Photo D. Cook.)

The project has a strong underpinning philosophy of reconciliation as it is a collaboration between the Wetland Revival Trust and Aboriginal Traditional Owners on Country – access to which was denied to our people for a long time, disallowing us to practice our own culture and have places to teach our younger generations.  One of the main aims of the project is  to employ Barapa and Wemba people on our own land (Fig 1), not only to restore the Country’s health but also to provide opportunities for a deeper healing for us people. Many of the species we are planting are significant cultural food plants or medicine plants. Indeed it’s actually about restoring people’s relationships with each other –Indigenous and non-Indigenous Australians – and maintaining our connection to  Country.

Over recent years the hydrology of many wetlands in the Kerang region has been vastly improved by a combination of drought, permanently improved irrigation practices in the catchment and the delivery of environmental water.  This has restored a more natural wetting and drying cycle that will enable regeneration of some prior species, largely through colonisation from the wetland edges and through reintroduction by waterbirds.

However, supplementary planting is needed to accelerate the recovery of keystone species at all strata and the ~50 ha of the wetland that has been assessed as highly degraded with little potential f or in-situ recovery from soil-stored seedbanks.

Figure 2. Aquatic species planted at McDonald’s Swamp, including Robust Water-milfoil (Myriophyllum papillosum), Common Water Ribbons (Cycnogeton procerum) and the endangered Wavy Marshwort (Nymphoides crenata). (Photo D. Cook)

Works undertaken: To date the project has employed 32 Traditional Owners, planting out and guarding canopy trees to replace those that have died, undertaking weed control, and replanting wetland understorey vegetation.

Over a period of 5 years,, around 60% of the presumed pre-existing species, including all functional groups, have been reintroduced to the site, involving 7000 plants over 80 ha of wetland. This includes scattered plantings of the canopy species River Red Gum (Eucalyptus camaldulensis), Black Box (Eucalyptus largiflorens) and Eumong (Acacia stenophylla).  Dense nodes have also been planted of a wide diversity of herbaceous wetland species including water ribbons (Cycnogeton spp.), Nardoo (Marsilea drummondii) and Old Man Weed (Centipeda cunninghamii). These nodes have been protected from waterbird grazing by netting structures for 3-6 months, after which time they have reproduced and spread their seeds and begun recruiting throughout the broader wetland..

Some areas of the swamp are dominated by overabundant native reeds due extended inundation in the past.  Such reeds – including Cumbungi (Typha orientalis) and Common Reed (Phragmites australis) – will be future targets for burning or cutting followed by flooding by environmental watering to reduce their abundance prior to reintroduction and recolonization by other indigenous species.

Figure 3. Prolific regeneration of the nationally endangered Stiff Grounsel (Senecio behrianus). The species is presumed extinct in South Australia and New South Wales and is now only known only from 5 wild and 6 re-introduced populations in Victoria. (Photo G Little)

Outcomes to date: Very high establishment and growth rates have been attained for the canopy tree species, many individuals of which have flowered and set seed within the 6 years since project commencement.  All the planted understorey species are now recruiting very well – particularly the Water Ribbons (Cycnogeton procerum and C. multifructum), Floating Pondweed (Potamogeton  cheesmannii), Common Nardoo (Marselia drummondii), Wavy Marshwort (Nymphoides crenata), Water Milfoils (Myriophyllum papillosum  and M. crispatum), Forde Poa (Poa fordeana), Swamp Wallaby-grass  (Amphibromus nervosus), River Swamp Wallaby-grass (Amphibromus fluitans) and the nationally endangered Stiff Groundsel (Senecio behrianus) (Fig.  3.).  The important Brolga (Antigone rubicunda) nesting plant Cane Grass (Eragrostis infecunda) has also spread vegetatively.  Where hundreds of individuals were planted, there are now many thousands recruiting from seed, building more and more potential to recruit and spread within the wetland.

After 7 years of a more natural wetting and drying regime, natural regeneration has also occurred of a range of native understorey species including populations of the important habitat plant Tangled Lignum (Duma florulenta), Lagoon Saltbush (Atriplex suberecta) and Common Spike-rush (Elaeocharis acuta) (Fig 4.).

Figure 4. Planted River Red Gum (Eucalyptus camaldulensis) and naturally regenerating Tangled Lignum (Duma florulenta) and a range of other native colonisers and some herbaceous weed at McDonald’s Swamp some6 years after hydrological amendment and supplementary planting. (Photo T McDonald)

Stakeholders:  Barapa Land and Water, Barapa Wamba Water for Country Committee, Parks Victoria, Department of Environment, Land, Water and Planning and the North Central Catchment Management Authority.

Contact: Damien Cook, Wetland Revival Trust, Email: damien@wetlandrevivaltrust.org

Waterponding the Marra Creek, NSW rangelands – UPDATE of EMR feature

Ray Thompson and Central West Local Land Services

[Update of EMR feature – Thompson, Ray F (2008) Waterponding: Reclamation technique for scalded duplex soils in western New South Wales rangelands. Ecological Management & Restoration 9:3, 170-181. https://onlinelibrary.wiley.com/doi/10.1111/j.1442-8903.2008.00415.x]

Figure 1.  Scalded country with 30cm of sandy loam topsoil swept away by wind after extensive overgrazing. (Photos NSW SCS)

Introduction. Overgrazing of native pastures in the second half of the 19th Century stripped vegetation and led to the wind erosion of sandy topsoil during inevitable dry periods.  By the 1960s, tens of thousands of square kilometres of rangeland sites in western NSW had a legacy of moderate or severely bare or ‘scalded’ lands. This left bare and relatively impermeable clay subsoil which prevents water penetration and is very difficult for plants to colonize (Fig 1.)

Waterponding is the holding of water on the scald in surveyed horseshoe-shaped banks, each covering 0.4 ha. The ponds retain up to 10 cm of water after rain which leaches the soluble salts from the scalded surface. This improves the remaining soil structure, inducing surface cracking, better water penetration and entrapment of wind-blown seed. Consequently, niches are formed for the germination of this seed and recovery of a range of (typically around 15 out of a total of about 30) locally native chenopod (saltbush) grassland species on the sites.

The original 2008 EMR feature described how barren scalds at a range of properties in Marra Creek, near Nyngan in semi-arid NSW were transformed during the 1980s and 1990s into biodiverse native pastures through a technique called ‘waterponding’ developed after five decades of work by consecutive soil conservation officers exploring a range of prototype treatments.  Over time, a wide range of machines have been used to construct waterponding banks including standard road graders (ridged frame and articulated) or similar. Pre-1985 road graders were generally too small to construct banks of sufficient size, which resulted in too many breached banks. Over a 4-year period, the Marra Creek Waterponding Demonstration Program, backed by committed landowners, researched different horsepower road graders, constructing different size banks, winning the dirt from different locations, and evaluating the economics of construction methods. The results showed that the higher-powered articulated road graders exceeding 200 HP proved to be the most economical and efficient for waterpond construction. This type of machine has the power to  form the bank with one pass on the inside of the bank and two passes on the outside, achieving a bank with well over 2 m base width and over 60 cm in height (Fig. 2).

Figure 2. The process of of waterponding including (a) ute-mounted laser levelling to design the waterpond for a particular site, (b) bulldozing the pond walls to the designed levels, (c) rainfall filling the pond to allow deep watering and cracking of the clay subsoil and (d) resulting revegetation within the walls of the pond. (Photos NSW SCS)

Update and the broader program.  Photos and pasture measurements undertaken on ‘Billabong’ Marra Creek NSW, till 2014 show that the waterponding site had increased ground cover (predominantly native species) from 1% in 2005 to 84 % in 2014. After five to seven rainfall years a typical treatment can result in recovery of up to 15 native species from a range of up to 31 species (Table 1). The method in the last 20 years has also included broadcasting seed of some of the more important perennial species of healthy native chenopod grasslands including  Oldman  Saltbush  (Atriplex nummularia), Bladder Saltbush (Atriplex vesicaria) and Mitchell Grass (Astrebla   lappacea) (Fig 3).  Landholders in the Marra Creek district observe a range of fauna frequently on and between the ponds, including Western Grey Kangaroo (Macropus fuliginosus), Red Kangaroo (Macropus rufus), Emu (Dromaius novaehollandiae), Brolga (Grus rubicunda) and the Eastern Bluetongue Lizard (Tiliqua scincoides). A species of Monitor (Varanus sp.) also sometimes traverses the waterponds. Formal monitoring of smaller reptile and invertebrate use of waterponded sites is yet to occur.

Figure 3. Curly Mitchell Grass (Astrebla lappacea) sown on pond banks. (Photo NSW SCS)

Marra Creek was not the first series of waterponding programs in the Nyngan area – nor the last. The outputs of the entire program by 2019 included over 80,000 waterponds laid out and constructed, resulting in 40,000 hectares returned to local native vegetation. A total of 164 properties in the rangelands area are now using waterponding, the majority of landholders in the Marra Creek district and representing an increase from 17 landholders back in 1984 when we first ran the waterponding.

Figure 4. Landholders themselves are teaching the Waterponding technique to other landholders. (Photos NSW SCS)

Economic model of waterponding. The primary driver for land reclamation was not biodiversity conservation but returning the natural capital of rangelands. As such the program has returned a clear profit to the landholders in terms of increased native pastures that can be grazed, improving ecologically sustainable income sources for farming families.

With the reinstatement of vegetation, there have be increases in total stock feed, resulting in an increase in lambing percentages and wool cuts, as well as the ability to carry stock further into prolonged dry periods with overhead cost per head remaining static. Once rehabilitation has been completed, stocking  rates have been raised from zero to one sheep to 1.5 ha. This iseffectively the long-term grazing average for  saltbush pastures in the Nyngan district.

A treatment involving the full design and survey, pond construction and revegetation cost the landholder about $144.00 per hectare. (This includes approximately $25 a hectare for seed.) If the landholder does all the work the cost is reduced to $72/ha. The type of land involved was calculated in 2008 to normally  have  a  resale  value  of  about $365.00 per hectare In its unproductive state.  Scalded land does not contribute to the farm income yet still incurs rates. Investment in rehabilitation, in contrast, improves carrying capacity thus reducing hand-feeding costs, improving lambing percentages and avoiding forced stock sales. This allows landholders to pass the property to the next generation in a far better condition than it has been previously.

Research has found that the scalds store approximately 18.7 t/h of soil organic carbon to a depth of 30 cm. Once the landscape has been restored by waterponding and revegetation, we have found there is a rapid increase in soil organic carbon up to 25 t/ha within five years. The results are indicating that land in the rangelands that has been rehabilitated using waterponds does sequester carbon. This could lead on to waterponding being eligible for a carbon abatement activity and hopefully lead to Carbon Farming Initiative activity for carbon credits.

Figure 5. Australian National University students attending ‘21 years of participation in Rangelands Waterponding’. (Photos NSW SCS)

Potential for further application. After decades of field days and uptake of the methodologies by local graziers (Fig. 4), waterponding now forms part of standard district farming methodologies and landholders are now passing on knowledge to new generations, including through universities (Fig. 5). The methodologies have also been applied at one national park and one Trust For Nature site in Victoria, and are being applied in the Kimberley, with potential for far greater application in desert conservation reserves throughout Australia and the rest of the world (See Fig. 6 and https://justdiggit.org/approach-2/#).

Contact. Kyra Roach, Central West Local Land Services, Nyngan, 2825 Australia. Email: kyra.roach@lls.nsw.gov.au

Figure 6. A total of 79 trainees from 26 Africa countries (including Ghana, Tunisia, Rwanda, Burundi and Djibouti) over a three year period were sponsored by AusAid to study waterponding in Nyngan. Resullting work in African countries is making a big difference to degraded lands particularly in North Sudan and Kenya (Photo NSW SCS)

Table 1. Species found in waterponds after standard revegetation treatments and five to seven rainfall years. The species found by Rhodes (1987b) are still commonly found, with additional species (marked with a diamond +) observed by Ray Thompson. (Plant names are consistent with the New South Wales Herbarium database PlantNet, http://plantnet.rbgsyd.nsw.gov.au/ and  growth forms are consistent with Cunningham et al. (1981) (Exotics are marked with an asterisk)

Scientific name Common name Growth form
Alternanthera denticulata Lesser Joyweed Annual forb
Astrebla lappacea+ Curly Mitchell Grass Perennial grass
Atriplex leptocarpa Slender-fruited Saltbush Perennial subshrub
Atriplex lindleyi+ Eastern Flat Top Saltbush Annual subshrub
Atriplex nummularia+ Oldman Saltbush Perennial shrub
Atriplex pseudocampanulata Mealy Saltbush Annual subshrub
Atriplex semibaccata+ Creeping Saltbush Perennial subshrub
Atriplex spongiosa Pop Saltbush Annual forb
Atriplex vesicaria Bladder Saltbush Perennial subshrub
Centipeda thespidioides Desert Sneezeweed Perennial forb
Chamaesyce drummondii Caustic Weed Annual or short-lived perennial forb
Chloris truncata Windmill Grass Annual or perennial grass
Diplachne fusca Brown Beetle Grass Perennial grass
Eragrostis parviflora Weeping Lovegrass Annual or short-lived perennial grass
Eragrostis setifolia Neverfail Perennial grass
Hordeum leporinum* Barley Grass Annual grass
Hordeum marinum* Sea Barley Annual grass
Maireana pentagona Hairy Bluebush Perennial subshrub
Malacocera tricornis Soft Horns Perennial subshrub
Marsilea drummondii Common Nardoo Perennial forb
Medicago minima* Woolly Bur Medic Annual forb
Medicago polymorpha* Burr Medic Annual forb
Osteocarpum acropterum+ Water Weed Perennial subshrub
Phalaris paradoxa* Paradoxa Grass Annual grass
Pimelea simplex Desert Rice-flower Annual forb
Portulaca oleracea Common Pigweed Annual forb
Salsola kali var. kali Buckbush Annual or biennial forb
Sclerolaena brachyptera Short-winged Copperburr Short-lived perennia
Sclerolaena calcarata+ Red Copperburr Perennial subshrub
Sclerolaena divaricata+ Pale Poverty Bush Perennial subshrub
Sclerolaena muricata Black Roly-poly Short-lived perennial
Sclerolaena trycuspis Streaked Poverty Bush Perennial subshrub
Sporobolus actinocladus Katoora Grass Perennial grass
Sporobolus caroli Fairy Grass Perennial grass
Tragus australianus Small Burr Grass Annual grass
Tripogon loliiformis+ Five Minute Grass Perennial grass

 

 

 

 

 

 

 

 

 

 

 

 

 

Still repairing wetlands of the Lower Murray: continuing the learning – UPDATE of EMR feature

Anne Jensen

[Update to EMR feature – Jensen, Anne (2002) Repairing wetlands of the Lower Murray: Learning from restoration practice. Ecological Management & Restoration, 3:1, 5-14. https://onlinelibrary.wiley.com/doi/10.1046/j.1442-8903.2002.00092.x]

Key words:         Environmental water requirements, regeneration, wetlands, black box seedlings, Lower Murray Valley

Figure 1. Location of the Lower Murray Valley in South Australia (Map A. Jensen)

Introduction. As highlighted in the original EMR feature this summary is updating, in the Lower Murray Valley 1100 wetlands have been identified in 250 hydrologically-linked complexes (Fig. 1). They have undergone major changes to their water regime over the last 100 years, altering the timing, frequency and duration of floods. Wetlands at lower elevations have become permanently flooded by stable river levels and wetlands at higher elevations are ‘droughted’ by much reduced flooding. All would benefit from environmental watering, to fill gaps in breeding and regeneration cycles.

Our 2002 feature showed that, from 1998 to 2002, the not-for-profit conservation company Wetland Care Australia coordinated on-ground projects to repair priority wetlands in the Lower Murray. The Gurra Gurra project was the largest of these projects, with engineering works at 17 sites to restore multiple flowpaths through the 3000 ha floodplain complex.

Key funding from the National Heritage Trust terminated in 2002 and Wetland Care Australia relocated in 2003 to northern New South Wales, where project funding for wetland projects was still available. However, individuals involved with the Wetland Care Australia projects remained in the Lower Murray Valley in other jobs, so the intellectual property was retained and wetland conservation activities continued.

In 2002, the extent and severity of drought conditions in the Murray River Valley were just being recognised. By 2004, a survey estimated that >75% of the two main tree dominants in floodplain woodlands –  River Red Gum (Eucalyptus camaldulensis) and Black Box (E. largiflorens)  – were dead, dying or extremely stressed along 700 km of the Murray River Valley . The Millenium Drought (2000-2010) caused extreme stress to both ecological and human communities. Government agencies commenced emergency environmental watering from 2004 through the Living Murray program to limit catastrophic damage at eight iconic sites but millions of mature eucalypts were lost from floodplain woodlands along river valleys.

The Millenium Drought changed the governance context radically, with the Water Act 2007 establishing a new Murray-Darling Basin Authority and the Basin Plan. The Commonwealth Environmental Water Holder (CEWH) was able to purchase water for environmental use.

Nature delivered life-saving floods in 2010-12, which broke the drought and sent flows through the Gurra Gurra complex flowpaths, so the works completed back in 2000 finally fulfilled their function (Fig. 2). Water flowed through the pipes at Tortoise Crossing for 170 days in 2010-11 and again for 71 days in 2012.

Figure 2. The sign at the key Tortoise Crossing flow path explains that replacing three pipes with 160 pipes back in 2000 now allows 50 times more flow when the river floods, as seen at the flood peak in December 2016 (Photos A. Jensen)

The sequence of floods led to mass germination of Black Box at medium floodplain elevations, with mass River Red Gum seedlings at lower elevations. A range of studies show that the survival of these seedlings is critical to fill age gaps and replace the losses from the Millenium Drought, as survival rates from germination events in the 1970s and 1990s were very poor and the last successful mass recruitment of Black Box in the Lower Murray Valley was from the 1955-56 floods.

Following the floods in 2010-2012, conditions were dry in 2013-15 and the fields of mass seedlings began to dry out and die. A further short flood in 2016 watered the surviving fields of Black Box seedlings for at least two weeks, adding to prospects of survival and flowing through the Tortoise Crossing pipes for 75 days. However, conditions in 2018-19 and into summer 2019-20 are once again extremely dry, with stress appearing in mature trees and saplings dying off. The Lower Murray Valley is still recovering from the Millenium Drought, thus needing more frequent watering over a sequence of years to bring mature trees back to health and full seed production, so this is a significant setback.

Further works and activities since 2002. Since 2008, the environmental charity Nature Foundation SA (NFSA) has been undertaking environmental watering projects on smaller, privately-owned sites in the Lower Murray, many from the original Wetland Care Australia list. In the Lower Murray Valley, water needs to be lifted up to 3 m from the river channel to reach wetlands on the floodplain, requiring costly energy. This is done using irrigation techniques, including pumps, pipes and sprinklers. These smaller projects complement government agency projects using major infrastructure to deliver environmental water to much larger wetland complexes.

In 2008-09, the primary purpose was to acquire water and use it to limit extreme environmental damage in the drought. In 2009 NFSA provided supplementary water for Little Duck Lagoon, one of the sites from the Wetland Care Australia Gurra Gurra project.

From 2012-19, NFSA has held a contract partnered with the Commonwealth Environmental Water Holder (CEWH) to deliver up to 10 GL/y of environmental water to selected sites. A priority for the NFSA Water for Nature program has been to sustain the mass germination triggered by the 2010-12 floods, watering fields of seedlings and saplings so they can fill the very large gap in age structure of Black Box populations. Stressed mature Black Box trees are being watered to improve their condition and volumes of seed produced. While delivering water to a defined wetland is relatively simple, with water pumped to an inlet point and allowed to pool in the wetland, watering scattered fields of seedlings and saplings on relatively flat floodplain land is a challenge, especially when they are in gaps between mature trees. The solution has been to use high-throw sprinklers (simulating rainfall) and operating them at night, to allow soakage into clay soils and to avoid evaporative loss during the day.

Since 2008, NFSA has delivered almost 13 GL of water to 97 watering sites in 20 wetland complexes, covering 27 different ecological targets across 12 habitat types. A total of 4.9 GL was delivered to 15 sites in 2017-18 and 1.55 GL was delivered in 2018-19 to 25 sites covering 126 ha. Rolling 5-year watering plans have been developed for each site, able to respond to annual water availability, Basin-wide priorities, environmental water requirements, climatic conditions, site watering history and feasibility of delivery.

One of the NFSA sites is Lyrup Lagoon in the Gurra Gurra complex, being watered to reduce accumulated salinity from groundwater inflows. Importantly, the infrastructure of the Central Irrigation Trust was used to deliver water to the lagoon. Thus, local irrigators are partners in delivery of water for regional environmental benefits and river health.

Figure 3. Watering guidelines developed by the Water For Nature program for stressed and healthy woodlands, for (a) River Red Gum and (b) Black Box (Water for Nature).

Further Results. The initial watering guidelines reported in the original EMR feature have been expanded through research and monitoring of responses to watering events, developing guidelines for timing and frequency of wetting and drying cycles to promote recovery in mature trees and support germination and survival of seedlings. These have been applied for each site in the rolling 5-year watering plans, which then determine the annual list of sites due for watering (see NFSA 5 year strategy and Fig. 3).

Watering by NFSA 2013-2019 has sustained Black Box seedlings and saplings through four dry summers, with watered plants 2-3 times taller than non-watered plants (Fig. 4). The Water For Nature monitoring report shows that, at NFSA sites, mature Black Box trees that have received periodic environmental water as determined by their 5-year watering plan during 2015-2019 were 21-46% (average 36%) better in health than adjacent non-watered sites, with denser, more vigorous canopies and the relative improvement was greatest during hotter and drier periods. The watering events thus provided water between natural floods to sustain growth in saplings and crop cycles in mature trees. Watering at other NFSA sites has provided vital habitat for vulnerable and endangered fauna including the Murray Hardyhead (Craterocephalus fluviatilis), Southern Bell Frog (Litoria raniformis), Regent Parrot (Polytelis anthopeplus) and Latham’s Snipe (Gallinago hardwickii).

Figure 4. Watered River Red Gum saplings at Thiele Flat, Loxton; November 2013 (top) and March 2018 (bottom). Note 2016 flood level mark on foreground trees (Photos A. Jensen)

Lessons learned and future directions. The significant benefits of environmental water have been demonstrated at NFSA’s Water For Nature sites, for floodplain vegetation communities and in temporary wetlands. Evolving research indicates that watering in late spring-early summer mimics peak flows in the natural water regime, coinciding with highest chances of breeding and germination events and thus ecologically ideal timing (See bibliography). Benefits are increased if seasonally filled wetlands are topped up in early summer, to ensure sufficient duration to sustain frog and waterbird breeding.

As well as ideal timing, studies have shown that watering at any time of the year can be beneficial, including enhancing soil moisture storage in the unsaturated zone and sustaining volume in bud and fruit crops. A key finding has been that watering in late autumn-early winter sustains soil moisture, priming sites to give an enhanced response to watering in the following spring-summer.

However, dry climatic conditions and political pressures to minimise water recovery volumes are combining to reduce availability of environmental water, with only very highest priority sites likely to receive water in the 2019-20 water year. Environmental water cannot create floods, it can only provide water to selected priority sites during dry times and enhance the benefits of any natural floods. Current volumes can only meet the requirements of a limited number of sites, leaving many sites without the water needed to sustain them through dry times or to recover from the severe impact of the Millenium drought.

Bureaucratic processes for approvals also hinder effective delivery of environmental water. With the water year coinciding with the financial year from July to June, water delivery stops in June to allow water accounts to be finalised. Approval to water in the following year can take 2-3 months, meaning no water can be delivered during the winter months for priming, missing the advantage of low evaporation rates and higher chances of piggy-backing on rainfall events.

Funding for environmental projects tends to be short term, leading to job insecurity for project managers, loss of continuity and project knowledge, and inability to complete watering sequences. Very significant volunteer resources are required to make these watering projects happen, including inputs from landholders who have donated electricity connections to the floodplain, transported diesel to re-fuel pumps, loaned pumps, tractors and irrigation equipment, plus use of irrigation and local government infrastructure to deliver water, and physical assistance and maintenance from local volunteer groups.

Practical on-ground watering knowledge is maturing well; what is needed now is sufficient water and ongoing consistent funding to support projects to deliver minimum environmental water requirements for the wetlands of the Lower Murray Valley. The pipes at Tortoise Crossing, installed in 2000 and only flooded twice, are more than ready for the next high flows to pour through!

Stakeholders and Funding bodies. The monitoring project was supported as part of the project Ecological Responses to Environmental Watering in the South Australian River Murray Valley, assessing the benefits of salinity interception schemes on floodplain vegetation, coordinated by Australian Water Environments for SA Water from March 2015 to June 2017. Continuing funding for monitoring in 2017-2019 was provided in a grant from the Ian Potter Foundation to Nature Foundation SA, as well as funding from the Commonwealth Environmental Water Holder (2018-19). Water for the environmental watering projects studied here was provided through annual allocations of water from the Commonwealth Environmental Water Office to Nature Foundation SA.  Water delivery was managed by the NFSA Water For Nature program through Program Manager Natalie Stalenberg. Practical support and site access was provided by Steve Clark, landholder and committee member for Water for Nature program, and landholders John and Bronwyn Burford.

Contact. Dr Anne Jensen, Environmental Consultant; Volunteer member, Water for Nature Committee, Nature Foundation SA; part-time consultant Wetland Ecologist for Water for Nature Program of Nature Foundation SA (7 Ford Street, Maylands SA 5069, Australia; Tel: +61 407 170 706; Email: ajensen@internode.on.net

More than just a Long Paddock: Fostering native vegetation recovery in Riverina Travelling Stock Routes and Reserves – UPDATE of EMR feature

Ian Davidson

[Update of EMR feature – Davidson, Ian and Peter O’Shannassy (2017) More than just a Long Paddock: Fostering native vegetation recovery in Riverina Travelling Stock Routes and Reserves. Ecological Management & Restoration, 18:1, 4-14.  https://onlinelibrary.wiley.com/doi/10.1111/emr.12247]

Roger Harris with direct seeded shrubs –  Rand TSR. (Photo Ian Davidson)

Introduction.  As described in our 2017 EMR feature, the Enriching biodiversity in the NSW Riverina project was a five-year project funded by the Federal Government’s Carbon Farming initiative and managed by Murray Local Land Services (LLS). The project aimed to maintain the condition of the highest quality TSRs and improve the condition of 10% of all other TSRs, some of which had been receiving degrees of grazing management for many decades to optimize resilient native pastures (Refer to our earlier 2005, EMR feature). Given the NSW Riverina TSR network contains over 600 reserves, a sample was first selected for inspection to identify reserves with the potential for further active management. This led to the implementation of recommended land management and works on 109 reserves covering 13,558 ha and the subsequent monitoring of those reserves. Results indicated that, of these reserves, 70 had improved in vegetation condition by 2017. This project proved that large scale protection and improvement of TSR condition was possible using existing staff and provided valuable lessons that could be applied elsewhere across the state.

Table 1 Summary of key lessons learnt from the project and recommendations for effective TSR management

Human resources ·       Use existing knowledge where available

·       Maintain continuity of leadership

Assessment and

monitoring

·       Establish broadly applicable and consistent assessment and monitoring criteria

·       Use methods which are easily understood

·       Consider seasonal effects on the timing of surveys

·       Recommended actions should be appropriate for the site condition

Project Scale ·       Larger project areas and longer project timelines increase the rate of success

·       Regular monitoring avoids major problems

Revegetation ·       Seed banks are vital to achieving large scale revegetation

·       Multiple species should be used in direct seeding

·       Exotic grasses should be controlled prior to direct seeding

·       Native species can assist in spreading shrubs over time

Land Management ·       Controlling herbivores is critical during early growth stages

·       Grazing indicators/surrogates are useful

·       Stock type impacts grazing style

·       Cattle can graze areas with shrub seedling germination under certain conditions

·       Fencing and water points offer flexibility in managing stock for regeneration

·       Noisy Miners reduce small woodland bird numbers and they are difficult to control

Unplanned Impacts ·       Human intervention in unpredictable Natural events can lead to major changes in land management focus

Stuart Watson monitoring vegetation at Narrow Plains TSR. (Photo Ian Davidson)

Subsequent developments. Since the publication of our 2017 feature ‘More than just a Long Paddock: Fostering native vegetation recovery in Riverina Travelling Stock Routes and Reserves’ the following five key developments regarding nature conservation on TSRs in NSW have occurred.

  1. Developing and applying a simple field based consistent method for assessing and monitoring vegetation condition across the TSR network – A new rapid assessment and monitoring method was developed and trialed in this project for use by land managers with limited botanical and scientific skills and limited time. This field-based method known as Rapid Conservation Assessment Method (RAM) proved useful and has the potential for broader adoption across NSW. For detailed information refer to https://www.lls.nsw.gov.au/livestock/stock-routes/conservation-of-tsrs
  2. Categorizing the conservation status using an agreed method of TSRs across NSW – Using the RAM to complete assessments and collating all previously assessed TSR reports, LLS developed a consistent statewide map of the conservation status for the 534,000ha under their control (refer to https://www.lls.nsw.gov.au/livestock/stock-routes/conservation-of-tsr). This enabled LLS, the statewide land manager, to better understand the overall vegetation condition, extent and distribution of their TSR assets from a nature conservation perspective.
  3. Developing a Best environmental management practice (BeMP) Toolkit for TSRs to ensure good long-term conservation objectives – Key knowledge learnt from the Riverina project, LLS ranger’s knowledge and experience and existing literature influenced the development of the NSW Travelling Stock Reserves State Planning Framework 2016–21 (the Framework), which provides the framework for managing TSRs for conservation. A Best Environmental Management Practice (BeMP) toolkit was also prepared from this collation of knowledge to assist LLS deliver land management outcomes (including grazing, apiary, native seed collection, emergency response/refuge for livestock, threatened ecological communities and species, revegetation on TSRs, weed control, pest animal control, soil disturbance and drainage changes) consistent with the Framework. The BeMP is currently in draft form.
  4. Developing a statewide plan of management (PoM) for TSRs to ensure consistency across administrative boundaries – The NSW government is finalizing the details of a PoM which provides LLS staff, TSR stakeholders, investors, partners and customers with our shared vision and common mission. It sets out agreed strategies, approaches, principles and quality system to better manage the reserves. This PoM aims to improve social, economic, environmental and cultural outcomes while maintaining grazing as an important economic use and conservation tool. Importantly this plan establishes the need for shared responsibility and collaborative funding. For more information refer to https://www.lls.nsw.gov.au/__data/assets/pdf_file/0005/839930/NOV-TSR-PoM-MOedits-1.pdf
  5. Attracting significant investment to assist with protection and maintenance of TSR environmental values – LLS the managers of NSW TSRs receive no recurrent funding from government for the environmental management of the TSR estate and therefore have been dependent upon the proceeds from permits and leases e.g. grazing and annual grants e.g. weed and pest animal control to maintain the condition of TSRs. Now however, based on the PoM and guided by environmental management and works consistent with best environmental management practice, the LLS is negotiating with a government investor to fund agreed long term maintenance and enhancement of selected high and moderate conservation value TSRs.

Peter O’Shannassy with direct seeded shrubs on Snake Island TSR. (Photo Ian Davidson)

Lessons learned. Together, the five developments above show how the large-scale restoration project reported in 2017 has been further developed as a model for TSR protection and restoration across NSW, enabling buy-in by LLS to better manage these invaluable natural resource assets across NSW.

Acknowledgements. LLS staff Peter O’Shannassy steered most aspects of the project from its inception, whilst Stuart Watson and Roger Harris managed most of the on-ground management and works and lately Gary Rodda the Murray General Manager who has overseen the statewide development of the PoM. Lastly, I dedicate my TSR work to my great mate Rick Webster who was lost to us recently and with whom I shared a deep, long standing curiosity and love of these special areas.

Contact.  Ian Davidson (for technical matters) ian@regenerationsolutions.com.au  or  Peter O’Shannassy  (for land management and operational matters) peter.o’shannassy@lls.nsw.gov.au

 

 

 

 

 

 

Is revegetation in the Sheep Pen Creek area, Victoria, improving Grey-crowned Babbler habitat? – UPDATE of EMR feature

Doug Robinson

[Update of EMR feature Robinson, Doug (2006) Is revegetation in the Sheep Pen Creek area, Victoria, improving Grey‐crowned Babbler habitat?  Ecological Management & Restoration, 7:2, 93-104.  https://doi.org/10.1111/j.1442-8903.2006.00263.x]

Key words: (<5 words): Monitoring, restoration, population ecology, woodland conservation

Figure 1. Location of babbler project works and other landcare works implemented since 1996 in the Sheep Pen Creek Land Management Group area and the two sub-districts used for the babbler study. (Source TFNVic)

Introduction: The Grey-crowned Babbler (Pomatostomus temporalis) (babbler) is a threatened woodland bird (classified as Endangered in the state of Victoria) that has declined substantially in overall distribution and abundance across much of its former range in southeastern Australia since European settlement.  Sheep Pen Creek Land Management Group area, in northern Victoria (Fig 1), was fortuitously the location of the largest known remaining babbler population in Victoria in the early 1990s (when this project began); and the focus of extensive land restoration programs from the 1980s onwards to help mitigate the impacts of erosion and dryland salinity, as well as biodiversity decline.  The original study, published in 2006, investigated the overall changes in tree cover across the district between 1971 and 1996 as a result of different land-management actions and responses of local babbler populations to those habitat changes.  The key finding was that in the Koonda sub-district which had a 5% overall increase in tree cover to 14% from 1971 to 2001, showed an increase in babbler numbers by about 30% (Table 1).   In the Tamleugh sub-district, tree cover increased by 1.3% to a total of 9%, with no change in babbler numbers.  The findings also showed that new babbler groups were preferentially colonizing new patches of vegetation established that suited their habitat needs.  Building on this research, the study concluded that future conservation programs needed to scale-up the extent of habitat restoration, target areas which were suitable for babbler colonization, and tailor incentive programs to assist with conservation of particular species.

Table 1. Changes in Grey-crowned Babbler numbers over time

Year Koonda Tamleugh
number of groups number of birds number of groups number of birds
1992 20 78 11 39
1993 20 89 10 34
1996 24 96 9 35
1997 24 102 8 30
1998 25 99 10 40
2000 26 97 10 43
2005 23 99 8 34

Further revegetation works undertaken. Since the initial study’s assessment of vegetation changes between 1971 and 1996, an additional 133 ha of vegetation has been restored or established as babbler habitat in Koonda district and 37 ha in the Tamleugh district (Figs 2 and 3, Table 2).  Extensive natural regeneration, supplemented by broadscale revegetation, has also occurred over more than 350 ha on five private conservation properties in the Koonda district,, contributing to substantial landscape change.  The wider landscape has also been identified as a statewide priority for nature conservation on private land, leading to increased conservation investment in permanent protection there by Victoria’s lead covenanting body – Trust for Nature.

Monitoring of outcomes: The monitoring that was carried out prior to the 2006 publication has not continued, leaving a knowledge gap as to how the population has fared in the context of the Millenium Drought and ongoing climate-change impacts. However, based on the original research’s initial findings, we conducted an experimental study with University of Melbourne to evaluate the effectiveness of habitat restoration in maintaining babbler survival. The study, published by Vesk and colleagues in 2015, compared the persistence and group size of babbler groups present in 1995 and subsequently in 2008 at a randomly selected set of stratified sites which had either had habitat works or none.  This study was conducted across a larger landscape of about 200,000 hectares which included Sheep Pen Creek Land Management Group area.  The study found that babbler group size decreased by about 15% over the 13 years at sites without restoration works.   At sites with restoration, average group size increased by about 22%, thereby effectively compensating for the overall reduction in numbers reported over that time.This increase also influenced subsequent demographic performance, with groups at restoration sites having higher breeding success and more fledglings than groups at control sites.

Another useful finding from this experimental study was the confirmation of the importance of particular habitat and landscape variables on babbler persistence.  In particular, abundance of large trees was a positive predictor of occupancy over time; and distance from the next nearest group was a negative predictor.

Figure 2. Changes in tree cover in the Koonda sub-district between 1971 (top),  and 2018 (bottom). (Source TFNVic).. (Source TFNVic)

Figure 3. Changes in tree cover in the Tamleugh sub-district between 1971 (top) and 2018 (bottom). (Source TFNVic)

Table 2.  Summary of additional habitat established or restored as part of the Sheep Pen Creek Grey-crowned Babbler project from 1996-2018, following the initial study period from 1971-1996.

District Number of sites Area (ha)
Koonda 62 133
Tamleugh 28   37
Other parts of landcare group and local babbler population area 29 103
Totals 119 273

Expansion of lessons to other districts: Building on the fundamental research conducted in Sheep Pen Creek Land Management Group area, similar habitat, landscape and babbler population assessments were subsequently undertaken in northwest Victoria near Kerang for the babbler populations found there.  Key results from these studies relevant to the initial Sheep Pen study were that the number of babbler groups in each sampled district was positively related to the proportion of woodland cover, especially the proportion of Black Box (Eucalyptus largiflorens) woodland habitat – the babblers’ preferred habitat in this region.  Conversely, the number of babbler groups was negatively associated with the proportion of land under intensive agriculture.  At the site scale, key positive predictors of babbler presence in Black Box habitat again included the abundance of large trees (> 60 cm dbh)

Lessons learned and future directions: The most valuable lesson learned since the initial paper was published was the power of the structured research project described above to evaluate the effectiveness of the babbler conservation program and inform future design and planning. The study further demonstrated the importance of taking a demographic approach to the species’ conservation needs, understanding what is happening across the whole population over time  and how habitat interventions can assist.  These lessons have since been applied usefully to other babbler projects  and more broadly to conservation of woodland birds.

The initial paper noted the importance of achieving landscape-scale change in vegetation extent, particularly in more fertile habitats. This has occurred to some extent within the Koonda district through a range of incentive programs, tender programs, covenanting programs and land purchase, but continues to achieve most gains on more infertile land. On fertile land, by contrast, there has been rapid land-use change to cropping over the past fifteen years, leading to reduced likelihood of those properties providing suitable habitat for babblers, as found in the study conducted in northwest Victoria.

The initial paper also suggested the benefit of developing tailored incentive programs for babblers and other threatened species with particular requirements to maximize potential conservation gains  and we suggest, based on Australian and overseas experiences,  that more specific incentive programs or more detailed criteria could assist.

Another important lesson learned was the difficulty in maintaining community-driven citizen-science monitoring, even with the best will in the world, without some over-arching organizational support and oversight.  We know that community monitoring for biodiversity conservation needs scientific input at the design and analysis stages; hence additional resources may also be required in terms of equipment or guidelines to help groups monitor effectively.  Modest government investments to conservation organisations with established biodiversity monitoring programs could usefully help address this issue.

Finally, the learnings from the Sheep Pen Creek Land Management babbler conservation project over nearly thirty years are that the landscape changes and that these changes are not always positive.  Land-use change is placing more pressure on  potential babbler habitat; and the eucalypt regrowth which was established and provided new nesting resources for a few years is now too tall to provide nesting habitat, but too dense and immature to provide suitable foraging habitat for another one hundred years.  Climate change is rapidly imposing constraints on the availability of food resources and breeding opportunities, exacerbated by increased competition for the same limited resources by exotic and native species.  For the Grey-crowned Babbler, the solution to all of these factors depends on ongoing commitment to the establishment or maintenance of their essential habitat needs and life-history requirements so that their life-cycle is provisioned for from generation to generation.

Stakeholders and Funding bodies:   Most of the targeted habitat works achieved for babblers in this landscape has occurred through funding support from the Australian government through its Natural Heritage Trust and Caring for our Country programs.  Broader habitat protection and restoration has occurred primarily with funding support to landholders from the Goulburn Broken Catchment Management Authority (GBCMA).  The Norman Wettenhall Foundation, along with GBCMA, was instrumental in enabling the research by University of Melbourne, which was also aided by the extensive voluntary support of Friends of the Grey-crowned Babbler.  Not least, local landholders continued to support the project and continue to protect or restore parts of their properties to assist with babbler conservation.

Contact information: [Doug Robinson, Trust for Nature, 5/379 Collins Street Melbourne, Victoria 3000, Australia.  dougr@tfn.org.au, (03) 86315800 or 0408512441; and  School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.

 

 

 

 

The biodiversity benefits of Greening Australia’s Saltshaker Project, Boorowa, NSW – UPDATE of EMR feature

David Freudenberger, Graham Fifield, Nicki Taws, Angela Calliess and Lori Gould

[Update of EMR feature – Freudenberger, David, Judith Harvey and Alex Drew (2004) Predicting the biodiversity benefits of the Saltshaker Project, Boorowa, NSW. Ecological Management & Restoration, 5:1, 5-14. https://doi.org/10.1111/j.1442-8903.2004.00176.x]

Key words: woodland restoration, monitoring, farmland rehabilitation, community engagement

Figure 1. Boorowa River Recovery project sites, south eastern NSW.

Introduction

The Boorowa catchment in central NSW, like most of the wheat-sheep belt of eastern Australia, has been extensively cleared for agriculture.  Remnant woodland cover is less than 10% and highly fragmented into small patches, often less than 20 ha. As described in the 2004 article, there has been a documented decline in biodiversity across this region linked to declines in landscape function including dryland salinity and eucalypt dieback. In response to these declines, farmers in this catchment have been involved in land rehabilitation projects for over 25 years.  Many of these projects have been facilitated by Greening Australia, a national non-governmental organisation focused on protecting and restoring native vegetation.  Pioneering projects in the 1990s were often small in scale and lacked landscape scale targets.  To address this, Greening Australia collaborated with CSIRO to develop guidelines for catchment scale “enhancement activities” for the $1.8 Million “Saltshaker Project” that carried out ground works as described in Box 1 of the 2004 article (reproduced below). The project was based on a $845,000 grant from the Australian Government’s Natural Heritage Trust program and $1 Million in in-kind support from farmers, the Boorowa Shire, Boorowa Landcare and Greening Australia. This project ran for just two years (2000-2002), but it was hoped that the project would provide strategic guidance for decades to come.  This appears to be the case.

 Box 1. Priority ‘enhancement activities
1. Protect existing remnant vegetation by fencing out domestic livestock with a priority to protect 10 ha or larger remnants in the best condition (complex understorey).
2. Establish native understorey plants in those protected remnants requiring enhancement of habitat complexity.
3. Enlarge existing remnants to at least 10 ha.
4. Create linkages between fenced remnants and other protected remnants. Linkages should be at least 25 m wide, or 10 ha stepping-stones, particularly in those areas more than 1.5 km from other patches 10 ha in size.
5. Fencing and revegetation of at least 50 m wide along creeks and flow lines.
6. In recharge areas, revegetate in 2-ha blocks, or greater than eight row strips to intercept deep soil water moving down-slope.
7. Revegetate areas mapped as having a high risk of dryland salinity.
8. Block plantings in discharge areas with links to other saline reclamation works.

(Box reproduced with permission from the original feature]

During the Saltshaker project, bird surveys were conducted within 54 discrete patches of remnant woodland.  Bird species were identified that were particularly sensitive to loss of habitat area, simplification of habitat structure, and increase in habitat isolation. The Eastern Yellow Robin was the focal species for this catchment. It generally occurred in woodland patches larger than 10 ha that were no more than 1.5 km from other patches at least 10 ha in size, and had at least a moderate structural complexity made up of a healthy overstorey of eucalypts with an understorey of regenerating trees, shrubs, tussock grasses and fallen timber. The Saltshaker project predicted that many other woodland birds would co-occur if the habitat requirements of the Eastern Yellow Robin were met by patch and landscape scale enhancement activities.

Further works. The Saltshaker project was followed by many others since 2002. The largest project was “Boorowa River Recovery” that began in 2005 as a partnership managed by Greening Australia with the Lachlan Catchment Management Authority and the Boorowa Landcare Group.  Through a total investment of almost $2.2 million (in-kind included), this project rehabilitated or protected 640 ha of riparian area along 80 km of river including a continuous 29 km stretch of the Boorowa River above the town water supply dam (Figs 1 and 2). It involved more than 60 land managers who implemented on-ground works described in individual ten year management contracts. On-farm project size averaged 11.6 ha.

Other projects funded by a diversity of sources, particularly the Australian Government, have protected an additional 88 ha of woodland remnant, enhanced 353 ha of remnants, and revegetated 425 ha of native vegetation within the catchment.  Projects included Whole of Paddock Rehabilitation (WOPR).  All project activities linked to funding have been recorded in a detailed project management database held by Greening Australia. These additional projects were consistent with the enhancement activities recommended by the Saltshaker Project and described in the EMR feature.

Figure 2 (a) Before and (b) after willow removal in the Boorowa River Catchment. After willow removal, all sites were planted to a diversity of trees and shrubs.

Outcomes. There has been no comprehensive follow-up to the 2001 bird surveys across the Boorowa Catchment.  However since then, there is now a large and comprehensive scientific literature demonstrating dramatic increases in woodland birds in the revegetation areas in this region of southeastern NSW (reviewed in 2018). Most all the conservation and restoration activities in this catchment have likely led to an increase in woodland birds over the past 20 years.

Of all the Boorowa projects, the Boorowa River Recovery projects had sufficient funding for monitoring outcomes six years after project activities commenced. A sub-sample of 20 sites out of a pool of 47 were monitored for improvements in vegetation cover and density, macroinvertebrate abundance and stream bank stability. Planted shrub cover generally doubled at all sites as expected. Macroinvertebrate scores did not differ between treated and control sites, though activities did appear to improve stream bank stability (an indirect measure of reduced erosion).  Subsequent monitoring 12 years on showed further improvements in ecosystem function.

Since the Saltshaker Project finished, there has been no systematic monitoring of the hundreds of woodland remnants protected and enhanced by this project and subsequent ones.  However, landholders and staff anecdotally report indicative improvements in vegetation cover and wildlife habitat on the sites, and we can infer from a 2008 study that included woodland sites in the Boorowa Catchment, that significant ecological improvements are likely from fencing out livestock from woodland patches. This study found improvements included greater native floristic richness, native groundcover and overstorey regeneration within fenced sites compared to unfenced sites. Similarly, a 2009 study found that woodland sites in south eastern Australia, with livestock grazing removed, had a greater abundance of beetles and the opportunist ant functional group, a faster rate of litter decomposition, greater native plant richness, greater length of logs, and a better vegetation condition score.

Lessons learned. Long-term action with short-term funding. Natural resource management projects have been ongoing in the Boorowa catchment for over 25 years. But no single project has been funded for more than five years. This is the reality of natural resource management (NRM) in much of Australia.  Government NRM programs come and go with election cycles, but fortunately the commitment of landholders and local organisations persists.

Partnership model. All the projects before and after the Saltshaker Project have involved landholders working collaboratively with local agencies administering the diversity of funding. Most projects had a steering committee that proved a good way for stakeholders to have input through all stages of project, which was particularly important during project planning. Idealism needed to be balanced with practicality so bureaucracy was minimised while maintaining accountability. Good communication that recognised that no single view was more valuable than another was important, although full consensus was not always possible. Trust was enabled when processes were developed collectively. Skilled coordinators needed a clear understanding of their roles and care taken to not get involved in local politics.

Assessing outcomes. Developing a highly predictive understanding of ecological outcomes from NRM activities in catchments like Boorowa is a scientifically complex, expensive and long-term process. The confidence we can now claim for an increase in abundance and diversity of woodland birds in the Boorowa catchment stems from two types of monitoring. First is project monitoring of outputs like the 425 ha of revegetation known to have been established in the catchment. We know this from Greening Australia’s project management database (unfortunately there is no national database for this kind of outputs),  although satellite imagery should be able to pick up this output once plantings have a dense enough canopy. It is essential to know when and where project outputs like revegetation have occurred in order to then design scientifically rigorous studies to research ecological outcomes like increases in flora and fauna diversity and abundance. We have confidence that wildlife is colonising revegetation because research groups have conducted sophisticated statistical analyses of wildlife data from woodland revegetation in nearly 200 sites across south eastern Australia for over 15 years (summarised in a 2018 study).

Gaps in understanding. We know a lot about the ecological and social outcomes of NRM activities, but much less about improving the cost effectiveness of outputs such as revegetation and understory enhancements(see 2016 review). There are no recent published benchmarks on how much revegetation should cost in the face of variable climatic conditions, soil types and terrain.  More revegetation case studies need to be documented, but they need to include an accounting of costs.  The Australian restoration challenge is vast, funding always limited, so practical research and transparent accounting is sorely needed to reduce the cost of ecologically effective restoration.

Continuous re-learning. The many and diverse projects in the Boorowa Catchment are typical of NRM activities in Australian woodlands over the past 25 years. Each project has involved different agencies, many no longer exist or have changed their names (e.g. Catchment Management Authorities have morphed into Local Land Services in NSW). Each agency, including NGOs like Greening Australia, have a natural turn-over of staff. For example, only one staff member of Greening Australia involved in Saltshaker remains with the organisation.  Landholders tend to remain longer, but they too retire, sell out, and move on. Like education, every new staff member and every new landholder needs to learn the complex processes of successful catchment repair. This learning needs to be hands-on, hence funding for NRM activities and extension is needed in perpetuity (just like education). But experiential learning needs to be complemented with a diversity of learning resources such as the EMR journal, easily assessable reports (too many have disappeared from Government websites) and new media such as YouTube videos. Most importantly, communities of practice need to be perennially nurtured by a diversity of practitioners, experienced and less so.  There is much still to be learned and shared.

Stakeholders and Funding bodies:   The primary funding bodies for projects in the Boorowa catchment were the Australian Government, TransGrid, Alcoa Australia, the NSW Environmental Trust, and the former Lachlan Catchment Management Authority. These external funds were complemented by a diversity of in-kind support provided by farmers, Boorowa Shire Council, and other community members of the catchment.

Contact details. David Freudenberger, Fenner School of Environment and Society (Australian National University, Canberra, 0200, Australia, Email: david.freudenberger@anu.edu.au). GF, NT and AC can be contacted at Greening Australia, Kubura Pl, Aranda ACT 2614, Australia; and LG at GrassRoots Environmental, Canberra (http://www.grassrootsenviro.com/)

 

 

Ecological Restoration of Donaghys Corridor, Gadgarra, north Queensland – UPDATE of EMR feature

Nigel Tucker

[Update of EMR feature – Tucker, Nigel I. J. and Tania Simmons (209) Restoring a rainforest habitat linkage in north Queensland: Donaghy’s Corridor, Ecological Management & Restoration, 10:2, 98-112, https://onlinelibrary.wiley.com/doi/10.1111/j.1442-8903.2009.00471.x]

Keywords: Rainforest, corridor, regeneration, disturbance effects

Introduction. Complex notophyll vine forests of the Atherton Tablelands, particularly from basalt derived soils, have been significantly fragmented and degraded by human settlement over a 100yr period. Fragment isolation results in edge effects, exotic species colonisation, loss of genetic variability and species decline. During high rainfall events, eroding streambanks on farms mobilise sediments to the receiving environment of the Great Barrier Reef. Re-connecting isolated fragments to larger forest blocks through restored riparian corridors aims to reverse these effects through adaptive management. The restoration of Donaghys Corridor is an example of adaptive management, and its establishment was a key factor in the adoption of other local corridor projects.

As reported in the 2009 features, around 20,000 plants of selected local species were established in four yearly plantings (1995/96/97/98) along Toohey Creek, creating a continuous habitat corridor between the isolated Lake Barrine fragment (500ha) and the adjacent Gadgarra section of Wooroonooran N.P (80,000ha), both being part of the Wet Tropics World Heritage Area. The corridor is 1,200m in length and 100m wide, with three rows of Hoop Pine (Araucaria cunninghamiana) planted either side of the fenced corridor, which was established on lands largely owned by the Donaghy family. On completion, the corridor was secured through the Queensland Government’s declaration of Donaghys Corridor Nature Refuge, the State’s first Nature Refuge proclaimed over an ecologically restored site.

Ongoing recovery. In 2000, a vegetation survey of 3m x 5m plots in 12 permanent transects throughout the corridor showed regeneration had occurred upon canopy closure (Tucker and Simmons 2009).  Between 1995 and 1998, 119 native species had regenerated within the transects, mainly through vertebrate-mediated dispersal. The most recent (ongoing) survey, ca.20yrs after planting, indicates that regeneration has continued, and the majority of regenerating species are again vertebrate dispersed. There has also been a measurable increase in vegetation structural complexity, and a variety of life forms are present including ferns, orchids, vines, scramblers and canopy trees.

Restored vegetation in 2000 was characterised by vegetation of even age and size classes and only a developing canopy was present (no sub-canopy). Recruitment was limited to the ground storey. Over 20yrs, total numbers of recruiting species have increased, along with canopy height, and the sub-canopy is now a distinguishable and measurable feature. To illustrate this change, species diversity and structure in two typical transects from the oldest (1995) and youngest (1998) plantings are shown in the table below. Figures are from the most recent survey (2019) and the bracketed numbers indicate comparative values in 2000.

Canopy

height

Sub-canopy

Height

Number of species Average number of species/plot Average number of species/plot – sub-canopy Average number of species/plot – ground storey
1995 19.9 (5) 7.5 (0) 84 (53) 22.6 (12.5) 8.3 13.8
1998 14.4 (2.5) 7.3 (0) 63 (15) 14.2 (1.6) 2.2 15.8

There has also been a significant difference in the distribution of regenerating vegetation. In 2000, regeneration was negatively correlated with edge, being concentrated in the central portion of each transect. Greater structural complexity and increased shading have significantly reduced the edge effect and regeneration is now distributed equally across the entire width of the corridor. This edge-effect reduction may partially result from the three Hoop Pine rows, now ca.15m tall, planted on each side of the corridor.

Figure 1.  Part of the 18m x 250m fence crossing Donaghys Corridor

Natural and man-made disturbance. Since establishment there has been both natural and anthropogenic disturbance. Occasional incursions by cattle have occurred, entering via fences sometimes damaged by branches falling from maturing corridor vegetation. In small areas incursions have visibly damaged regeneration but surveys show this has not significantly affected regeneration. Feral pig disturbance has also occurred but does not appear to have affected regeneration.

In 2006, corridor vegetation was damaged by severe tropical Cyclone Larry. Most stems lost crowns and some waters’ edge stems were permanently bent by floodwaters, but vegetation recovery was rapid and no weed invasion occurred. This infers a measure of resilience by restored vegetation to disturbance, and the distribution of regeneration described above supports this inference.

Anthropogenic disturbance has been more interventionist and not aligned to the original concept adopted by government, landholders, scientists and the community when the project commenced in 1995.  In 2017, the corridor’s upstream neighbour, with support from the DES but without consultation with the Donaghy family or other affected landholders, erected a chain mesh fence 250m long and 1.8m high across the western end of the corridor (see Figure 1). This is part of a larger fence which completely encloses mature forest at the western end of the corridor, including corrugated iron placed across the bed of Toohey Creek. Enquiries revealed the fence is part of an enclosure for a Cassowary (Casuarius casuarius johnsonii) rehabilitation facility, operated by Rainforest Reserves Australia (RRA) under a commercial arrangement with the Queensland Government.

Enhancing landscape permeability was the key reason for undertaking the Donaghys Corridor project, and the endangered Cassowary was a key target species; 53 Cassowary food plants were included in the original planting matrix of 100 species to encourage corridor utilisation. The Queensland Government notes that corridors are a key strategy in Cassowary conservation. In addition to blocking the movement of terrestrial vertebrates such as Cassowaries, Pademelon (Thylogale stigmatica) and Musky Rat Kangaroo (Hypsiprymnodon moschatus), construction of the enclosure has inadvertently fenced in a number of animals whose territories included part of the enclosure.

DES has advised that the fence is temporary and will be removed when restoration plantings on RRA lands are ‘sufficiently well-developed’ to support Cassowaries being rehabilitated.  It is unknown, however, when or through what processes this removal will occur. Resolution of the issue is anticipated.  However, such actions highlight the pitfalls associated with single-species conservation, and potential conflicts that might arise when responsibility for management of endangered species moves from the State to the non-scientific, commercially-focused private sector. Whilst iconic wildlife e.g., the Cassowary, can be effective in harnessing community and landholder participation in restoration, here it is clear that decision making and communication has been far from optimal, which may well lead to landholder and community disillusionment. In this case, the fence has also disrupted ongoing monitoring and evaluation. Planned re-survey of terrestrial vertebrate colonisation and movement has now been cancelled, given the unknown effect of the fence on wildlife passage and the behaviour of animals inadvertently trapped within the enclosure.

Lessons learned.  The project shows that sustained regeneration of native species can be achieved in restored tropical vegetation, along with increased structural complexity and functional resilience to natural disturbance.  However, the fencing incident shows that dysfunction in a restoration project can arise from totally unanticipated causes, potentially undoing well-established partnerships between government, community, scientists and landholders.

Contact.  Nigel Tucker, Director & Principal Environmental Scientist, Biotropica.  PO Box 866 Malanda QLD 4885 ; Email: nigeltucker@biotropica.com.au; Tel: +61 7 4095 1116.

 

 

 

Restoring the banks of the Namoi on Kilmarnock – UPDATE of EMR feature

Robyn R. Watson

[Update of EMR feature – Watson R. (2009) Restoring the banks of the Namoi on ‘Kilmarnock’: Success arising from persistence. Ecological Management & Restoration,  10: 1 pp 10-19 https://onlinelibrary.wiley.com/doi/10.1111/j.1442-8903.2009.00434.x]

Figure 1. Casuarina (Casuarina cunninghamiana), River Red Gum and a range of grasses established on river bank at Kilmarnock after restoration works. (Photo R. Watson)

Riverbank restoration began on Kilmarnock in early 1990 with fencing the river area and planting native trees, shrubs and grasses. A program of killing the weeping willows resulted in their elimination by 2000. Tree lines were planted to connect the river corridor to natural conservation areas around the farm and this has resulted in a gradual increase in native wildlife leading to great environmental benefits both for the farm and surrounding areas.

Prior to the works the riparian zones on Kilmarnock had degraded to the extent that the banks were slumping during floods, with loss of old trees. This had arisen from decades of clearing, grazing and weed invasion.  Since 2009 we can report that the fenced-off river corridor has continued to recover with native grasses  beneath the trees, particularly Phragmites (Phragmites australis)  and Vetiver Grass (Chrysopogon zizaniodes) which are growing well on the steep river banks (Fig 1).  As the trees in the riparian corridor grew, additional tree lines were planted throughout the farm to connect the riparian zone to retained native vegetation areas and other set-aside conservation areas. This has led to an increase in native birds, micro bats and beneficial insect numbers.

Wildlife have returned to the area, including Little Pied Cormorant (Microcarbo melanoleucos) and  Pied Cormorant (Phalacrocorax varius) nesting in the River Red Gum (Eucalyptus camaldulensis) trees one year. Flocks of Budgerigar (Melopsittacus undulatus) and Spotted Pardalote (Pardalotus punctatus)  have been observed in the trees along the riparian zones.  Pink Eared Duck (Malacorhynchus membranaceus), Musk Duck (Biziura lobata)(, Eurasian Coot (Fulica atra) and Brolga (Antigone rubicunda) visited wetland areas on the farm. There has been a noticeable increase in the small birds such as three different wrens including Superb Fairy-wren (Malurus cyaneus) and Variegated Fairy-wren (Malurus lamberti) and Australasian Pipit (Anthus novaeseelandiae).

The planted irrigated cotton crop was not sprayed with insecticide for 12 years after the increase in beneficial insect and bird numbers. Nest boxes have been installed in the conservation areas for the micro bats.  Fourteen species of insectivorous micro bats have been recorded on the farm since the rehabilitation work began. Stubble quail (Coturnix pectoralis) have been nesting in the conservation areas.

Figure 2. Log groins with planted native trees established on steep river bend near Boggabri through the Namoi Demonstration Reach Project (2007-14) coordinated by the NSW Dept of Primary Industries. (Photo R. Watson)

Further works undertaken nearby.  After seeing the improvement on our farm some adjoining landholders have begun fencing off their river areas and introducing rehabilitation measures on their farms. In one outstanding collective example, 120 kilometres of the Namoi Demonstration Reach Project was established by the NSW Dept of Primary Industries both upstream and downstream of Kilmarnock, from 2007 to 2014.  This This involved contractors, working with permission of a number of landholders, planting over eight thousand trees and shrubs along the river and constructing log groins at a badly eroding river bend near the Boggabri township.  These groins have worked well and have withstood a couple of small floods.  The trees planted on the steep banks have also established well (Fig. 2).


Figure 3. – Planted Phragmites saved the river bank from bush fire in 2017. (Photo R. Watson)

A major bushfire in 2017 spread across the river to the top of the banks on the Kilmarnock side of the river.  Because of the planted Phragmites on the river edge there was no damage done to the toe of the river bank (Fig 3) and we were able to bulldoze firebreaks to protect  the planted trees affected from the fire.)  However, a number of the old River Red Gums were badly burnt. Many of the very old hollow trees were killed by the fire but less hollow ones have begun to grow again, although this growth has been slowed by the present drought.

With the 2019 drought conditions the Namoi River has dried out, exposing the river bed.  This has given me a chance to observe the river bed.  I have been able to photograph and document the debris on the sand banks and the remaining water holes and show that there are now substantial amounts of hollow logs and debris (Fig. 4)  which can  provide good habitat for fish and water creatures when the stream is flowing.

Our family has purchased more land downstream on the Namoi River and we have implemented rehabilitation on the river banks, tree planting and conservation measures on those farms.

Contact.  Robyn Watson, Kilmarnock, Boggabri, NSW 2382, Australia; Tel: 02 67434576 Email: wjwatson@northnet.com.au

Figure 4. Hollow log and debris on riverbed provide fish habitat when river is flowing. (Photo R. Watson)

 

Developments in Big Scrub Rainforest Restoration: UPDATE of EMR feature

Tony Parkes, Mark Dunphy, Georgina Jones and Shannon Greenfields

[Update of EMR feature article: Parkes, Tony, Mike Delaney, Mark Dunphy, Ralph Woodford, Hank Bower, Sue Bower, Darren Bailey, Rosemary Joseph, John Nagle, Tim Roberts, Stephanie Lymburner, Jen Ford and Tein McDonald (2012) Big Scrub: A cleared landscape in transition back to forest? Ecological Management & Restoration 12:3, 212-223. https://doi.org/10.1111/emr.12008]

Key words: Lowland Subtropical Rainforest, ecological restoration, seed production, landholder action, corridors

Figure 1a. Rainforest regenerators undertake camphor injection, leaving bare trees standing creating light and an opportunity for seed in the soil to naturally regenerate. (Photo © Envite Environment)

Figure 1b Aerial photo showing camphor conversion by injection
(Photo © Big Scrub Regeneration Pty. Ltd.)

Introduction. The Big Scrub, on the NSW north coast, was once the largest tract of Lowland Subtropical Rainforest (LSR) in Australia. It was reduced to less than 1% of its original extent by he end of hte 19th century after clearing for agriculture. Big Scrub Landcare (BSL) is a non-profit organisation dedicated to improving the long-term ecological functionality of what remains of this critically endangered ecosystem –  lowland subtropical rainforest.  Our 2012 EMR feature reported on remnant restoration and revegetation works overseen by BSL to 2012. At that time, 68 remnants were identified as significantly affected from the impacts of environmental degradation including weed invasion and cattle access. These remnants had been undergoing treatments, with 20 substantially recovered and on a ‘maintenance’ regime.  Approximately 900,000 trees had been planted to establish 250 ha of young diverse well-structured rainforest.  A comparatively small area of forest dominated by the highly invasive exotic, Camphor Laurel (Cinnamomum camphora) (Camphor), which  has colonised much of the Big Scrub landscape had been converted to early phase LSR by skilled removal of a range of weeds and facilitating natural regeneration. 

Progress since 2012. Substantial progress in restoring critically endangered lowland subtropical rainforest in the Big Scrub has been achieved over the past seven years in the following areas.

  • Assisted regeneration of remnants has continued and become more focused
  • Re-establishment of LSR through plantings has expanded
  • Camphor conversion has developed in scale and techniques
  • Greater security of funding has been achieved
  • Community engagement has greatly improved and expanded
  • Genome science is being applied to produce seed with optimal genetic diversity for rainforest restoration.

Assisted regeneration of remnants. This work continues to be the major focus of on-ground restoration work. About 2000 regenerator days (9 years Full Time Equivalent) of work has been undertaken in 45 remnants. BSL’s remnant restoration program has become more strategic, with more focus on Very High Conservation Value (VHCV) remnants, particularly those in the NSW National Parks Estate, including the VHCV sites in Nightcap National Park (NP) including Big Scrub Flora Reserve, Minyon Falls and Boomerang Falls; Andrew Johnston’s Scrub NR; Snow’s Gully Nature Reserve (NR); Boatharbour NR; Victoria Park NR and Davis Scrub NR, plus the Booyong Flora Reserve. Rehabilitation work at these sites is prioritised in the major new four-year Conservation Co-funding project funded jointly by BSL and the NSW government’s Saving our Species program. Big Scrub Foundation (BSF) funding has enabled BSL to continue maintenance work in remnants that have reached or are approaching the maintenance stage.

Monitoring outcomes has become more rigorous and has demonstrated ongoing improvements in vegetation structure, with decreasing levels of weed invasion and improvements in native species cover.

BSL’s partner Envite Environment, with some assistance from BSL, is creating an important linkage between Nightcap NP and Goonengerry NP by the restoration of rainforest through the progressive removal of weeds that had dominated the 80 ha Wompoo/Wanganui corridor between these two NPs.

 Re-establishment of rainforest by planting. The area of LSR is being re-established by planting on cleared land has also continued to expand.   In the last 7 years  more than 0.5 million rainforest trees have been planted in the Big Scrub region, contributing to the restoration of another 175 ha of LSR, expanding total area of re-established rainforest by another 13%. While landscape-scale landholder driven work is inevitably opportunistic rather than strategic, the establishment of new patches of LSR enhance valuable stepping-stone corridors across the Big Scrub. Since 2012 the number of regenerators working fulltime in the Big Scrub region has increased by approximately 50%.  Another trend that has strengthened in the last 7 years is that larger plantings are now being carried out by well-resourced landowners. This is accounting for about 40% of the annual plantings. Offsets for residential development account for another 40% of trees planted. The remaining 20% is made up by small landowners, cabinet timber plantations, large-scale landscaping, and other planting of Big Scrub species. This is a significant change from the more dominant grant-based small landowner/Landcare group plantings prior to 2012.

 Camphor conversion. Larger areas of Camphor forest are being converted to rainforest, with project areas increasing substantially from less than a hectare to ten and twenty hectares. BSL estimates that more than 150 ha of Camphor forest are currently under conversion. Some landowners underake camphor injection which leaves bare trees standing, creating light and an opportunity for existing native seedlings and seed in the soil (or seed dropped by perching birds) to naturally regenerate (Fig 1). Others are choosing the more expensive option of physically removing the Camphor trees and carefully leaving the rainforest regrowth (Fig 2).  Improved techniques and landholder capacity building continue to progress and camphor conversion is now a significant component of rainforest restoration.

BSL alone is facilitating the conversion of almost 40 ha of Camphor forest to LSR funded by two 3-year grants from the NSW Environmental Trust, together with contributions from the 19 landholders involved in these projects. The ecological outcomes being achieved are significant and less costly than revegetation via plantings.

Figure 2a. Camphor forest under conversion using heavy machinery leaving rainforest regrowth intact (Photo © Big Scrub Landcare)

Figure 2b. Aerial photo showing camphor conversion by removal
(Photo © Big Scrub Landcare)

Greater security of funding. Australian Government funding for biodiversity conservation is at a very low level. Competition for existing NSW state government funding is increasing. BSL therefore has continued to  develop new strategies for fund raising to ensure continuity of its long-term program for the ecological restoration of critically endangered LSR in the Big Scrub and elsewhere. Ongoing funding of at least $150,000 annually is needed to ensure the great progress made  over the past 20 years in rehabilitating remnants is  maintained and expanded to new areas of large remnants. These funds finance weed control and monitoring; weeds will always be a part of the landscape and an ongoing threat to our rainforest remnants.

Establishment of the Big Scrub Foundation in 2016 was a major development in BSL’s fund raising strategy. The Foundation received a donation of AUD $1M to establish a permanent endowment fund that is professionally invested to generate annual income that helps finance BSL’s remnant care program and its other activities. Generous donors are also enabling the Foundation to help finance the Science Saving Rainforest Program.

Figure 3a. Australian gardening celebrity Costa Gregoriou at a Big Scrub community tree planting (part of the 17th annual Big Scrub Rainforest Day) in 2015 (Photo © Big Scrub Landcare)

Figure 3b. Founder of the Australian Greens political party Bob Brown and Dr. Tony Parkes at the 18th annual Big Scrub Rainforest Day in 2016. (Photo © Big Scrub Landcare)

Community engagement. The  Big Scrub Rainforest Day continues to be BSL’s  major annual community engagement event, with the total number of attendees estimated to have exceeded 12,000 over the past 7 years; the 2016 day alone attracted more than 4000 people (Fig 3). Every second year the event is held at Rocky Creek Dam.  A new multi-event format involving many other organisations has been introduced on alternate years.

BSL’s Rainforest Restoration Manual has been updated in the recently published third edition and continues to inform and educate landowners, planners and practitioners.

BSL in partnership with Rous County Council produced a highly-commended book on the social and ecological values of the Big Scrub that has sold over 1000 copies. BSL’s website has had a major upgrade: its Facebook page is updated weekly; its e-newsletter is published every two months. BSL’s greatly improved use of social media is helping to raise its profile and contribute to generating donations from the community, local businesses and philanthropic organisations to fund its growing community education and engagement work and other activities.

Science saving rainforests program. BSL, the Royal Botanic Gardens Sydney, the BSF and their partners have commenced an internationally innovative program to apply the latest DNA sequencing and genome science to establish plantations to produce seed of key species with optimal genetic diversity for the ecological restoration of critically endangered lowland subtropical rainforest. This program will for the first time address the threat posed by fragmentation and isolation resulting from the extreme clearing of Australia’s LSR, which is estimated to have resulted in the destruction of 94% of this richly biodiverse Gondwana-descended rainforest.

Many  key  LSR species are trapped in small populations in  isolated remnants  that  lack the genetic diversity needed to adapt and survive in the long term, particularly faced with climate change Necessary  genetic diversity is also lacking in many key species in the 500 ha of planted and regrowth rainforest. The first stage of the program, already underway, involves collecting leaf samples from approximately 200 individual old growth trees in 35 remnant populations across the ranges of 19 key structural species of the ‘original’ forest. DNA will be extracted from the leaf samples of each species and sequenced. The  latest genome science will be applied to select the 20 individual trees of each species that will be cloned to provide planting stock with optimal genetic diversity for the establishment of a living seed bank in the form of a plantation that will produce seed  for use in restoration plantings. As the individual trees in the restoration plantings reproduce, seed with appropriate genetic diversity and fitness will be distributed across the landscape. The project focuses on key structural species and thus helping the survival of Australia’s critically endangered Lowland Subtropical Rainforest in the long term.

Lessons learned and current and future directions. A key lesson learned some five years ago was that BSL had grown to the point where volunteers could no longer manage the organisation effectively. BSL took a major step forward in 2015 by engaging a part-time Manager, contributing to BSL’s continuing success by expanding the scope, scale and effectiveness of its community engagement activities and improving its day to day management.

The principal lesson learned from BSL’s on-ground restoration program is to focus on rehabilitation of remnants and not to take on large planting projects, but rather support numerous partnered community tree planting events. Large grant-funded multi-site tree planting projects are too difficult to manage and to ensure landholders carry out the necessary maintenance in the medium to long term.

Acknowledgements.  BSL acknowledges our institutional Partners and receipt of funding from the NSW government’s Saving our Species program, NSW Environmental Trust and Big Scrub Foundation.

Contact:  Shannon Greenfields, Manager, Big Scrub Landcare (PO Box 106,  Bangalow NSW 2479 Australia; . Tel: +61 422 204 294; Email: info@bigscrubrainforest.org.au Web: www.bigscrubrainforest.org.au)