Category Archives: Assisted regeneration

Brush pack experiment in restoration: How small changes can avoid leakage of resources and underpin larger scale improvements for restoration and rehabilitation

David Tongway and John Ludwig

Key words: Landscape Function Analysis, biological foci, water harvesting, desertification, erosion

The following experiment illustrates how relatively small changes to redirect water flow can capture water and other biological resources at a restoration site. However the process occurs not only at the micro scale but cumulates to site and landscape scales, making it a primary underpinning principles of a method of site analysis, Landscape Function Analysis (LFA) that has been applied across Australia and other countries to assist land managers counter desertification by redesigning processes that regulate the flow of resources, minimise losses and foster cycling. See http://members.iinet.net.au/~lfa_procedures/

The LFA mindset and methodology involve a purposeful change of focus from listing the biota/ species present or absent at a site, to an examination of the degree to which biophysical processes deal with vital resources with respect to stresses arising from management and climatic events.

Fig 1 before

Fig. 1. Before: bare, crusted, low OC soil, erosion, and high water runoff mainitained by low but persistent, set-stock grazing by sheep and kangaroos.

Fig 2. after treatment

Fig. 2. The restoration treatment was simply to build brush-packs across the contour to trap water, soil and plant litter, slowing overland outflow. This also prevented the grazing down to ~1cm. Grass plants were able to maintain about 10cm of photosynthetic tissue.

Fig 4

Fig 3. After 7 years. Clearly the soil properties have improved the ‘habitat quality’ for the target vegetation.

Fig 5 14 years after

Figure 4. After 14 years, native vegetation re-established.

Fig 3. detail of bushpack after 3 years.

Fig 5. Detail of the brushpack after 3 years showing micro-structures capable of slowing water and accumulating resources.

1. tongway table

ANOTHER KEY OBSERVATION RELEVANT TO RESTORATION AND REHABILITATION

Where resources are not captured or leak out of a system, patchiness will become evident as resources self-organise around foci of accumulation – creating ‘patches’ where resources accumulate and ‘interpatches’ from which they ‘leak’.

The Golden Rule for rehabilitation is: “Restore/replace missing or ineffective processes in the landscape in order to improve the soil habitat quality for desired biota.”

Fig 6. Grassy sward healthy

Fig. 6. A grassy sward patch where the grass plants are close enough together that the water run-off is unable to generate enough energy to redistribute the grassy litter, which is evenly distributed. (The slope is from top to bottom in the image.)

There is also no evidence of sediment transport (not visible in this image). This is because of the tortuous path and short inter-grass distance. It would be possible to derive the critical grass plant spacing for “sward” function in any landscape, taking into account slope, aspect and soil texture.

Fig 7. Grassland in patch-interpatch mode, due to exceeding the critical runoff length for erosion initiation. (Slope is from top to bottom.)

Note that litter and sediment have both been washed off the inter-patch and have been arrested by a down-slope grass patch. Note the orientation of the grassy litter strands.

 

 

 

 

 

 

 

 

 

 

 

 

Stewartdale Nature Refuge koala habitat restoration in South Ripley, south east Queensland

Key Words: reconstruction, assisted regeneration, planning, koalas, conservation

Introduction: The Stewartdale Nature Refuge is located in South Ripley, south east Queensland on private land owned by the Sporting Shooters Association of Australia (SSAA). The 969 ha block contains live shooting ranges, large open areas dominated by pasture grasses, a substantial lagoon frequented by many bird species and extensive natural areas. The area being restored is 211 ha of dry sclerophyll vegetation, containing a number of Regional Ecosystems (REs) being restored through large scale planting (reconstruction) and assisted regeneration approaches. Its conservation value is heightened by the fact that it connects to the Karawatha Flinders Corridor, the largest remaining stretch of open eucalypt forest in south-east Queensland.

Condition ranges from large degraded areas (i.e. pasture) to native vegetation that contains both regrowth and remnant dry sclerophyll. All areas were impacted by varying levels of weed infestation due to previous clearing and ongoing disturbance from cattle grazing. Natural disturbances such as regular fire and periodic floods have also contributed to disturbance at the site. More than 30 weed species impact the project area at varying levels and the species and impacts vary with the condition of the land. Open areas were dominated by pasture grass such as Setaria (Setaria sphacelata) and Rhodes grass (Chloris gayana) in addition to fast growing annuals, although infestations of Leucaena (Leucaena leucocephala), Prickly Pear (Opuntia stricta) and large clumping Bamboo (Bambusa sp.) also required significant control efforts. In more forested areas (and underneath isolated remnant trees) weed species included Lantana (Lantana camara), Creeping Lantana (Lantana montevidensis), Corky Passionfruit (Passiflora suberosa), Easter Cassia (Senna pendula var. glabrata), Siratro (Macroptilium atropurpureum) and exotic grasses, annuals and groundcovers.

The aim of the project is to restore, native plant communities present within the Stewartdale project site to support local koala populations. Our goals are to:

  • Repair native vegetation including the structure, integrity and diversity to support koala populations
  • Strengthen the resilience and regenerative capacity of native vegetation
  • Restore and expand native regrowth vegetation by controlling weeds
  • Maintain the project site so weeds do not negatively impact the development and recovery of native vegetation
  • Protect drainage lines, gullies and slopes from erosion
  • Protect and enhance the water quality of Bundamba Lagoon
  • Construct fauna friendly fencing across the site with the aim of protecting planted trees from herbivory
  • Reduce the risk of fire moving through the site and impacting restoration works by conducting strategic slashing activities to reduce fuel loads.

Planning. A restoration plan was developed after detailed site assessments and negotiations with the landholder, land manager and state government were finalised integrating Nature Refuge conditions and current land use and future management requirements. The site was divided into zones and sub-zones to assist directing works including applying a range of restoration approaches – i.e. assisted regeneration and reconstruction (‘revegetation’) and several planting models and species mosaics to different parts of the site. Detailed maps were produced for each zone and included information such as the location of all tracks, fences, assisted regeneration zones, wildlife corridors, planting areas according to each RE and numbers of species and plants to be installed per zone. The plan also included detailed information on restoration approaches; weed control at all stages of the project; seed collection and propagation; site preparation including the specifications and location of all fencing, tracks, rip lines and areas of concern (i.e. identified hazards across the site); how to carry out all works in each zone; site maintenance requirements for 5-7 years; and monitoring requirements.

PP2b after site preparation.JPG

Fig 2. Preparation for planting  at Stewartdale Nature Refuge.

PP2b after planting Mar 2016

Fig 2. After planting to support local Koala population, Mar 2016.

Works to date. Site preparation commenced with the collection of seed from on and around the wider property and surrounds ensuring that all species to be planted were collected from a minimum of 10 widely spaced parent trees. Primary weed control started with the control of weeds in the 65 ha of assisted regeneration zones and the control of other woody weeds across reconstruction areas in preparation for slashing and other activities. More than 18 km of fauna friendly fencing (i.e. no barbed wire) was installed to protect planted stock from browsing by large herds of macropods and cows. Two large corridors were retained for fauna to reach Bundamba lagoon from different parts of the regional corridor as it is an important resource for many local and migratory fauna. Slashing across open areas was commenced and followed by the installation of rip lines to alleviate soil compaction and assist efficient planting activities. Weeds and pasture grasses were then sprayed out along all rip lines. 114 000 koala food and shelter trees were planted according to the RE for each section and according to the local conditions (i.e. whether it was low lying, on a ridge or near infrastructure). Some additional frost resistant and local Acacia species were also added to particularly frost prone areas to assist the development of a canopy and the protection of developing vegetation.

The 114 000 tubestock were installed over a 7 week period with the last stems being planted in April 2015. All trees were fertilised and watered at the time of planting and where possible, slashed grass spread across the rip lines to assist retaining moisture and slowing weed regrowth. (Follow-up watering was applied to all planted stock between September and October 2015) Nearly 2000 (1 m high) tree mesh guards were installed to protect planted stock in fauna corridors.

Series shot 1.1

Careful spot spraying to reduce weed while protecting natives

Series Shot 1.2

Growth of saplings is improved without competition.

Results to date. As of March 2016, weeds have been significantly reduced across the 65 ha of assisted regeneration areas. Unfortunately a wildfire fire went through approx. a third of the project area after primary and follow up weed control works had been completed. Fortunately the event was prior to planting though the fire did reduce the number of trees regenerating in assisted regeneration patches as many were too young to withstand the fire. New germinations are however occurring and the level of native grasses, groundcovers and other native species have increased due to ongoing weed control efforts.

Despite heavy frosts in winter 2015, a flood event in May 2015 (150 mm of rain fell in 1.5 hours) and now an extended dry period, the planting is developing well with the average height of trees at over a metre tall and mortality under 5%. Weed control is continuing across the project site with efforts currently concentrating on the control of many annual weeds such as Cobbler’s Peg (Bidens pilosa), Balloon Cotton (Gomphocarpus physocarpus) and Stinking Roger (Tagetes minuta) and many exotic grasses such as Setaria (Setaria sphacelata) and Rhodes grass (Chloris gayana) to reduce competition to planted stock. Assisted regeneration areas are being joined up to planting zones wherever possible to further assist the development of the site.

It should also be noted that Birds Australia have recorded 69 bird species on site.

Ongoing works: Regular maintenance continues on the site with the control of weeds particularly along rip lines where weed germination and growth is rapid. Slashing is also regularly done between the rip lines and along tracks and fence lines to assist access around the site and the management of fuel loads and therefore wildfire across the site. It is expected that the time it takes to complete each maintenance rotation will begin to reduce as plants become more established and start to develop a canopy.

Weed control will also continue in all assisted regeneration zones and is also expected to reduce with the development of native vegetation structure and diversity together with the reduction of the weed seed bank. Ongoing slashing, fence maintenance and monitoring will continue for another 3-5 years though the exact time period will be determined by the State government.

Monitoring including soil moisture readings, transects to assist determining survival rates across the site and photographic monitoring is regular and further supports 6 monthly reporting requirements.

Stakeholders and funding bodies: Department of Environment, Heritage and Protection, Queensland State Government; Sporting Shooters Association of Australia (SSAA). Photos: Ecosure.

Contact Information: Jen Ford (Principal Restoration Ecologist, Ecosure TEl: +61 (0)7  3606 1038.

 

Restoration at Numinbah Conservation Area, City of the Gold Coast, Queensland

Key Words: assisted regeneration, restoration planning, conservation

Introduction: Numinbah Conservation Area, located in the hinterland of the Gold Coast in south-east Queensland, is one of many natural areas managed by City of Gold Coast’s Natural Areas Management Unit (NAMU). The 598 ha property contains 12 Regional Ecosystems (REs) ranging from sub-tropical and dry rainforest to dry and wet sclerophyll types; and include riparian zones, steep areas, gullies and rocky outcrops. Its conservation value is heightened by the fact that it connects to other reserves including the World Heritage areas of Springbrook.

Condition ranges from large degraded areas (i.e. pasture) to native vegetation that contains both regrowth and remnant areas. All areas were impacted by weeds due to previous disturbance from logging and subsequent cattle grazing. More than 35 weed species impact the site at varying levels with the most notable species across the site being Lantana (Lantana camara). Edges are impacted by exotic vines such as Glycine (Neonotonia wightii), the understorey by many herbaceous weeds such as Mistflower (Ageratina riparia) and rainforest zones by persistent weeds such as Coral Berry (Rivina humilis) and Passion Vines (Passiflora spp.) to name a few. Approximately 60 hectares of open area are dominated by pasture grasses and other weeds.

The aim of the project is to restore, to the extent possible, the structure, function, dynamics and integrity of the pre-existing vegetation and the sustaining habitat that is provided. Our goals are to:

  • Improve the health of vegetation and habitat types across the site
  • Improve connectivity for flora and fauna
  • Reduce fuel levels in fire prone ecosystems and the risk of hot fires sweeping through the site and wider landscape
  • Increase the resilience of the site
  • Improve water quality
  • Increase the health, populations and distribution of threatened species – flora and fauna
  • Reduce the need for weed control maintenance over time i.e. to a level of minimal maintenance
  • Provide nature based recreational opportunities and environmental education along this section of the Gold Coast Hinterland Great Walk

Planning. An ecological restoration plan was developed after detailed site assessments and the site was divided into precincts, zones and sub-zones to assist directing works. Information in the plan included species lists, weed control information, maps and detail on how to restore each area and progressively link zones. A detailed fire management plan was also developed for the site that took into account wildfire mitigation, restoration zones, the location of threatened species, site objectives, REs including their recommended fire regimes, and the capacity of areas to regenerate.

Works to date. Works over the last 9 years have covered more than 190 ha. The main approach to restoration has been via assisted regeneration consisting mainly of large scale weed control and the fencing of areas to reduce the impact of cattle. Further works have involved planting a section of creek to assist stability and connectivity across a section of the site; and the propagation and translocation of four threatened flora species (details not disclosed for security reasons).

Where low intensity fuel reduction burns were conducted in dry sclerophyll vegetation, timely follow up weed control was applied to ensure re-shooting Lantana, Molasses Grass (Melinis minutiflora) and other weeds did not fill gaps and to support the colonisation and growth of native vegetation. In remnant and regrowth vegetation, systematic weed control using a range of techniques has been applied. E.g. large areas of Lantana were controlled using three techniques: cut, scrape and paint where it was in close proximity to native plants; over-spraying after isolating infestations; and, spot-spraying when it germinated or was re-shooting. Weed species were continually suppressed to ensure native species germinated and grew to a point where most gaps have been filled with native vegetation. As each area developed and maintenance reduced, efforts were put into continually expanding the work fronts.

A propagation and translocation project was also implemented in partnership with Seqwater. More than 1150 individuals (four species) have been propagated, planted into their particular niche and have been monitored and reported on annually. This will continue until all species are considered to be self-sustaining i.e. flowering, fruiting and reproducing.

(a)NCA8n_20080502

(b)NCA8n_20080827

(c) NCA8n_20090716

(d)NCA8n_20100625

(e)NCA8n_20110630

(f)NCA8n_20151130

Figure 1, (a-f) represents an annual sequence of recovery after control of Lantana and subsequent weed at one photopoint from 2008 to 2011, with the last photo taken in 2015. The results reflect accurate and timely weed control to support the recovery of native vegetation. (Photos: City of Gold Coast)

Results to date. As of July 2015, weeds have been significantly reduced across the 190 ha treated area to a point where maintenance is being applied, with some areas requiring little to no maintenance. In a number of areas this reduction of weed has also significantly reduced fuel levels.

Increased abundance and diversity of native vegetation has occurred across a range of ecosystem and habitat types within the reserve. Open areas once dominated by dense Lantana have taken approx. 3 years to naturally regenerate with a range of pioneer, early secondary and later stage rainforest species (Figs 1-3). Many of those areas now include continuing recovery of later stage species and contain a large diversity of seedlings, groundcovers and ferns. More diverse communities have recovered with a large range of species (depending on the ecosystem / ecotone) and support a diversity of fauna species. Works in four of the larger precincts have now joined up and weed control works are continuing to expand all regenerating areas.

More than 7000 plants installed along the open riparian stretch are establishing with native species regenerating amongst the planting. After approx. 7 years the average height of the planted canopy is approx. 5-7m tall.

Ongoing works: All current work zones are being continuously extended ensuring progress made is maintained. The open area (e.g. paddock) is being reduced over time as vegetation is encouraged to expand (i.e. by continuing to control weeds to past the drip lines of all native vegetation). Fences that currently contain cattle (i.e. to assist managing open areas for access, fire management and to ensure funds are spent in more resilient areas) are being moved to continue to reduce the size of highly degraded areas. Fire management, large scale weed control and the monitoring and evaluation of threatened species, together with fauna surveys, is continuing.

Stakeholders and funding bodies: Natural Areas Management Unit (NAMU), City of Gold Coast and Seqwater. Contact Information Paul Cockbain, Team Leader Restorations +61 7 5581 1510

 

Conserving and restoring biodiversity of the Great Barrier Reef through the Representative Areas Program (RAP)

Key words: Coral reef, no take zones,

The Great Barrier Reef is the world’s largest coral reef ecosystem (344,400 square km) and a World Heritage Area on the north-east coast of Australia. It contains a high diversity of endemic plants, animals and habitats. It is a multiple-use area with different zones in which a wide range of activities and uses are allowed, including tourism, fishing, recreation, traditional use, research, defence, shipping and ports. Components of the ecosystem have been progressively showing symptoms of decline.

TroutBarra3

Coral Trout is one of more than 1625 fish found on the Great Barrier Reef

Existing ecosystems. Coral reefs are like the building blocks of the Great Barrier Reef, and comprise about seven per cent of the ecosystem. The balance is an extraordinary variety of other marine habitats and communities ranging from shallow inshore areas to deep oceanic areas over 250 kilometres offshore and deeper than 1000 metres, along with their associated ecological processes. The abundant biodiversity in the Great Barrier Reef includes:

  • Some 3000 coral reefs built from more than 400 species of hard coral
  • Over one-third of all the world’s soft coral and sea pen species (150 species)
  • Six of the world’s seven species of marine turtle
  • The largest aggregation of nesting green turtles in the world
  • A globally significant population of dugongs
  • An estimated 35,000 square kilometres of seagrass meadows
  • A breeding area for humpback whales and other whale species
  • More than 130 species of sharks and rays
  • More than 2500 species of sponges
  • 3000 species of molluscs
  • 630 species of echinoderms
  • More than 1625 species of fish
  • Spectacular seascapes and landscapes such as Hinchinbrook Island and the Whitsundays
  • 215 species of bird
Crown-of-thorns single injection (C) GBRMPA cropped

Diver injecting Crown of Thorns Starfish

Impacts on the ecosystem. The main threats to the Great Barrier Reef ecosystem are:

  • Climate change leading to ocean acidification, sea temperature rise and sea level rise
  • Catchment run-off of nutrients, pesticides and excessive sediments
  • Coastal development and associated activities such as clearing or modifying wetlands, mangroves and other coastal habitats
  • Overfishing of some predators, incidental catch of species of conservation concern, effects on other discarded species, fishing of unprotected spawning aggregations, and illegal fishing.
4. GBRMPA staff - public consultation(2)

GBRMPA staff meeting to plan and discuss Representative Areas Program (RAP) at Townsville offices

Restoration goals and planning. A primary aim of the Great Barrier Reef Marine Park Authority (GBRMPA) is to increase biodiversity protection, with the added intent of enabling the recovery of areas where impacts had occurred. A strong foundation for this has been achieved through the Representative Areas Program, by developing a representative and comprehensive network of highly protected no-take areas, ensuring they included representative examples of all different habitat types.

The rezoning also provided an opportunity to revise all the zone types to more effectively protect the range of biodiversity.

A further aim was to maximise the benefits and minimise the negative impacts of rezoning on the existing Marine Park users.

These aims were achieved through a comprehensive program of scientific input, community involvement and innovation.

More information on the extensive consultation process is available at http://www.gbrmpa.gov.au.

6. green and yellow zone examples

An example of Green Zones (marine national park) and Yellow Zones  (conservation park)

Monitoring. An independent scientific steering committee with expertise in Great Barrier Reef ecosystems and biophysical processes was convened to define operational principles to guide the development of a comprehensive, adequate and representative network of no-take areas in the Marine Park (Fernandes et al 2005). Science (both biophysical and social science) provided the best available information as a fundamental underpinning for the Representatives Areas Program.

There are currently over 90 monitoring programs operating in the Great Barrier Reef World Heritage Area and adjacent catchment. These programs have largely been designed to address and report on specific issues, location or management.

Reef management. GBRMPA’s 25-year management plan outlines a mix of on-ground work, policies, strategies and engagement. The actions include:

  • increasing compliance focus to ensure zoning rules are followed
  • controlling Crown-of-thorns Starfish (Acanthaster planci) outbreaks
  • ensuring cumulative impacts are considered when assessing development proposals
  • setting clear targets for action and measuring our success
  • monitoring the health of the ecosystem on a Reef-wide scale
  • implementing a Reef Recovery program to restore sites of high environmental value in regional areas — regional action recognises the variability of the Reef over such a large area and the variability of the issues and interests of communities and industries in each area.

Benefits of zoning to date. The benefits reef ecosystem health are already occurring including:

  • More and bigger fish: Larger fish are important to population recovery as they contribute more larvae than smaller fish. James Cook University research shows the network of no-take marine reserves benefits species of coral reef fish targeted by fishers (especially Coral Trout), with not only more fish, but bigger fish in reserves — some zones have around twice as much fish biomass compared to zones open to fishing.
  • Improved fish recruitment: Research in the Keppel Islands suggests increased reproduction by the more abundant, bigger fish in reserves. This not only benefits populations within those reserves, it also produces a ‘spill over’ when larvae are carried by currents to other reefs, including areas open to fishing.
  • Improved resilience: The spillover effects also mean the connectivity between reserve reefs is intact. Spatial analysis shows most reserve reefs are within the dispersal range of other reserve reefs, so they are able to function as a network.
  • Sharks, dugongs and turtles: These species are harder to protect because they are slow growing and slow breeding. They are also highly mobile, moving in and out of protected zones. Despite this, available evidence shows zoning is benefiting these species.
  • Reduced crown-of-thorns starfish outbreaks: Outbreaks of crown-of-thorns starfish appear to be less frequent on reserve reefs than fished reefs. This is particularly important as Crown-of-thorns Starfish have been the greatest cause of coral mortality on the Reef in recent decades.
  • Zoning benefits for seabed habitats: Zoning has improved protection of seabed habitats, with at least 20 per cent of all non-reefal habitat types protected from trawling.

How the project has influenced other projects. In November 2004, the Queensland Government mirrored the new zoning in most of the adjoining waters under its control. As a result, there is complementary zoning in the Queensland and Australian Government managed waters within the Great Barrier Reef World Heritage Area.

The approach taken in the Representative Area Program is recognised as one of the most comprehensive and innovative global advances in the systematic protection and recovery of marine biodiversity and marine conservation in recent decades and has gained widespread national international, and local acknowledgement of the process and outcome as best practice, influencing many other marine conservation efforts.

Stakeholders. As a statutory authority within the Australian Government, the Great Barrier Reef Marine Park Authority is responsible for managing the Marine Park. However, as a World Heritage Area, management of the ecosystem is complex jurisdictionally.

Both the Australian and Queensland governments are involved in managing the waters and islands within the outer boundaries through a range of agencies. GBRMPA works collaboratively with the Queensland Parks and Wildlife Service through the joint Field Management Program to undertake day-to-day management of the Great Barrier Reef, including its 1050 islands, many of which are national parks. The program’s activities include surveying reefs and islands, dealing with environmental risks such as ghost nets and invasive pests, responding to incidents, maintaining visitor facilities, and upholding compliance with Marine Park legislation and the Zoning Plan.

A wide range of stakeholders have an interest in the Great Barrier Reef, including the community, Traditional Owners, a range of industries and government agencies, and researchers. The public, including the one million people who live in the adjacent catchment (around 20 per cent of Queensland’s population), benefit from economic activities. In recent years, the number of tourists carried by commercial operators to the Great Barrier Reef averaged around 1.6 to 2 million visitor days each year (GBRMPA data) with an estimate of an additional 4.9 million private visitors per annum.

Resourcing. The resourcing required for rezoning of the Great Barrier Reef over the five-year period of the RAP (1999–2003) was significant. It became a major activity for the agency for several years, requiring the re-allocation of resources particularly during the most intense periods of public participation. However, the costs of achieving greater protection for the Reef are readily justified when compared to the economic benefits that a healthy Great Barrier Reef generates every year (about AUD$5.6 billion per annum).

Further information: www.gbrmpa.gov.au

Contact: info@gbrmpa.gov.au

All images courtesy Great Barrier Reef Marine Park Authority

 

Dewfish Demonstration Reach: Restoring native fish populations in the Condamine Catchment

Key words: native fish, riparian habitat, fish passage, aquatic habitat, Native Fish Strategy

The Dewfish Demonstration Reach is a 110 kilometre stretch of waterway in the Condamine catchment in southern Queensland consisting of sections of the Condamine River, Myall Creek and Oakey Creek near Dalby. The Reach was established in 2007 with the purpose of promoting the importance of a healthy river system for the native fish population and the greater river catchment and demonstrating how the restoration of riverine habitat and connectivity benefits native biodiversity and local communities. Landholders, community groups, local governments and residents have worked together to learn and apply new practices to improve and protect this part of the river system.

The purpose of the project is to demonstrate how the restoration of riverine habitat and connectivity benefits native biodiversity and promote the importance of a healthy river system for native fish and the greater river catchment. The goal is to restore native fish populations to 60% of pre-European settlement levels and improve aquatic health within the Reach.

Image 3 - Adding structural timber to Oakey Creek

Fig 1. Adding structural timber to Oakey Creek

Image 4 - Installing a fish hotel into Oakey Creek

Fig 2. Installing a fish hotel into Oakey Creek

Works undertaken. A range of activities to improve river health and native fish communities have been undertaken primarily at seven key intervention sites within the Dewfish Demonstration Reach. These include:

  • Re-introduction of large structural habitat at five sites, involving the installation of 168 habitat structures consisting of trees, fish hotels, breeding pipes and Lunkers (simulated undercut banks).
  • Improvement of fish passage (by more than 140 km) with the upgrade of the fishway on Loudoun Weir and the installation of two rock-ramp fishways on crossings in Oakey Creek.
  • Ongoing management of pest fish, involving carp angling competitions, carp specific traps, electrofishing and fyke nets.
  • Rehabilitation of the riparian vegetation over 77 km of the Reach using stock exclusion fencing, off-stream watering points, weed control and replanting of native vegetation. In Dalby, a 1 metre wide unmown buffer was established on the banks Myall Creek.

Twice-yearly monitoring using a MBARCI model (multiple-before-after-reference-control-intervention) was undertaken to detect the local and reach-wide impacts of the intervention activities. Surveys involved sampling of the fish assemblage at fixed sites and assessment of the instream and riparian habitat.

Image 5 - Wainui crossing before the fishway

Fig. 3 Wainui crossing before the fishway

Image 6 - Wainui crossing after installation of the rock-ramp fishway

Fig 4. Wainui crossing after the installation of the rock ramp fishway

Results. The surveys indicated many of the intervention activities had a positive impact. The fish assemblage and riparian habitat improved at all intervention sites in the Dewfish Demonstration Reach since rehabilitation activities commenced.

The fish assemblages at introduced habitat structures were very similar to those found on natural woody debris, suggesting the introduced habitat is functioning well as a surrogate.

There were significant increases in the abundance of larger fish species, including Golden Perch (Macquaria ambigua) (up to 5-fold), Murray Cod (Maccullochella peelii peelii) (from absent to captured every survey), Spangled Perch (Leiopotherapon unicolor) (up to 9-fold) and Bony Bream Nematolosa erebi (up to 11-fold) in intervention sites following re-snagging. Murray Cod and Golden Perch are now consistently being caught from introduced woody structures and local anglers are reporting that the fishing has improved greatly. Despite this increase there is still limited evidence of recruitment in the area. There have also been small increases in Eel-tailed Catfish (Tandanus tandanus) and Hyrtls Tandan (Neosilurus hyrtli) abundances and a limited amount of recruitment has been observed for these species.

The abundance of smaller native fish has improved significantly in response to the intervention activities undertaken, especially where bankside and instream vegetation was improved. In Oakey Creek Carp Gudgeon (Hypseleotris spp.) abundance increased 1200-fold, Murray-Darling Rainbowfish (Melanotaenia fluviatilis) increased 60-fold and the introduced species Mosquitofish (Gambusia holbrooki) increased 9-fold following intervention activities.

Establishment of a bankside unmown buffer on Myall Creek has enabled natural regeneration of vegetation and resulted in significant increases in aquatic vegetation and native trees. This has led to substantial increases in the smaller bodied native fish assemblage, including a 3-fold increase in Bony Bream, 237-fold increase in Carp Gudgeon, 60-fold increase in Murray-Darling Rainbowfish and a 35-fold in the introduced Mosquitofish.

The abundance of pest fish remains low, except for Mosquitofish which have increased in abundance with the improvements in the aquatic vegetation. There is little evidence of Carp recruitment (Cyprinus carpio), suggesting active management may continue to suppress the population and minimise this species impacts in the Reach.

Image 1 - Myall Creek prior to restoration

Fig 5.  Myall Creek prior to restoration

Image 2 - Myall Creek after restoration

Fig 6. Myall Creek after restoration

Lessons learned and future directions. Improvements of the waterway health and ecosystems can lead to positive responses from native fish populations.

  • Targeting rehabilitation activities to specific classes of fish has been very effective.
  • Introducing habitat structures has been effective for larger fish, and
  • Re-establishing healthy bankside and aquatic vegetation has been vital in boosting the abundance of juveniles and smaller species.

Improvements in the extent of aquatic vegetation have unfortunately also resulted in increased numbers of the introduced pest, Mosquitofish. However, the overall benefits to native fish far outweigh impacts from the increase in the Mosquitofish population.

Stakeholders and Funding bodies. A large number of stakeholders have been involved in this project. The project’s success is largely due to the high number of engaged, involved and committed stakeholders. Without this broad network, costs to individual organizations would be higher and strong community support less likely.

Major funding has been provided by the Murray Darling Basin Authority, Condamine Alliance, Queensland Department of Agriculture and Fisheries and Arrow Energy.

 

Contact. Dr Andrew Norris, Senior Fisheries Biologist, Queensland Department of Agriculture and Fisheries, Bribie Island Research Centre, PO Box 2066, Woorim, QLD 4507; Tel (+61) 7 3400 2019; and Email: andrew.norris@daf.qld.gov.au

READ MORE:

Finbox demonstration reach toolbox: http://www.finterest.com.au/finbox-a-demonstration-reach-toolbox/

Native Fish Strategy – first 10 years. http://onlinelibrary.wiley.com/enhanced/doi/10.1111/emr.12090

Demonstration reaches – Looking back, moving forward http://onlinelibrary.wiley.com/enhanced/doi/10.1111/emr.12092

Monitoring in demonstration reaches https://site.emrprojectsummaries.org/2014/01/25/establishing-a-framework-for-developing-and-implementing-ecological-monitoring-and-evaluation-of-aquatic-rehabilitation-in-demonstration-reaches/

 

Macquarie Island Pest Eradication Program – Impacts on vegetation and seabirds

Key Words: Subantarctic, eradication, seabirds, vegetation, restoration

Introduction. Introduced rabbits, rats and mice have caused widespread and severe ecological impacts on the native flora, fauna, geomorphology and natural landscape values of Subantarctic Macquarie Island. Major impacts include the destruction of almost half of the island’s tall tussock grassland and the depletion of keystone palatable species, a decline in the abundance and or breeding success of a range of seabird species due to habitat degradation, increased exposure to the elements and predation, as well as increased slope erosion. The Macquarie Island Pest Eradication Project is the largest eradication program for rabbits, ship rats and mice in the world.

The overall goal of the pest eradication project was to eradicate rabbits, rats and mice from Macquarie Island to enable restoration of the island’s natural ecological processes including the recovery of plant and animal communities impacted by these feral species.

Works undertaken. The Tasmania Parks and Wildlife Service developed a plan for the eradication of rabbits and rodents on Macquarie Island that was approved by the federal Minister of Environment in 2006. Following lengthy negotiations and a donation of $100,000 by the World Wildlife Fund (WWF) and Peregrine Adventures, funding of $24.6 million for the project was secured in June 2007 through a joint state and federal government agreement.

The three major components of the Macquarie Island Pest Eradication Plan after the initial planning and organisation phase were:

  • Toxic baiting of rabbits, rats and mice using aerial baiting from helicopters across the island conducted over two winters to minimise the risk of mortality for non-target seabirds. Mitigation measures were taken to reduce seabird mortality in six species after the 2010 baiting, including the introduction of calicivirus (Rabbit Haemorrhagic Disease Virus) before further baiting in May 2011 – (See Evaluation Report 2014)
  • On-ground follow-up with hunters and dogs, which was originally expected to take about three years but took seven months (2012) following the outstanding success of the calicivirus in substantially reducing rabbit numbers.
  • Five months after the last known rabbit was killed, the monitoring phase of the project commenced in April 2012 to search for any evidence of live rabbit or rodent presence on the island and continued for two years, with some 92,000 km travelled over 3 years (2011-2014).

Following two years of monitoring without any evidence of the target species, the project to eradicate rabbits and rodents from Macquarie Island was declared successful in April 2014.  A variety of established research/monitoring projects on threatened native plant species, invasive plant species, plant communities and ten species of seabirds on Macquarie Island have been used to provide biologic data on changes in abundance, distribution and condition (see Evaluation Report 2014).

Large areas of the highly palatable macquarie megadaisy are recovering from rabbit grazing Photo Kate Keifer

Figure 1. Large areas of the highly palatable macquarie megadaisy are recovering from rabbit grazing. (Photo Kate Keifer)

Results to date.

Vegetation. Vegetation recovery was well underway by 2013, when vegetation biomass on the island had increased by a factor of five to ten compared with 2011 levels.

The initial stage of vegetation recovery following rabbit eradication was a rapid increase in the biomass of the pre-existing communities. The pre-eradication vegetation was a highly modified disturbance disclimax with the majority of the lower slopes of the island dominated by Short Subantarctic Bent Grass (Agrostis magellanica), where regular soil disturbance by introduced species encouraged the establishment of herbaceous primary colonisers including willowherbs (Epilobium spp.), Subantarctic Bittercress (Cardamine corymbosa), Waterblinks (Montia fontana) and the introduced Annual Meadow Grass (Poa annua). Subantarctic Buzzy (Acaena magellanica) covered large areas. Tall Tussockgrass (Poa foliosa) was reduced to small pockets or individual plants on steep slopes, whilst the Macquarie Cabbage (Stilbocarpa polaris) was confined to very steep coastal slopes and Prickly Shieldfern (Polystichum vestitum) survived in exclosures.

More recent monitoring shows bare ground declining, with further increases in vegetation cover and successional changes. Taller/longer lived species have greatly reduced the cover of primary colonisers (mostly short lived, small herbs). The three introduced plant species on the island, all of which are primary colonisers, have fluctuated in abundance post-eradication.

Annual meadow grass has decreased markedly in abundance away from areas of seal and seabird disturbance, while Mouse-ear Chick Weed (Cerastium fontanum) and Garden Chickweed (Stellaria media) initially increased in abundance between 2011 and 2013 but have since declined.

The previously ubiquitous Subantarctic Buzzy has declined dramatically with competition from other species, while the previously less common Little Burr (Acaena minor) is now more prevalent.

The megaherbs Macquarie Cabbage and Macquarie Megadaisy (Pleurophyllum hookeri) and Tall Tussockgrass are beginning to spread and establish across the island (Figure 1). It is predicted that a combination of these species will become dominant in much of the coastal and slope vegetation over time, with Tall Tussockgrass already increasing in cover in many areas. The prickly shieldfern is expanding from a few remnant populations by recruitment or regeneration in former exclosures, as well as establishing in new locations.

Image 4 DSC_1110 cropped

Seabirds. A combined total of 2418 individual native birds were recorded as killed via primary and secondary ingestion of broadifacoum poison during the winter baiting of 2010 and 2011. These numbers are minima, since many were predated before detected and others died at sea. Kelp Gull (Larus dominicanus) sustained the largest mortality (n=989), followed by Giant Petrels (Macronectes spp; n=761), Subantarctic Skua (Catharacta skua) (n=512) and Black Duck (Anas superciliosa) (n=156). Existing monitoring programs enable the population consequences of this mortality to be evaluated for both species of giant petrel and for skua, however baseline data for gulls and ducks on Macquarie Island are lacking. The mortality event was associated with a 25-30% reduction in the breeding populations of both giant petrel species, however ongoing monitoring reassuringly shows both populations to have stabilised and appear to have resumed the increasing trajectory that they were undergoing before the mortality event. Skua were heavily impacted, with breeding numbers reduced by approximately 50% in monitored sites. There is minimal sign of recovery for this species in recent years. The response of this species to the sudden removal of a primary prey item (rabbits) and the consequent flow-on ecosystem impacts is the focus of current investigation.

With the success of Macquarie Island Pest Eradication Program, we are seeing rapid recovery in the breeding habitats of both burrow and surface nesting species. Grey Petrel (Procellaria cinerea), which re-established on Macquarie Island after the successful eradication of cats in 2000, have continued to increase and Blue Petrel (Halobaena cerulea) which were previously restricted to rat-free offshore rock-stacks, have returned to mainland Macquarie Island and continue to expand in both distribution and number. Dedicated survey effort in coming seasons will provide quantitative estimates of the response of the burrow nesting seabird assemblage to Macquarie Island Pest Eradication Program.

Lessons. Perhaps one of the most important lessons learned is the value of biological monitoring data, before during and after such an eradication program, which provides the basis for effective adaptive management as well as evaluation of success or otherwise.

The other salutatory lesson is the complex biological inter-relationships that exist and a need to more explicitly factor in the consequences of the ‘unknowns’ in associated risk assessments.

Acknowledgement. Thanks to Micah Visoiu for most recent vegetation data.

Contact. Jennie Whinam, Discipline of Geography & Spatial Sciences, University of Tasmania Jennie.Whinam@utas.edu.au; 0447 336160. Rachael Alderman, Wildlife Management Section, Department of Primary Industries, Parks, Wildlife and Environment, Rachael.Alderman@dpipwe.tas.gov.au

Forested wetland regeneration project, The Gap Road Woodburn, NSW

Julie-Anne Coward

Contract bush regeneration works involving fire and weed management commenced in 2011 in 2.5 ha of endangered ecological coastal floodplain communities at the Cowards’ property on the Gap Road, Woodburn in northern NSW (Fig 1). An area of 7.19 ha of the 10ha property had been recently covenanted for conservation by new owners and 2 small grants were gained to convert the previous grazing property back to forested wetland. Remnant vegetation existed on the property and regrowth was already occurring, although extensive areas were dominated by exotic pasture grasses, particularly >1m high swathes of Setaria (Setaria sphacelata).

Works commenced with spraying of the weed with herbicide and regular follow up spot spraying of weed regrowth. However, because the dead Setaria thatch was taking a long time to break down (and high weed regeneration was likely) a burn was carried out to hasten the recovery responses to fit within the 3 year funding cycle. The works were monitored before and at 6 monthly intervals using 6 (9m2) quadrats in each of hot burn, cool burn and unburnt areas (Fig 1).

Fig 1. Works zones at the Gap Road wetland

Figure 1. Works zones at the Gap Road wetland – mapped in April 2013 where the quadrats were laid out. and data recorded prior to and at 6-monthly intervals after treatment.

Works undertaken. A 2-3m wide firebreak was cut around the burn area and a burn was conducted in dry conditions on Oct 19th 2012 (Fig 2) by the landholders, assisted by Minyumai Green Team and with the local fire brigade on standby. The fire burnt approximately 0.5 ha of the Setaria-dominated area, most of which had been previously sprayed (Fig 2).

Results. A more complete (and presumably hotter) burn was achieved in the sprayed areas (Figs 3 and 4). Setaria and Ragweed germinated prolifically, with a few natives and the site was virtually blanket sprayed with glylphosate. By the second follow up natives had started to regenerate so spot-spraying was used thereafter, taking care to protect the natives. Within 5 months quadrats in the sites that burned hotter achieved over 50% native cover, while the unburnt area achieved only half (25%) that cover. Both areas ultimately achieved similar recovery of natives, but markedly higher spot spraying inputs over longer time frames were needed in the unburnt areas compared to the hotter burn areas.

Over the three year contract, unexpectedly high and prolific regeneration occurred of 35 species of native forbs, sedges and grasses (germinating from buried seed banks) and 7 species trees and shrubs (largely from seed rain) (Fig 5). However, weed germination was also prolific, particularly in unburnt areas, and required at least monthly levels of continual suppression.

fig 2. The burn itself (Oct 17, 2015)

Figure 2. The burn itself (Oct 17, 2015)

Figure 3. Sprayed Setaria prior to the burn.

Figure 3. Sprayed Setaria prior to the burn.

Figure 3. Prolific native groundcover and tree regeneration 2 years after the burn and as a result of consistent spot spraying.

Figure 3. Prolific native groundcover and tree regeneration 2 years after the burn and as a result of consistent spot spraying.

Lessons learned. The proximity of remnant vegetation (within 100m) and intact soil profile was important to the native recovery. At least monthly weed control is essential and can achieve results on its own. However, the project involved substantial volunteer time as well as contract labour – and when labour was insufficient new weed populations formed in the disturbed areas that then required more intensive treatment to overcome. Comparing the demand for weed control in burnt and unburnt areas showed that the feasibility of weed control is very much reduced without the use of fire to flush out weed at the outset.

Acknowledgements: The project is dedicated to the memory of Murray Coward who helped initiate the project. Minyumai Green Team (Daniel Gomes, Justin Gomes, Chris Graves and Andrew Johnston) have kept the project on track over the years, with assistance from Tein McDonald. Thanks is due to the EnviTE team, particularly Virginia Seymour, for their work at the site in the first 18 months. The project is covenanted with the Nature Conservation Trust of NSW (NCT) and received some initial funding from NCT. It subsequently gained a $15K Private Land Conservation Grant (funded by Foundation for National Parks and Wildlife and managed through the NCT) and has now gained a second, similar grant to continue and expand the works.

Contact: Julie-Anne Coward, Gap Road Woodburn. Email: mjcets1@bigpond.com

Re-introducing burning to Themeda Headland Grassland EEC, Narooma, NSW.

Tom Dexter, Jackie Miles, Deb Lenson

Key Words: Fire management, threatened ecosystem, Kangaroo Grass, weed management, Themeda

Introduction: In 2012, Eurobodalla Shire Council commenced a project to preserve local stands of declining Themeda Headland Grassland on Council managed land on three small headlands north of Narooma, NSW. Themeda Grassland on Seacliffs and Coastal Headlands is an Endangered Ecological Community (EEC) that grows on higher fertility soils and is listed under the NSW Threatened Species Conservation Act 1995.

Burning was trialed at two of the three sites to test whether fire could improve the environmental integrity of these sites. This trial has potential implications for the much larger stands of this EEC in various conservation reserves scattered along the NSW coastline as there are many which are not currently actively managed.

The three sites were slashed annually until 2010. While the dominant grass, Kangaroo Grass (Themeda triandra) was still present on all sites, the sites exhibited some decline in Kangaroo Grass cover and vigour, with weed present on all three sites (Fig 1). Slashing had kept the headlands free from shrubs however windrows of slashed grass suppressed Kangaroo Grass and appeared to encourage weed invasion. One of the sites, which was left unburnt for logistic reasons, was initially in worse condition than the other two due to the presence of an old vehicle track and more extensive weed cover particularly from Kikuyu (Pennisetum clandestinum).

The intensity of a burn is likely to vary on a seasonal basis and is dependent on the build-up of dead thatch and the prevailing conditions on the day. There is basis to believe that the traditional aboriginal burning would have taken place in Autumn and would have been a relatively cool burn. The optimum time to burn when considering the constraints of weed invasion is early spring.

Fig 1. Mowing damage at Duesburys Beach headland

Fig 1. Lines of bare ground indicate the location of windrows of dead grass from a history of mowing at Duesburys Beach headland

Works undertaken: Two successive burns were conducted in early spring on 2 of the 3 headlands, in August 2013 and August 2014 (Fig 2). The burn in 2013 was hotter than the burn in 2014 due to a higher build up of Kangaroo Grass thatch prior to the burn.

Follow-up weed control was implemented after the burns as the fire created gaps between the grasses and allowed targeted chemical control minimizing off target damage to Kangaroo Grass and other native species.

Data were collected on three occasions using ten 1 x 1 m quadrats, established along a 50 m transect spaced at 5 m intervals (one of these for each headland). The initial baseline data were recorded in Nov 2012, prior to the spring burns, and in each successive summer (2013/14 and 2014/15) following the burns.

Fig 2. Dalmeny Headlands burn 2015

Fig 2. Typical burn on the headlands

Results to date: The burnt areas (Figs 3 and 4) showed a significant decrease of annual exotic grasses; especially of Quaking Grass (Briza maxima) and Rats Tail Fescue (Vulpia spp.). The burnt areas also showed vigorous Kangaroo Grass growth and moderate seed production of that species. Two native species -Dwarf Milkwort (Polygala japonica) and Matgrass (Hemarthria uncinata Fig 5) not recorded prior to treatment were found after treatment in the quadrats. The most abundant native forbs, Swamp Weed (Selliera radicans) and Indian Pennywort (Centella asiatica) have persisted on the quadrats but not increased (Fig 6). Some exotic forbs – e.g. Yellow Catsear (Hypochaeris radicata) and Scarlet Pimpernel (Anagallis arvensis) have taken advantage of the removal of grass biomass and have also increased, further future analysis will determine whether this increase will impact on the native forbs. Perhaps the most important finding is the Coast Banksia (Banksia integrifolia) seedlings were killed by the fire allowing the sites to remain grassland.

The unburnt headland continues to deteriorate, with ongoing evidence of continued senescense of Kangaroo Grass, no Kangaroo Grass seed production, and exotic plants continuing to replace Kangaroo Grass in parts of the site. Kikuyu is the main exotic species on this site and is responsible for continued suppression of the native components of the grassland. There is also evidence of shrub invasion beginning to occur. It is anticipated that this site will be burnt in spring 2015.

Fig 2. Duesburys Point just after fire, Sept 2013

Fig 3. Duesburys Point just after burning, Sept 2013

Fig 3. Same site 11 months later, Aug 2014

Fig 4. Same site 11 months later, Aug 2014

What we learned: Kangaroo Grass remains vigorous throughout the burnt sites. The results to date show annual burning to be generally beneficial to the herbaceous components and associated grasses of this EEC. There was a higher success of exotic annual grass control in the first year which is most likely attributed to a hotter fire and perhaps timing. The first year also had accumulated multiple years of thatch which may have assisted fire intensity. Supplementary chemical control was effective, particularly when the fire created gaps between the grasses, allowing for better targeted chemical control.

Future directions: So far the results have shown that an August fire followed by the targeted chemical control of exotic grasses has considerable positive influence on the overall environmental integrity of this ecosystem. The annual burning allows the EEC to remain a grassland by killing off Coast Banksia and Coastal Acacia seedlings. It invigorates Kangaroo Grass growth and reduces the biomass of exotic perennial grasses at least in the short term. This again creates an opportunity in the aforementioned targeted chemical control. The herbaceous composition of the headland also remains intact and future analysis will determine whether burning has either a neutral or positive effect on growth. Kikuyu, Paspalum (Paspalum dilitatum) and annual exotic weeds continue to be the main problem. Increased post-burn selective herbicide application or hand weeding and planting of Kangaroo Grass tubestock may help to restore the grassland more rapidly than use of fire with limited weed control alone. Ongoing funding is being sought to continue the works over coming years and achieve further positive future outcomes.

Acknowledgements: The works were undertaken by Eurobodalla Shire Council with funding from the NSW Environmental Trust. Fire assistance from the NSW Rural Fire Service and cultural advice provided by Elders of the Walbunja people.

Contact: Tom Dexter; Environment and Sustainability Project Officer; Eurobodalla Shire Council (PO Box 99 Vulcan St Moruya 2537, Australia. Email: tom.dexter@eurocoast.nsw.gov.au).

Fig 5. Hemarthria uncinata was more evident after fire. (Duesburys Beach headland.)

Fig 5. Hemarthria uncinata was only evident after fire. (Duesburys Beach headland.)

Fig 5. More forbs among the grass after fire at Duesburys Point – e.g. Sellaria radicans

Fig 6. The forb Sellaria radicans persisted  among the grass after fire.

 

Wompoo Gorge Lowland Subtropical Rainforest Restoration Project, Coopers Creek, New South Wales

Key words : Connectivity, Lowland Subtropical Rainforest, Threatened Species

Introduction. Much of the state- and nationally listed Lowland Subtropical Rainforest at Wompoo Gorge, located on Coopers Creek near Rosebank, was partially cleared for pasture early last century. Parts of the cleared forest regenerated naturally with the removal of agricultural activities from the site during the 1940s-50s, but Lantana (Lantana camara) established in large gaps (Fig 1) and prevented any further rainforest regeneration. This weed domination reduced the function of an important habitat linkage between Nightcap and Goonengerry National Parks. Twenty-seven threatened species (10 threatened flora species and 17 vulnerable animal species) have been recorded on the site, which has been identified as a key climate change and wildlife corridor.

In 2009 a program of ecological restoration commenced, guided by the recommendations of the Wompoo Gorge (South) Ecological Restoration Plan (updated in 2013). The aim of the restoration works was to control Lantana and other weeds, restoring the integrity of the rainforest and helping to supporting the region’s exceptional biodiversity.

A monitoring program was established on site prior to commencement of works. This included eight transects and photopoints. Structural and floristic information has been collated and photos taken prior to the commencement of works, and subsequently over the course of restoration work. Data have been entered into then MERV (Monitoring and Evaluation of the Restoration of Vegetation) database and used to produce reports.

Figure 1. (map) Lantana cover prior to restoration. By 2014 very little lantana remained with regenerating rainforest taking the place of weeds.

Figure 1. (map) Lantana cover prior to restoration. By 2014 very little lantana remained with regenerating rainforest taking the place of weeds.

Works undertaken: Lantana has been controlled by a range of methods (Figs 2-4) including: mechanically with a tractor; spraying with a splatter gun; over-spraying dense, less accessible areas; hand weeding with brush hooks and loppers; and, cut/scrape and paint of scattered Lantana among remnant vegetation. Other less dominant weeds have been controlled to facilitate replacement of Lantana with regenerating rainforest. Follow-up work includes flattening down dead Lantana, spot spraying and hand weeding. No planting has been undertaken but fruit from native plants on site has been collected and spread throughout regeneration areas.

Figure 2. September 2009: Prior to lantana control

Figure 2. September 2009: Prior to lantana control

Figure 3.  17 September 2009: Tractor crushes down lantana

Figure 3. 17 September 2009: Tractor crushes down lantana

Figure 4. 21 October 2009: Second tractor run slashing lantana

Figure 4. 21 October 2009: Second tractor run slashing lantana

Results: Lantana has been virtually eliminated from extensive areas and vigorous regeneration of a high diversity of species has occurred (Figs 5-6). Common regenerating species include: Poison Peach (Trema aspera), Red Cedar (Toona ciliata), Giant Stinging Tree (Dendrocnide excelsa), Tamarind (Diploglottis australis), Sandpaper Figs (Ficus coronata) White Cedar (Melia azedarach) Bangalow Palm (Archontophoenix cunninghamiana), Brown Kurrajong (Commersonia bartramia), Pencil Cedar (Polyscias murrayi), Celerywood (P. elegans), Quandong (Elaeocarpus grandis) , Black Bean (Castanosperma australis), Sally Wattle (Acacia melanoxylon). Groundcovers included Soft Bracken Fern (Calochlaena dubia), Cunjevoi (Alocasia brisbanensis) Juncus (Juncus sp.), Cyperus (Cyperus spp.) and Basket Grass (Oplismenus aemulus). A range of later stage rainforest species have also germinated including Hairy Walnut (Endiandra pubens), Maiden’s Blush (Sloanea australis) and White Bolly Gum (Neolitsea dealbata).

Figure 5. ‘’Oct 2010: Resilient native regeneration in tractor cleared area

Figure 5. Oct 2010: Resilient native regeneration in tractor cleared area

Figure 6. May 2014: Natives have replaced lantana throughout cleared area

Figure 6. May 2014: Natives have replaced Lantana throughout cleared area

What we have learned. Wompoo Gorge has proven to be a highly resilient site, located as it is between two major sources of propagules. The site’s unique location, resilience and beauty has made it an ideal site to educate and inspire the community to restore rainforest Field days held on site have assisted in raising regional awareness of the value of the Lowland Rainforest EEC, the habitat it provides and of the degrading impacts of weeds. Various weed control techniques have also been discussed and demonstrated. Involving Green Army participants alongside professional regenerators has helped Green Army participants gaining valuable knowledge, skills and training in ecological restoration.

In 2014 NSW National Parks and Wildlife Service acquired the property realising the goal of former property owner Dailan Pugh to protect the property in perpetuity for the benefit of conserving native species and for future generations.

Acknowledgements: The project has received funding from the NSW Environmental Trust’s Restoration and Rehabilitation program. Additional funding has been invested through the former Northern Rivers Catchment Management Authority, the Great Eastern Ranges Initiative and a Raymond Borland Landcare grant. In 2015 Green Army teams have commenced working on site, alongside professional bush regenerators, undertaking additional and complimentary restoration works.

Contact: Paul O’Connor, Technical Manager, EnviTE Environment, 56 Carrington Street (P.O.Box 1124) Lismore  2480 Australia.

Tel: +61 2 6627 2841 Mob: + 61 427 014 692. Email: paulo@envite.org.au

 

Twelve years of healing: Rehabilitating a willow-infested silt flat – Stormwater Management.

Alan Lane

Key words: urban stream, erosion, siltation, soft engineering, head wall

Introduction: Popes Glen Creek is a small permanent stream rising close to the centre of the township of Blackheath, NSW, Australia. Its upper catchment (10 ha) comprises low-permeability urban development, roadways, shops and parklands.

The funneling of runoff from the low-permeability catchment into the headwaters of Popes Glen Creek resulted in intense and destructive runoff after rain, carrying down large and small debris, depositing sheets of silt, uprooting or burying vegetation, causing erosion of the creek banks and threatening to undermine the head wall of the silt flat downstream. This resulted in the formation of a 1 ha silt flat at the headwaters of the creek, covered with dense infestations of mature Crack Willow (Salix fragilis), Purple Ossier (S. purpurea) and mid-storey and ground-layer weeds. This has been revegetated as a permanent wetland as described in a previous summary (https://site.emrprojectsummaries.org/2015/02/22/)

This summary describes the runoff management aspects of the project, where the aims were:

  1. to reduce the impact of runoff
  2. to reduce the incursion of silt
  3. to remediate the main channel
  4. to stabilise the head wall.
Fig 1: Notched weir diverting water towards sedimentation pond.

Figure 1: Notched weir diverting water towards sedimentation pond.

Figure 2: Sedimentation pond

Figure 2: Sedimentation pond

Works carried out:

1. Diversion of part of the flow and capturing sediment. A diversion channel was constructed with flow regulated by a notched weir in the main stream. This diverts approximately half the volume of the flow into a sedimentation pond were silt is captured, reducing the quantity deposited downstream (Figures 1 and 2).

2. Construction of low-impact detention cells. “Soft engineering” detention cells constructed across the silt flat from coir logs and woody debris found on site retain and slow the release of flow, dispersing it across the silt flat and raising the water table, suppressing weeds and supporting the vegetation of the created wetland (Figures 3 and 4).

3. Elimination of the highly incised main channel. Natural debris falling into the main channel creates a series of small pondages. These retain and slow the flow and allow overflow to disperse across the silt flat. (Figure 5).

4. Protection of the creek banks. Dense plantings of deep-rooted swamp vegetation e.g. Red-fruited Saw Sedge (Gahnia sieberiana) and Black Wattle (Callicoma serratifolia) (Figure 6), and loosely woven structures constructed from woody debris (Figure 7) protect creek banks and silt flat from erosion and scouring.

5. Stabilisation of the headwall. Contractors employed with funds from the Environmental Trust have constructed a major structure with railway sleepers and rock armouring to stabilise the head wall (Figures 8 and 9).

Figure 3: Volunteers building a detention cell from woody debris found on site.

Figure 3: Volunteers building a detention cell from woody debris found on site.

Figure 4: Raised water table enabled wetland sedges (Carex gaudichaudiana and Eleocharis sphacolata) to displace Creeping Buttercup (Ranunculus repens).

Figure 4: Raised water table enabled wetland sedges (Carex gaudichaudiana and Eleocharis sphacolata) to displace Creeping Buttercup (Ranunculus repens).

 

Lessons learned and future directions:  This project is on track to replace the forest of willows with wetland vegetation, transform a highly incised creek and weed-infested silt flat into a healthy Upper Blue Mountains Swamp – an endangered ecological community scheduled under the Commonwealth’s Environment Protection and Biodiversity Conservation Act 1999.

The volunteer group will continue working with Council and contractors to complete the planting program and to monitor the evolution of the site, including its vegetation, water quality and colonisation by macroinvertebrates, birds and frogs.

Stakeholders and funding bodies: This work is supported by a grant from the Government of New South Wales through its Environmental Trust and by the Blue Mountains City Council,  which also oversaw the engineering works. All photographs: Alan Lane and Paul Vale.

Figure 5: A natural pondage formed when debris was allowed to remain in the stream.

Figure 5: A natural pondage formed when debris was allowed to remain in the stream.

Figure 6: Dense plantings of Black Wattle (Calicoma serratifolia) and Gahnia (Gahnia sieberiana) protect creek banks from erosion.

Figure 6: Dense plantings of Black Wattle (Callicoma serratifolia) and Gahnia (Gahnia sieberiana) protect creek banks from erosion.

Figure 7: Volunteers using woody debris to protect the silt flat from scouring.

Figure 7: Volunteers using woody debris to protect the silt flat from scouring.

Figure 8: Part of the original head wall approximately 3 m high and 20 m wide.

Figure 8: Part of the original head wall approximately 3 m high and 20 m wide.

Figure 9:  Part of structure constructed to stabilise the head wall.

Figure 9: Part of structure constructed to stabilise the head wall.

Contact information: Dr Alan Lane, Coordinator Popes Glen Bushcare Group, PO Box 388, Blackheath NSW 2785, Australia. Tel: +61 2 4787 7097; Paul Vale, Deputy Coordinator Popes Glen Bushcare Group, 81 Prince Edward St, Blackheath NSW 2785, Australia. Tel: +61 2 4787 8080; and Ray Richardson, Chairman of Steering Committee, Environmental Trust Grant 2011/CBR/0098. Tel: +61 2 4759 2534.