Category Archives: Cultural & socio-economic issues & solutions

Addressing ghost nets in Australia and beyond – update of EMR feature

Britta Denise Hardesty, Riki Gunn and Chris Wilcox

[Update of EMR feature  – Riki Gunn, Britta Denise Hardesty and James Butler (2010) Tackling ghost nets: local solutions to a global issue in Northern Australia, Ecological Management & Restoration, 11:2, 88-98. https://onlinelibrary.wiley.com/doi/10.1111/j.1442-8903.2010.00525.x]

Key words.  derelict fishing nets, ghost gear, GGGI, Indigenous livelihoods

Figure 1. Dead turtle caught in a derelict ghost net. (Photo: Jane Dermer, Ghost Nets Australia)

Introduction. The focus of our 2009 feature was to highlight the work of Indigenous rangers in addressing the local but widespread problem of abandoned, lost or derelict fishing gear (ALDFG) in Northern Australia, particularly ‘ghost nets’ that are carried on the currents and continue to fish long after they are no longer actively used (Figs 1-4). We also aimed to raise awareness of the efforts required to address this complex issue, whilst highlighting the work of Indigenous rangers working in the region.  The feature reported ghost net removal efforts taking place in Australia’s Gulf of Carpentaria – which, by 2009, involved the removal of 5532 nets by over 90 Indigenous rangers from more than 18 Indigenous communities.  This highlighted the transboundary nature of the ghost gear issue, and identified that most nets likely originated from beyond Australia’s waters.

Figure 2. Napranum ranger Philip Mango releasing juvenile turtle trapped in ghost net. (Photo: Ghost Nets Australial)

Further work. Since 2010, the understanding of and approaches to addressing the derelict fishing gear issue have increased substantially. This has been reflected both in domestic efforts within Australia, and more broadly in the international community.

Domestically, in the last decade, the ranger program across northern Australia has evolved and grown, enabling more Indigenous people to remain culturally connected to their land and sea country through meaningful employment.  Ranger activities generally involve a range of restoration activities including feral and weed management, in addition to (for  coastal groups) ghost net removal. Across northern Australia, Indigenous ranger groups continue to remove nets on their country, demonstrating the success of the initial program supported by the Australian government. To date, nearly 15,000 ghost nets (three times the number reported in 2010) have been removed from the region. The net removal program has extended beyond Ranger groups working in the Gulf of Carpentaria to include the Torres Strait, the western part of the Northern Territory Coast, and parts of the Kimberly coastline in Western Australia.

Globally, the world is focused on the United Nations Sustainability Development Goals (SDGs) which aims to provide a ‘shared blueprint for peace and prosperity for people and the planet, now and into the future’ (https://sustainabledevelopment.un.org/sdgs).

A key focus for the SDGs is to help preserve the world’s oceans, a topic which touches on food security, poverty and economic growth, among other goals. Ensuring fishing practices are aligned with these goals includes reducing gear losses into the marine and coastal environment. In recognition of the issue and to end ALDFG, there is now a multi-stakeholder alliance of fishing industry, private sector, multinational corporations, non-government organizations, academics and governments, the Global Ghost Gear Initiative (GGGI), which is focused on solving the problem of abandoned, lost and derelict fishing gear worldwide. Both CSIRO and GhostNets Australia were founding members of this alliance and have been instrumental in engagement and scientific endeavours which inform the GGGI.

Fig 3. An enormous effort is invested by Indigenous rangers in removing ghost nets from beaches along the northern Australian coastline (Photo: World Animal Protection/Dean Sewell)

Based on collaborative research between GhostNets Australia and CSIRO, it was determined that the primary source of derelict nets washing ashore along Australia’s northern coastline was the Arafura Sea. Engagement with fishers in the region through a series of workshops identified that major causes of gear loss included snagging of nets and over-capacity in the region. We also identified opportunities to help resolve ghost net issues in the region, though stakeholder engagement, points of intervention and livelihood tradeoffs. Much of this overcapacity and overcrowding has been attributed to illegal, unreported and unregulated (IUU) fishing. Subsequently, Indonesia went through a substantial change in practices with regards to allowing foreign vessels in their waters, effectively closed their borders to foreign fisheries operators. Anecdotally, information from multiple ranger groups in Northern Australia suggests that this highly publicized and significant change in practice has resulted in a substantial decrease in the number of ghost nets washing ashore along at least part of the northern Australian coastline.

Another outcome from the collaborative research effort was a new understanding based on deep citizen science engagement and modelling to identify potential high risk areas where ghost nets were likely to cause the most harm to turtles. In this work, we were able to suggest interdiction points for ghostnets, before they entered the Gulf of Carpentaria where they were likely to kill wildlife. We also identified the nets that were most harmful to wildlife and we estimated that nearly 15,000 marine turtles had likely been killed by derelict nets in the region.

There have also been some technological improvements in this area. These fall into both reporting and in tracking nets. Electronic data collection has improved the quality of data collection and can ensure errors are minimised. Development of the tool has also been designed such that those with reduced literacy are also able to collect valuable information, a feature that can be important in many communities. Using icons and photos to help identify nets improved data reliability.

Also within Australia, alternative livelihoods programs such as Ghost Net Gear evolved into the Ghost Net Art Project where the art works have excited the International art community.  This has resulted in purchases by many internationally renowned purveyors of artwork including the British Museum, the Australian National Museum and the Australian Maritime Museum. Works from Indigenous artists can also be seen at Australia’s Parliament House, and exhibitions have taken place in Monaco, Alaska, Singapore and France as well as in numerous national and regional galleries around Australia. A commemorative stamp was even made from the Ghost Nets artwork that lives in the Australian National Museum.

Figure 4. Large nets can become entangled in coastal vegetation. (Photo: World Animal Protection/Dean Sewell)

Future directions. While GhostNets Australia has not formally continued as a non-governmental organization, many of the components initiated through the program have continued and grown through time, as exemplified above. This early work also helped springboard CSIRO’s engagement in capacity building with the Indonesian government to tackle Illegal, Unreported and Unregulated (IUU) fishing. This had led to a strong research collaboration relationship between the two countries, with a shared goal of reducing IUU fishing, building capacity on marine resource management, and improved monitoring, control and surveillance efforts in Indonesia.

CSIRO is also involved in an aerial (re)survey of the coastline across Northern Australia. In affiliation with World Animal Protection and Norm Duke and Jock Mackenzie from James Cook University, we are looking at changes in the number of ghost nets along the shoreline. Stereo images were recorded along the entire coastline and we are comparing ghost nets observed across the region with two other aerial surveys that have taken place in the last decade. The team have just completed flights (September 2019), so we are looking forward to analysing the images and comparing ghost net numbers across the region.

ContactDenise.hardesty@csiro.au; CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia. rikigunn1@outlook.com; chris.wilcox@csiro.au

Registration of domestic cats on Christmas Island, Indian Ocean: stage one to an eradication program for stray and feral cats to mitigate social and environmental impacts – UPDATE of EMR feature

 David Algar, Neil Hamilton and Caitlyn Pink

[Update to EMR article: Algar, David, Stefanie Hilmer, Don Nickels and Audrey Nickels (2011) Successful domestic cat neutering: first step towards eradicating cats on Christmas Island for wildlife protection. Ecological Management & Restoration, 12:2, 93-101. https://onlinelibrary.wiley.com/doi/10.1111/j.1442-8903.2011.00594.x]

Key words: domestic and feral cats, eradication program, cat de-sexing and registration, cat management, pet cat survey, local cat legislation

Figure 1. Stray cat on Christmas Island (Photo Neil Hamilton DBCA)

Introduction: In 2010 a ‘’Cat Management Plan’’ was commissioned by the various land management agencies on Christmas Island to mitigate the environmental and social impacts of cats (Felis catus) on the island (Fig 1). These impacts included contributing towards the decline of a number of native species through predation, as well as being a source of Toxoplasmosis gondii, a parasite that can lead to serious human health complications.

The plan proposed a strategy to eradicate cats entirely from the island as the domestic population died out and was adopted in late 2010. The essential first stage of the management plan was therefore the registration of all domestic cats. As part of this plan, amendments to the Local Cat Management Laws (Shire of Christmas Island Local Law for the Keeping and Control of Cats 2004 (WA)) under the Local Government Act 1995 (WA) were endorsed in August 2010. These revisions required that all domestic cats in the Shire of Christmas Island were legally bound to be de-sexed, tattooed, microchipped and registered with the Shire. The revisions were designed to limit domestic and stray/feral cat impact on the native fauna, promote responsible cat ownership, compliance and enforcement of cat management laws and prohibit the importation of new cats. Micro-chipping of domestic cats would enable the identification of those animals during trapping campaigns for stray and feral cats, so that they could be released rather than destroyed. De-sexing would prevent potential natal recruitment into the domestic, stray and feral populations. A survey of domestic cats was conducted prior to the veterinary program in October 2010 (see original feature), to guarantee that all domestic cats would be registered. One hundred and fifty-two cats were recorded during the initial survey in October 2010 of which 136 were registered as domestic pets.

Figure 2. Red-tailed Tropic-Bird with chick May 2012. (Photo Neil Hamilton DBCA)

Further works undertaken: Two further veterinary visits were conducted in May 2011 and 2012 following the domestic cat surveys to complete the veterinary program. Subsequent domestic cat surveys have been conducted each May in 2013, 2014, 2015 and 2016. In 2016 prior to the domestic cat survey, it came to our attention that a number of un-registered cats were being kept as pets. It was decided by the ‘’Christmas Island Cat Eradication Steering Committee’’ that a short-term amnesty on pet cat ownership be invoked so that these animals could also be de-sexed and registered. Following this amnesty, a final veterinary program was endorsed and fines were still issued to those residents who wanted their otherwise illegal cat to be de-sexed and registered, or unregistered cats could be handed in and euthanased without charge. Further domestic cat surveys were conducted in May 2017 and October 2018.

Further results to date: Since October 2010, 184 cats have been registered following the various veterinary programs. The survey conducted in 2018 recorded 66 registered cats remaining. The total number of domestic cats registered each year, the sex population structure, the number of new registrations and number deregistered are presented in Table 1, with the decline of two-thirds relatively steady over the years.

Table 1. Total number of domestic cats registered each year, the sex structure, the number of new registrations and number de-registered.

Date No. registered New/re-registers De-registers
  Total Female Male Total Female Male Total Female Male
October 2010 N/A N/A N/A 136 66 70 N/A N/A N/A
May 2011 138 69 69 18 10 8 16 7 9
May 2012 135 66 69 12 5 7 15 8 7
May 2013 111 53 58 0 0 0 24 13 11
May 2014 101 50 51 0 0 0 10 5 5
May 2015 87 45 42 0 0 0 14 5 9
May 2016 75 41 34 2 1 1 14 5 9
June 2016 93 49 44 18 8 10 0 0 0
May 2017 74 38 36 1 0 1 20 11 9
October 2018 66 36 30 0 0 0 8 2 6

Lessons learned and future directions: At the conclusion of the domestic cat survey in 2018, there were 66 registered cats present on the island. An additional seven domestic cats are known to have died before the planned 2019 domestic cat survey. Death of registered cats over the past nine years has been caused by a number of factors including: road fatalities; old age; disease; requests for cats to be euthanased for a variety of reasons and cats exported back to the mainland.

Domestic cats will remain on Christmas Island for a number of years, with the youngest cat approximately three years of age. Initially, as reported in the 2011 feature, it was predicted that the island would be domestic cat-free by 2024 however, this is unlikely given the subsequent and final veterinary program in 2016.

Further amendments to the island’s cat local laws were adopted in 2018, following consultation with the community and the Christmas Island Cat Eradication Steering Committee. This included an increase in penalties for illegal unregistered cats and compulsory transfer of ownership procedures to prevent future movement of registered pet cats into the designated pet cat prohibited zone. This zone protects nesting habitat for the ground-nesting Red-tailed Tropic Bird (Phaethon rubricauda, Fig 2.), where cat predation led to 90% failure of fledgling rates pre-control. Subsequent cat management in this zone has been successful in improving fledgling survival (See 2012 report).

There are several benefits of repeating the domestic cat survey each year as pet numbers decline: continue program awareness to all residents; maintain community support and involvement; offer pet health advice; thoroughly check for illegal cats to report to the Shire and respond to stray cat reports within the township. This continued effort will help ensure there is little opportunity or temptation to obtain new kittens as illegal pets while later stages of the eradication are progressing, and responsible cat ownership is maintained until the domestic cat population has died out.

The goal of eradicating cats remains highly relevant and is supported by the island community, local land management agencies and the federal government. The feasibility of long-term success is high and the outcome is likely to provide valuable lessons for other jurisdictions with social and environmental issues surrounding the presence of feral and domestic cats.

Stakeholders and Funding bodies: This is a collaborative project between Western Australian Department of Biodiversity, Conservation and Attractions and Parks Australia. The authors would like to thank Parks Australia, Christmas Island Phosphates, Shire of Christmas Island, Department of Infrastructure, Transport, Cities and Regional Development and Australian Border Force for their financial, in-kind and logistical support. Special thanks to Robert Muller, Khaleisha Amin and Chris Su for their assistance in annual surveys. The warm welcome and assistance of the whole Christmas Island community during all domestic cat surveys has been appreciated.

Contact information: David Algar, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions (Locked Bag 104, Bentley Delivery Centre, Western Australia, Australia 6983) Email: dave.algar@dbca.wa.gov.au

 

 

More than just a Long Paddock: Fostering native vegetation recovery in Riverina Travelling Stock Routes and Reserves – UPDATE of EMR feature

Ian Davidson

[Update of EMR feature – Davidson, Ian and Peter O’Shannassy (2017) More than just a Long Paddock: Fostering native vegetation recovery in Riverina Travelling Stock Routes and Reserves. Ecological Management & Restoration, 18:1, 4-14.  https://onlinelibrary.wiley.com/doi/10.1111/emr.12247]

Roger Harris with direct seeded shrubs –  Rand TSR. (Photo Ian Davidson)

Introduction.  As described in our 2017 EMR feature, the Enriching biodiversity in the NSW Riverina project was a five-year project funded by the Federal Government’s Carbon Farming initiative and managed by Murray Local Land Services (LLS). The project aimed to maintain the condition of the highest quality TSRs and improve the condition of 10% of all other TSRs, some of which had been receiving degrees of grazing management for many decades to optimize resilient native pastures (Refer to our earlier 2005, EMR feature). Given the NSW Riverina TSR network contains over 600 reserves, a sample was first selected for inspection to identify reserves with the potential for further active management. This led to the implementation of recommended land management and works on 109 reserves covering 13,558 ha and the subsequent monitoring of those reserves. Results indicated that, of these reserves, 70 had improved in vegetation condition by 2017. This project proved that large scale protection and improvement of TSR condition was possible using existing staff and provided valuable lessons that could be applied elsewhere across the state.

Table 1 Summary of key lessons learnt from the project and recommendations for effective TSR management

Human resources ·       Use existing knowledge where available

·       Maintain continuity of leadership

Assessment and

monitoring

·       Establish broadly applicable and consistent assessment and monitoring criteria

·       Use methods which are easily understood

·       Consider seasonal effects on the timing of surveys

·       Recommended actions should be appropriate for the site condition

Project Scale ·       Larger project areas and longer project timelines increase the rate of success

·       Regular monitoring avoids major problems

Revegetation ·       Seed banks are vital to achieving large scale revegetation

·       Multiple species should be used in direct seeding

·       Exotic grasses should be controlled prior to direct seeding

·       Native species can assist in spreading shrubs over time

Land Management ·       Controlling herbivores is critical during early growth stages

·       Grazing indicators/surrogates are useful

·       Stock type impacts grazing style

·       Cattle can graze areas with shrub seedling germination under certain conditions

·       Fencing and water points offer flexibility in managing stock for regeneration

·       Noisy Miners reduce small woodland bird numbers and they are difficult to control

Unplanned Impacts ·       Human intervention in unpredictable Natural events can lead to major changes in land management focus

Stuart Watson monitoring vegetation at Narrow Plains TSR. (Photo Ian Davidson)

Subsequent developments. Since the publication of our 2017 feature ‘More than just a Long Paddock: Fostering native vegetation recovery in Riverina Travelling Stock Routes and Reserves’ the following five key developments regarding nature conservation on TSRs in NSW have occurred.

  1. Developing and applying a simple field based consistent method for assessing and monitoring vegetation condition across the TSR network – A new rapid assessment and monitoring method was developed and trialed in this project for use by land managers with limited botanical and scientific skills and limited time. This field-based method known as Rapid Conservation Assessment Method (RAM) proved useful and has the potential for broader adoption across NSW. For detailed information refer to https://www.lls.nsw.gov.au/livestock/stock-routes/conservation-of-tsrs
  2. Categorizing the conservation status using an agreed method of TSRs across NSW – Using the RAM to complete assessments and collating all previously assessed TSR reports, LLS developed a consistent statewide map of the conservation status for the 534,000ha under their control (refer to https://www.lls.nsw.gov.au/livestock/stock-routes/conservation-of-tsr). This enabled LLS, the statewide land manager, to better understand the overall vegetation condition, extent and distribution of their TSR assets from a nature conservation perspective.
  3. Developing a Best environmental management practice (BeMP) Toolkit for TSRs to ensure good long-term conservation objectives – Key knowledge learnt from the Riverina project, LLS ranger’s knowledge and experience and existing literature influenced the development of the NSW Travelling Stock Reserves State Planning Framework 2016–21 (the Framework), which provides the framework for managing TSRs for conservation. A Best Environmental Management Practice (BeMP) toolkit was also prepared from this collation of knowledge to assist LLS deliver land management outcomes (including grazing, apiary, native seed collection, emergency response/refuge for livestock, threatened ecological communities and species, revegetation on TSRs, weed control, pest animal control, soil disturbance and drainage changes) consistent with the Framework. The BeMP is currently in draft form.
  4. Developing a statewide plan of management (PoM) for TSRs to ensure consistency across administrative boundaries – The NSW government is finalizing the details of a PoM which provides LLS staff, TSR stakeholders, investors, partners and customers with our shared vision and common mission. It sets out agreed strategies, approaches, principles and quality system to better manage the reserves. This PoM aims to improve social, economic, environmental and cultural outcomes while maintaining grazing as an important economic use and conservation tool. Importantly this plan establishes the need for shared responsibility and collaborative funding. For more information refer to https://www.lls.nsw.gov.au/__data/assets/pdf_file/0005/839930/NOV-TSR-PoM-MOedits-1.pdf
  5. Attracting significant investment to assist with protection and maintenance of TSR environmental values – LLS the managers of NSW TSRs receive no recurrent funding from government for the environmental management of the TSR estate and therefore have been dependent upon the proceeds from permits and leases e.g. grazing and annual grants e.g. weed and pest animal control to maintain the condition of TSRs. Now however, based on the PoM and guided by environmental management and works consistent with best environmental management practice, the LLS is negotiating with a government investor to fund agreed long term maintenance and enhancement of selected high and moderate conservation value TSRs.

Peter O’Shannassy with direct seeded shrubs on Snake Island TSR. (Photo Ian Davidson)

Lessons learned. Together, the five developments above show how the large-scale restoration project reported in 2017 has been further developed as a model for TSR protection and restoration across NSW, enabling buy-in by LLS to better manage these invaluable natural resource assets across NSW.

Acknowledgements. LLS staff Peter O’Shannassy steered most aspects of the project from its inception, whilst Stuart Watson and Roger Harris managed most of the on-ground management and works and lately Gary Rodda the Murray General Manager who has overseen the statewide development of the PoM. Lastly, I dedicate my TSR work to my great mate Rick Webster who was lost to us recently and with whom I shared a deep, long standing curiosity and love of these special areas.

Contact.  Ian Davidson (for technical matters) ian@regenerationsolutions.com.au  or  Peter O’Shannassy  (for land management and operational matters) peter.o’shannassy@lls.nsw.gov.au

 

 

 

 

 

 

Ku-ring-gai Flying-fox Reserve Habitat Restoration Project at Gordon, 2000 – 2019 UPDATE of EMR feature

Nancy Pallin

[Update to EMR feature –  Pallin, Nancy (2001) Ku-ring-gai Flying-fox Reserve Habitat restoration project, 15 years on.  Ecological Management & Restoration 1:1, 10-20.  https://onlinelibrary.wiley.com/doi/10.1111/emr.12229]

Key words:         bush regeneration, community engagement, wallaby browsing, heat events, climate change

Figure 1. Habitat restoration areas at Ku-ring-gai Flying-fox Reserve within the urban area of Gordon, showing areas treated during the various phases of the project. Post-2000 works included follow up in all zones, the new acquisition area, the pile burn site, the ecological hot burn site and sites where vines have been targeted. (Map provided by Ku-ring-gai Council.)

Introduction. The aim of this habitat restoration project remains to provide self-perpetuating indigenous roosting habitat for Grey-headed Flying-fox (Pteropus poliocephalus) located at Ku-ring-gai Flying-fox Reserve in Gordon, NSW Australia (Fig 1).  The secondary aim was to retain the diversity of fauna and flora within the Flying-fox Reserve managed by Ku-ring-gai Council. Prior to works, weed vines and the activity of flying-foxes in the trees had damaged the canopy trees while dense weed beneath prevented germination and growth of replacement trees.  Without intervention the forest was unable to recover.  Natural regeneration was assisted by works carried out by Bushcare volunteers and Council’s contract bush regeneration team.  The work involved weed removal, pile burns and planting of additional canopy trees including Sydney Bluegum (Eucalyptus saligna), which was expected to cope better with the increased nutrients brought in by flying-foxes.

Figure 2. The changing extent of the Grey-headed Flying-fox camp from the start of the project, including updates since 2000. (Data provided by KBCS and Ku-ring-gai Council)

Significant changes have occurred for flying-foxes and in the Reserve in the last 20 years.

In 2001 Grey-headed Flying-fox was added to the threatened species lists, of both NSW and Commonwealth legislation, in the Vulnerable category.  Monthly monitoring of the number of flying-foxes occupying the Reserve  has continued monthly since 1994 and, along with mapping of the extent of the camp, is recorded on Ku-ring-gai Council’s Geographical Information System. Quarterly population estimates contribute to the National Monitoring Program to estimate the population of Grey-headed Flying-fox.  In terms of results of the monitoring, the trend in the fly-out counts at Gordon shows a slight decline.  Since the extreme weather event in 2010, more camps have formed in the Sydney basin in response to declining food resources.

In 2007, prompted by Ku-ring-gai Bat Conservation Society (KBCS), the size of the Reserve was increased by 4.3 ha by NSW Government acquisition and transfer to Council of privately owned bushland. The Voluntary Conservation Agreement that had previously established over the whole reserve in 1998 was then extended to cover the new area.   These conservation measures have avoided new development projecting into the valley.

From 2009 Grey-headed Flying-fox again shifted their camp northwards into a narrow gully between houses (Fig 2).  This led to human-wildlife conflict over noise and smell especially during the mating season. Council responded by updating the Reserve Management Plan to increase focus on the needs of adjoining residents.  Council removed and trimmed some trees which were very close to houses. In 2018 the NSW Government, through Local Governments, provided grants for home retrofitting such as double glazing, to help residents live more comfortably near flying-fox camps.

Heat stress has caused flying-fox deaths in the Reserve on five days since 2002. Deaths (358) recorded in 2013, almost all were juveniles of that year.  KBCS installed a weather station (Davis Instruments Vantage Pro Plus, connected through a Davis Vantage Connect 3G system) and data loggers to provide continuous recording of temperature and humidity within the camp and along Stoney Creek.  The station updates every 15 minutes and gives accurate information on conditions actually being experienced in the camp by the flying-foxes. The data is publicly available http://sydneybats.org.au/ku-ring-gai-flying-fox-reserve/weather-in-the-reserve/Following advice on the location and area of flying-fox roosting habitat and refuge areas on days of extremely high temperatures (Fig 3.) by specialist biologist Dr Peggy Eby, Council adopted the Ku-ring-gai Flying-fox Reserve 10 Year Management and Roosting Habitat Plan in 2018.  Restoration efforts are now focused on improving habitat along the lower valley slopes to encourage flying-foxes to move away from residential property and to increase their resilience to heat events which are predicted to increase with climate change.

Figure 3. Map showing the general distribution of flying-foxes during heat events, as well as the location of exclosures. (Map provided by Ku-ring-gai Council)

Further works undertaken.  By 2000 native ground covers and shrubs were replacing the weeds that had been removed by the regeneration teams and Bushcare volunteers.  However, from 2004, browsing by the Swamp Wallaby (Wallabia bicolor) was preventing growth of young trees and shrubs.  Bushcare volunteers, supported by KBCS and Council responded by building tree cages made from plastic-mesh and wooden stakes. Reinforcing-steel rods replaced wooden stakes in 2008.   From 2011, the Bushcare volunteers experimented with building wallaby exclosures, to allow patches of shrubs and groundcovers to recover between trees (Figs 3 and 4).  Nineteen wallaby exclosures have been built. These range in size from 7m2 to 225m2 with a total area of 846m2.   Wire fencing panels (Mallee Mesh Sapling Guard 1200 x 1500mm) replaced plastic mesh in 2018.  Silt fence is used on the lower 0.5m to prevent reptiles being trapped and horizontally to deter Brush Turkey (‎Alectura lathami) from digging under the fence.

The wallaby exclosures have also provided an opportunity to improve moisture retention at ground level to help protect the Grey-headed Flying-fox during heat events.  While weed is controlled in the exclosures south of Stoney Creek, those north of the creek retain Trad and privets, consistent with the 10 Year Management and Roosting Habitat Plan.

Madeira Vine (Anredera cordifolia) remained a threat to canopy trees along Stoney Creek for some years after 2000, despite early treatments.  The contract bush regen team employed sInce 2010 targeted 21 Madiera Vine incursions.

A very hot ecological burn was undertaken in 2017 by Council in order to stimulate germination of soil stored seed and regenerate the Plant Community Type (PCT) – Smooth-barked Apple-Turpentine-Blackbutt tall open forest on enriched sandstone slopes and gullies of the Sydney region (PCT 1841).  This area was subsequently fenced. The contract bush regeneration team was also employed for this work to maintain and monitor the regeneration in the eco-burn area (720 hours per year for both the fire and Madiera Vine combined).

Figure 4. Exclusion fence construction method. Pictured are Bushcare volunteers, Jill Green and Pierre Vignal. (Photo N Pallin).

Figure 5. Natural regeneration in 2018 in (unburnt) exclosure S-6 (including germination of Turpentines). (Photo N. Pallin)

Further results to date. The original canopy trees in Phase 1 and Phase 2 (1987 -1997) areas have recovered and canopy gaps are now mostly closed. Circumference at breast height measurements were taken for seven planted Sydney Blue gum trees.  These ranged from 710 to 1410mm with estimated canopy spread from 2 to 6m.  While original Turpentine (Syncarpia glomulifera) had circumferences from 1070 and 2350mm with canopy spread estimated between 5and 8m, those planted or naturally germinated now have circumference measurements between 420 and 980mm with canopy spread estimated from 1.5 to 3m.  A Red Ash (Alphitonia excelsa) which naturally germinated after initial clearing of weeds now has a circumference of 1250mm with a canopy spread of 5m.  Also three Pigeonberry Ash (Elaeocarpus kirtonii) have circumference from 265 to 405mm with small canopies of 1 to 2m as they are under the canopies of large, old Turpentines.  As predicted by Robin Buchanan in 1985 few Blackbutt (Eucalyptus pilularis) juveniles survived while the original large old trees have recovered and the Sydney Bluegum trees have thrived.

In the Phase 3 (1998 – 2000) area south of Stoney Creek the planted Sydney Blue Gum now have circumferences measuring between 368 and 743 (n7) with canopy spread between 2 and 6 m.  in this area the original large trees have girths between 1125 and 1770mm (n7) whereas trees which either germinated naturally or were planted now range from 130 to 678mm (n12).  These measurement samples show that it takes many decades for trees to reach their full size and be able to support a flying-fox camp.

Wallaby exclosures constructed since 2013 south of Stoney Creek contain both planted and regenerated species.  Eight tree species, 11 midstorey species, 27 understorey species and eight vines have naturally regenerated.  Turpentines grew slowly, reaching 1.5m in 4 years.  Blackbutts thrived initially but have since died. In exclosures north of the creek,  weeds including Large-leaved Privet,  Ligustrum lucidum,  Small-leaved privet,  L. sinense,  Lantana, Lantana camara,  and Trad, Tradescantia fluminensis) have been allow to persist and develop to maximise ground moisture levels for flying-foxes during heat events. Outside the exclosures, as wallabies have grazed and browsed natives, the forest has gradually lost its lower structural layers, a difference very evident in Fig 6.

Figure 6. Visible difference in density and height of ground cover north and south of Stoney creek. (Photo P. Vignal)

Coachwood (Ceratopetalum apetalum) were densely planted in a 3 x 15m exclosure under the canopies of mature Coachwood next to Stoney Creek in 2015. In 4 years they have reached 1.5m.  In this moist site native groundcovers are developing a dense, moist ground cover.

Madiera Vine, the highest-threat weed, is now largely confined to degraded edges of the reserve, where strategic consolidation is being implemented with a view to total eradication.

In the hot burn area, which was both fenced and weeded, recruitment has been outstanding. One 20 x 20m quadrat recorded 58 native species regenerating where previously 16 main weed species and only 6 native species were present above ground. A total of 20 saplings and 43 seedlings of canopy species including Eucalyptus spp., Turpentine and Coachwood were recorded in this quadrat where the treatment involved weed removal, burning and fencing  (S. Brown, Ku-ring-gai Council, July 2019, unpublished data).  Unfortunately, however, the timing and location of the burn did not take into account its impact on the flying-fox camp and there was some damage to existing canopy trees. It will be many years before the canopy trees, which are regenerating, will be strong enough to support flying-foxes.

Monitoring from the weather station and data loggers has shown that close to Stoney Creek on a hot day it is typically 2-3° C cooler, and 5-10% higher in humidity, than in the current camp area (pers. comm. Tim Pearson). During heat events the flying-foxes move to this cooler and moister zone, increasing their chances of survival.

Fauna observed other than flying-foxes includes a pair of Wedge-tail Eagle ( Aquila audax plus their juvenile, a nesting Grey Goshawk (Accipiter novaehollandiae) and a Pacific Baza (Aviceda subcristata).  Powerful Owl (Ninox strenua) individuals continue to use the valley. The presence of raptors and owls indicate that the ecosystem processes appear to be functional. Despite the decline of the shrub layer outside fenced areas, the same range of small bird species (as seen prior to 2000) are still seen including migrants such as Rufous Fantail ( Rhipidura rufifrons) which prefers dense, shady vegetation. The first sighting of a Noisy Pitta (Pitta versicolor) was in 2014.  Long-nosed Bandicoot (Perameles nasuta) individuals appear and disappear, while Swamp Wallaby remains plentiful.

Lessons learned and future directions. Climate change is an increasing threat to Pteropus species. On the advice of Dr Eby, Flying-fox Consultant, Council, KBCS and Bushcare Volunteers agreed to retain all vegetation including weeds such as Large-leaved Privet and Small-leaved Privet, patches of the shrub Ochna (Ochna serrulata) and Trad as a moist ground cover in the camp area and areas used by the flying-foxes during heat events.

Building cheap, lightweight fencing can be effective against wallaby impacts, provided it is regularly inspected and repaired after damage caused by falling branches. This style of fencing has the additional advantage of being removable and reusable.  It has been proposed that, to provide understory vegetation to fuel future burns in parts of the reserve away from the flying-fox camp, further such temporary fencing could be installed.

Ku-ring-gai Council has commenced a  program to install permanent monitoring points to annually record changes in the vegetation, consistent with the state-based  Biodiversity Assessment Method.

Stakeholders and Funding bodies. Members of KBCS make donations, volunteer for monthly flyout counts, Bushcare and present educational events with live flying-foxes. KBCS hosts the website www.sydneybats.org.au. Ku-ring-gai Council which is responsible for the Reserve has been active in improving management to benefit both residents and flying-foxes.  Ku-ring-gai Environmental Levy Grants to KBCS have contributed substantially to purchase of fencing materials and the weather station. http://www.kmc.nsw.gov.au/About_Ku-ring-gai/Land_and_surrounds/Local_wildlife/Native_species_profiles/Grey-headed_flying-fox

Thank you to Jacob Sife and Chelsea Hankin at Ku-ring-gai Council for preparing the maps and to volunteer Pierre Vignal for assistance with tree measurements, downloading data loggers and a photo.  Researcher,  Tim Pearson installed the weather station.

Contact information. Nancy Pallin, Management Committee member, Ku-ring-gai Bat Conservation Society Inc.  PO Box 607, Gordon 2072  Tel 61 418748109. Email:  pallinnancy@gmail.com

Is revegetation in the Sheep Pen Creek area, Victoria, improving Grey-crowned Babbler habitat? – UPDATE of EMR feature

Doug Robinson

[Update of EMR feature Robinson, Doug (2006) Is revegetation in the Sheep Pen Creek area, Victoria, improving Grey‐crowned Babbler habitat?  Ecological Management & Restoration, 7:2, 93-104.  https://doi.org/10.1111/j.1442-8903.2006.00263.x]

Key words: (<5 words): Monitoring, restoration, population ecology, woodland conservation

Figure 1. Location of babbler project works and other landcare works implemented since 1996 in the Sheep Pen Creek Land Management Group area and the two sub-districts used for the babbler study. (Source TFNVic)

Introduction: The Grey-crowned Babbler (Pomatostomus temporalis) (babbler) is a threatened woodland bird (classified as Endangered in the state of Victoria) that has declined substantially in overall distribution and abundance across much of its former range in southeastern Australia since European settlement.  Sheep Pen Creek Land Management Group area, in northern Victoria (Fig 1), was fortuitously the location of the largest known remaining babbler population in Victoria in the early 1990s (when this project began); and the focus of extensive land restoration programs from the 1980s onwards to help mitigate the impacts of erosion and dryland salinity, as well as biodiversity decline.  The original study, published in 2006, investigated the overall changes in tree cover across the district between 1971 and 1996 as a result of different land-management actions and responses of local babbler populations to those habitat changes.  The key finding was that in the Koonda sub-district which had a 5% overall increase in tree cover to 14% from 1971 to 2001, showed an increase in babbler numbers by about 30% (Table 1).   In the Tamleugh sub-district, tree cover increased by 1.3% to a total of 9%, with no change in babbler numbers.  The findings also showed that new babbler groups were preferentially colonizing new patches of vegetation established that suited their habitat needs.  Building on this research, the study concluded that future conservation programs needed to scale-up the extent of habitat restoration, target areas which were suitable for babbler colonization, and tailor incentive programs to assist with conservation of particular species.

Table 1. Changes in Grey-crowned Babbler numbers over time

Year Koonda Tamleugh
number of groups number of birds number of groups number of birds
1992 20 78 11 39
1993 20 89 10 34
1996 24 96 9 35
1997 24 102 8 30
1998 25 99 10 40
2000 26 97 10 43
2005 23 99 8 34

Further revegetation works undertaken. Since the initial study’s assessment of vegetation changes between 1971 and 1996, an additional 133 ha of vegetation has been restored or established as babbler habitat in Koonda district and 37 ha in the Tamleugh district (Figs 2 and 3, Table 2).  Extensive natural regeneration, supplemented by broadscale revegetation, has also occurred over more than 350 ha on five private conservation properties in the Koonda district,, contributing to substantial landscape change.  The wider landscape has also been identified as a statewide priority for nature conservation on private land, leading to increased conservation investment in permanent protection there by Victoria’s lead covenanting body – Trust for Nature.

Monitoring of outcomes: The monitoring that was carried out prior to the 2006 publication has not continued, leaving a knowledge gap as to how the population has fared in the context of the Millenium Drought and ongoing climate-change impacts. However, based on the original research’s initial findings, we conducted an experimental study with University of Melbourne to evaluate the effectiveness of habitat restoration in maintaining babbler survival. The study, published by Vesk and colleagues in 2015, compared the persistence and group size of babbler groups present in 1995 and subsequently in 2008 at a randomly selected set of stratified sites which had either had habitat works or none.  This study was conducted across a larger landscape of about 200,000 hectares which included Sheep Pen Creek Land Management Group area.  The study found that babbler group size decreased by about 15% over the 13 years at sites without restoration works.   At sites with restoration, average group size increased by about 22%, thereby effectively compensating for the overall reduction in numbers reported over that time.This increase also influenced subsequent demographic performance, with groups at restoration sites having higher breeding success and more fledglings than groups at control sites.

Another useful finding from this experimental study was the confirmation of the importance of particular habitat and landscape variables on babbler persistence.  In particular, abundance of large trees was a positive predictor of occupancy over time; and distance from the next nearest group was a negative predictor.

Figure 2. Changes in tree cover in the Koonda sub-district between 1971 (top),  and 2018 (bottom). (Source TFNVic).. (Source TFNVic)

Figure 3. Changes in tree cover in the Tamleugh sub-district between 1971 (top) and 2018 (bottom). (Source TFNVic)

Table 2.  Summary of additional habitat established or restored as part of the Sheep Pen Creek Grey-crowned Babbler project from 1996-2018, following the initial study period from 1971-1996.

District Number of sites Area (ha)
Koonda 62 133
Tamleugh 28   37
Other parts of landcare group and local babbler population area 29 103
Totals 119 273

Expansion of lessons to other districts: Building on the fundamental research conducted in Sheep Pen Creek Land Management Group area, similar habitat, landscape and babbler population assessments were subsequently undertaken in northwest Victoria near Kerang for the babbler populations found there.  Key results from these studies relevant to the initial Sheep Pen study were that the number of babbler groups in each sampled district was positively related to the proportion of woodland cover, especially the proportion of Black Box (Eucalyptus largiflorens) woodland habitat – the babblers’ preferred habitat in this region.  Conversely, the number of babbler groups was negatively associated with the proportion of land under intensive agriculture.  At the site scale, key positive predictors of babbler presence in Black Box habitat again included the abundance of large trees (> 60 cm dbh)

Lessons learned and future directions: The most valuable lesson learned since the initial paper was published was the power of the structured research project described above to evaluate the effectiveness of the babbler conservation program and inform future design and planning. The study further demonstrated the importance of taking a demographic approach to the species’ conservation needs, understanding what is happening across the whole population over time  and how habitat interventions can assist.  These lessons have since been applied usefully to other babbler projects  and more broadly to conservation of woodland birds.

The initial paper noted the importance of achieving landscape-scale change in vegetation extent, particularly in more fertile habitats. This has occurred to some extent within the Koonda district through a range of incentive programs, tender programs, covenanting programs and land purchase, but continues to achieve most gains on more infertile land. On fertile land, by contrast, there has been rapid land-use change to cropping over the past fifteen years, leading to reduced likelihood of those properties providing suitable habitat for babblers, as found in the study conducted in northwest Victoria.

The initial paper also suggested the benefit of developing tailored incentive programs for babblers and other threatened species with particular requirements to maximize potential conservation gains  and we suggest, based on Australian and overseas experiences,  that more specific incentive programs or more detailed criteria could assist.

Another important lesson learned was the difficulty in maintaining community-driven citizen-science monitoring, even with the best will in the world, without some over-arching organizational support and oversight.  We know that community monitoring for biodiversity conservation needs scientific input at the design and analysis stages; hence additional resources may also be required in terms of equipment or guidelines to help groups monitor effectively.  Modest government investments to conservation organisations with established biodiversity monitoring programs could usefully help address this issue.

Finally, the learnings from the Sheep Pen Creek Land Management babbler conservation project over nearly thirty years are that the landscape changes and that these changes are not always positive.  Land-use change is placing more pressure on  potential babbler habitat; and the eucalypt regrowth which was established and provided new nesting resources for a few years is now too tall to provide nesting habitat, but too dense and immature to provide suitable foraging habitat for another one hundred years.  Climate change is rapidly imposing constraints on the availability of food resources and breeding opportunities, exacerbated by increased competition for the same limited resources by exotic and native species.  For the Grey-crowned Babbler, the solution to all of these factors depends on ongoing commitment to the establishment or maintenance of their essential habitat needs and life-history requirements so that their life-cycle is provisioned for from generation to generation.

Stakeholders and Funding bodies:   Most of the targeted habitat works achieved for babblers in this landscape has occurred through funding support from the Australian government through its Natural Heritage Trust and Caring for our Country programs.  Broader habitat protection and restoration has occurred primarily with funding support to landholders from the Goulburn Broken Catchment Management Authority (GBCMA).  The Norman Wettenhall Foundation, along with GBCMA, was instrumental in enabling the research by University of Melbourne, which was also aided by the extensive voluntary support of Friends of the Grey-crowned Babbler.  Not least, local landholders continued to support the project and continue to protect or restore parts of their properties to assist with babbler conservation.

Contact information: [Doug Robinson, Trust for Nature, 5/379 Collins Street Melbourne, Victoria 3000, Australia.  dougr@tfn.org.au, (03) 86315800 or 0408512441; and  School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.

 

 

 

 

Restoring the banks of the Namoi on Kilmarnock – UPDATE of EMR feature

Robyn R. Watson

[Update of EMR feature – Watson R. (2009) Restoring the banks of the Namoi on ‘Kilmarnock’: Success arising from persistence. Ecological Management & Restoration,  10: 1 pp 10-19 https://onlinelibrary.wiley.com/doi/10.1111/j.1442-8903.2009.00434.x]

Figure 1. Casuarina (Casuarina cunninghamiana), River Red Gum and a range of grasses established on river bank at Kilmarnock after restoration works. (Photo R. Watson)

Riverbank restoration began on Kilmarnock in early 1990 with fencing the river area and planting native trees, shrubs and grasses. A program of killing the weeping willows resulted in their elimination by 2000. Tree lines were planted to connect the river corridor to natural conservation areas around the farm and this has resulted in a gradual increase in native wildlife leading to great environmental benefits both for the farm and surrounding areas.

Prior to the works the riparian zones on Kilmarnock had degraded to the extent that the banks were slumping during floods, with loss of old trees. This had arisen from decades of clearing, grazing and weed invasion.  Since 2009 we can report that the fenced-off river corridor has continued to recover with native grasses  beneath the trees, particularly Phragmites (Phragmites australis)  and Vetiver Grass (Chrysopogon zizaniodes) which are growing well on the steep river banks (Fig 1).  As the trees in the riparian corridor grew, additional tree lines were planted throughout the farm to connect the riparian zone to retained native vegetation areas and other set-aside conservation areas. This has led to an increase in native birds, micro bats and beneficial insect numbers.

Wildlife have returned to the area, including Little Pied Cormorant (Microcarbo melanoleucos) and  Pied Cormorant (Phalacrocorax varius) nesting in the River Red Gum (Eucalyptus camaldulensis) trees one year. Flocks of Budgerigar (Melopsittacus undulatus) and Spotted Pardalote (Pardalotus punctatus)  have been observed in the trees along the riparian zones.  Pink Eared Duck (Malacorhynchus membranaceus), Musk Duck (Biziura lobata)(, Eurasian Coot (Fulica atra) and Brolga (Antigone rubicunda) visited wetland areas on the farm. There has been a noticeable increase in the small birds such as three different wrens including Superb Fairy-wren (Malurus cyaneus) and Variegated Fairy-wren (Malurus lamberti) and Australasian Pipit (Anthus novaeseelandiae).

The planted irrigated cotton crop was not sprayed with insecticide for 12 years after the increase in beneficial insect and bird numbers. Nest boxes have been installed in the conservation areas for the micro bats.  Fourteen species of insectivorous micro bats have been recorded on the farm since the rehabilitation work began. Stubble quail (Coturnix pectoralis) have been nesting in the conservation areas.

Figure 2. Log groins with planted native trees established on steep river bend near Boggabri through the Namoi Demonstration Reach Project (2007-14) coordinated by the NSW Dept of Primary Industries. (Photo R. Watson)

Further works undertaken nearby.  After seeing the improvement on our farm some adjoining landholders have begun fencing off their river areas and introducing rehabilitation measures on their farms. In one outstanding collective example, 120 kilometres of the Namoi Demonstration Reach Project was established by the NSW Dept of Primary Industries both upstream and downstream of Kilmarnock, from 2007 to 2014.  This This involved contractors, working with permission of a number of landholders, planting over eight thousand trees and shrubs along the river and constructing log groins at a badly eroding river bend near the Boggabri township.  These groins have worked well and have withstood a couple of small floods.  The trees planted on the steep banks have also established well (Fig. 2).


Figure 3. – Planted Phragmites saved the river bank from bush fire in 2017. (Photo R. Watson)

A major bushfire in 2017 spread across the river to the top of the banks on the Kilmarnock side of the river.  Because of the planted Phragmites on the river edge there was no damage done to the toe of the river bank (Fig 3) and we were able to bulldoze firebreaks to protect  the planted trees affected from the fire.)  However, a number of the old River Red Gums were badly burnt. Many of the very old hollow trees were killed by the fire but less hollow ones have begun to grow again, although this growth has been slowed by the present drought.

With the 2019 drought conditions the Namoi River has dried out, exposing the river bed.  This has given me a chance to observe the river bed.  I have been able to photograph and document the debris on the sand banks and the remaining water holes and show that there are now substantial amounts of hollow logs and debris (Fig. 4)  which can  provide good habitat for fish and water creatures when the stream is flowing.

Our family has purchased more land downstream on the Namoi River and we have implemented rehabilitation on the river banks, tree planting and conservation measures on those farms.

Contact.  Robyn Watson, Kilmarnock, Boggabri, NSW 2382, Australia; Tel: 02 67434576 Email: wjwatson@northnet.com.au

Figure 4. Hollow log and debris on riverbed provide fish habitat when river is flowing. (Photo R. Watson)

 

Monitoring the Wunambal Gaambera Healthy Country Plan, Kimberley, Western Australia – UPDATE of EMR feature

[Update to EMR feature: Moorcroft, Heather, Emma Ignjic, Stuart Cowell, John Goonack, Sylvester Mangolomara, Janet Oobagooma, Regina Karadada, Dianna Williams and Neil Waina (2012) Conservation planning in a cross‐cultural context: the Wunambal Gaambera Healthy Country Project in the Kimberley, Western Australia,  Ecological Management & Restoration, 13:1, 16-25. See https://doi.org/10.1111/j.1442-8903.2011.00629.xk]

Key words: conservation planning, participatory conservation, Indigenous people, Kimberley

Figure 1. Location map of Wunambal Gaambera land and sea country. (Source: WGAC)

Introduction. The development of the Wunambal Gaambera Healthy Country Plan (HCP) was a key enabler for Wunambal Gaambera people to look after country (Fig 1) and occurred at an important time when native title rights to country were being secured. The plan came about through a partnership between Wunambal Gaambera Aboriginal Corporation (WGAC) and Bush Heritage Australia (BHA), who brought the planning approach and supported WGAC to develop a plan that met the needs of Traditional Owners. This plan then became the basis of a long term partnership between the two organisations to support implementation.

Healthy Country Planning, a term coined by this project, adapted the Open Standards for the Practice of Conservation (http://cmp-openstandards.org/ ) to an Indigenous native title community context. The approach has subsequently flourished in Australia, adopted by a further 30 indigenous groups ( see doi: 10.1111/emr.12267).

The unique partnership model established between BHA and WGAC, underpinned by Healthy Country Planning, has also expanded (https://www.bushheritage.org.au/what-we-do/aboriginal-partnerships). The program supports indigenous partners to achieve their community and conservation aspirations articulated through Healthy Country Planning.

Figure 2. Terrick Bin Sali handling a northern quoll (Dasyurus hallucatus). (Photo WGAC)

Conservation planning with a difference. Our experience has been that the Open Standards can be successfully applied to an Indigenous context but some important adaptation is required. For example:

  1. People, culture and country are inseparable in Australian indigenous worldviews. As such, Healthy Country Planning is much wider in scope than mainstream conservation or natural resource management planning. The vision in the HCP typically sets long-term goals that include aspirations for looking after country and achieving health conditions for landscapes, seascapes, plants and animals, as well as for people and culture (Figs 2-4). These outcomes are collectively referred to as “Healthy Country”. An indigenous plan will always recognize and value people in the landscape rather than as separate. Traditional Owners, and/or their culture, become a conservation target alongside species and habitats with ‘key cultural attributes’ established alongside ‘key ecological attributes’. HCPs also have a greater degree of management strategies that relate to people and culture than would be found in mainstream management plans, and culture and Indigenous Knowledge is incorporated into land management activities that could be considered mainstream, such as the inclusion of cultural rules within visitor management.
  2. The Open Standards include approaches and tools for stakeholder participation that lend themselves well to Indigenous peoples, however given that Indigenous lands are communally-owned and governed by unique law and culture systems, participation requirements are higher and more complex. Traditional systems of governance are often recognized under State and Federal Law (such as the Native Title Act) requiring additional process steps. In developing the HCP, WGAC undertook a process of involving all Traditional Owner families in various stages of planning and the plan was authorized at a Traditional Owner meeting.
  3. A Healthy Country Plan typically applies to the whole traditional estate of a Traditional Owner group regardless of tenure, consistent with the concept of “Country-based Planning”. WGAC initially dedicated stage I of the Uunguu Indigenous Protected Area over several aboriginal reserves in 2010, and later added exclusive possession lands following native title determination. The marine environment will also be added to the IPA once agreement is reached with State and Commonwealth Governments, as articulated in the Uunguu Wundaagu Plan.

Figure 3. Traditional Owners undertaking a ‘junba’ traditional dance workshop. (Photo: WGAC)

Monitoring & evaluation since 2012. Aspects of the monitoring and evaluation framework established by WGAC include the establishment of the Uunguu Monitoring & Evaluation Committee (UMEC) and the completion of mid-term evaluation of the HCP (see 2017 review doi:10.1111/emr.12257). The UMEC is composed of Traditional Owners and external experts who undertake key Healthy Country Planning steps and functions. A significant investment of time and money was required to support annual or biennial meetings “on country” (ie. on Wunambal Gaambera lands), however the review showed that the investment has proven worthwhile because WGAC has been able to implement the plan to a high degree.

In 2015 a major mid-term evaluation was undertaken to assess the progress of the HCP. It utilized some standard evaluation tools examining Open Standards process. It also incorporated some new approaches to include the views of the wider Traditional Owner community in the evaluation of the plan to ensure the plan was meeting their needs and following effective process with regard to governance and participation. The review made a number of observations as follows.

  1. Considerable progress had been made in the implementation of fire management strategies in the HCP to the point that the health condition of the “Right Way Fire” target was changed from ‘fair’ to ‘good’. Unmanaged wildfires have significantly reduced in size as a result of increased capabilities of the Uunguu Rangers to undertake burning. At the same time “right way” cultural principles have been incorporated into operations to ensure that Traditional Owner families are making decisions about burning and undertaking fire operations on their family areas.
  2. Significant progress has been made against a visitor management strategy. One of the key concerns of elders when developing the plan was unregulated visitation to important cultural sites by the expedition cruise industry and independent travelers. The Uunguu Visitor Pass, launched in 2017, requires visitors to obtain a permit to access authorized visitor locations as well as generating funds for looking after country. Over 90% of commercial tour operators have now registered for the UVP, with a similar independent traveler compliance, generating funds to support Traditional Owner participation in visitor management and delivering tour products.
  3. Progress was not made, however, in the health of cultural targets in the plan. As a result, the 2015 review recommended further investment and effort in culture strategies. Two important books have been completed to document elders’ knowledge of biodiversity and cultural places. There has been an increase in cultural activities including language and corroboree dance workshops and annual culture camps for school children. Law and culture dictates that visitors to country (indigenous or non-indigenous) need to be accompanied by the right local Traditional Owners when undertaking activities on country. In this way Healthy Country work supports large numbers of Traditional Owners to visit country and guide participation in the implementation of the plan. A number of actions have been undertaken to support Traditional Owners to live on country and remote ranger infrastructure has been developed.

Figure 4. Uunguu Rangers during a cultural fire walk. (Photo WGAC)

Future Directions. The first 8 years of the HCP implementation has focused on building WGAC’s land and sea management capacity and resources, with funding from WGAC,  the Australian Governments Indigenous Protected Area and Indigenous Ranger Programs and from Bush Heritage Australia. Traditional Owners currently hold certificate level roles of rangers, tourism workers and construction workers but further work is now needed to support Traditional Owners to take on roles that require higher levels of training. There is also a need to support the development of a wider range of livelihoods to support Traditional Owners to live and/or work on country.

Contact information. Wunambal Gaambera Aboriginal Corporation, PMB 16 Kalumburu via Wyndham WA 6740, Australia.

Email: info@wunambalgaambera.org.au

Web: www.wunambalgaambera.org.au

Facebook: https://www.facebook.com/uunguulife/

 

 

 

 

 

 

Developments in Big Scrub Rainforest Restoration: UPDATE of EMR feature

Tony Parkes, Mark Dunphy, Georgina Jones and Shannon Greenfields

[Update of EMR feature article: Parkes, Tony, Mike Delaney, Mark Dunphy, Ralph Woodford, Hank Bower, Sue Bower, Darren Bailey, Rosemary Joseph, John Nagle, Tim Roberts, Stephanie Lymburner, Jen Ford and Tein McDonald (2012) Big Scrub: A cleared landscape in transition back to forest? Ecological Management & Restoration 12:3, 212-223. https://doi.org/10.1111/emr.12008]

Key words: Lowland Subtropical Rainforest, ecological restoration, seed production, landholder action, corridors

Figure 1a. Rainforest regenerators undertake camphor injection, leaving bare trees standing creating light and an opportunity for seed in the soil to naturally regenerate. (Photo © Envite Environment)

Figure 1b Aerial photo showing camphor conversion by injection
(Photo © Big Scrub Regeneration Pty. Ltd.)

Introduction. The Big Scrub, on the NSW north coast, was once the largest tract of Lowland Subtropical Rainforest (LSR) in Australia. It was reduced to less than 1% of its original extent by he end of hte 19th century after clearing for agriculture. Big Scrub Landcare (BSL) is a non-profit organisation dedicated to improving the long-term ecological functionality of what remains of this critically endangered ecosystem –  lowland subtropical rainforest.  Our 2012 EMR feature reported on remnant restoration and revegetation works overseen by BSL to 2012. At that time, 68 remnants were identified as significantly affected from the impacts of environmental degradation including weed invasion and cattle access. These remnants had been undergoing treatments, with 20 substantially recovered and on a ‘maintenance’ regime.  Approximately 900,000 trees had been planted to establish 250 ha of young diverse well-structured rainforest.  A comparatively small area of forest dominated by the highly invasive exotic, Camphor Laurel (Cinnamomum camphora) (Camphor), which  has colonised much of the Big Scrub landscape had been converted to early phase LSR by skilled removal of a range of weeds and facilitating natural regeneration. 

Progress since 2012. Substantial progress in restoring critically endangered lowland subtropical rainforest in the Big Scrub has been achieved over the past seven years in the following areas.

  • Assisted regeneration of remnants has continued and become more focused
  • Re-establishment of LSR through plantings has expanded
  • Camphor conversion has developed in scale and techniques
  • Greater security of funding has been achieved
  • Community engagement has greatly improved and expanded
  • Genome science is being applied to produce seed with optimal genetic diversity for rainforest restoration.

Assisted regeneration of remnants. This work continues to be the major focus of on-ground restoration work. About 2000 regenerator days (9 years Full Time Equivalent) of work has been undertaken in 45 remnants. BSL’s remnant restoration program has become more strategic, with more focus on Very High Conservation Value (VHCV) remnants, particularly those in the NSW National Parks Estate, including the VHCV sites in Nightcap National Park (NP) including Big Scrub Flora Reserve, Minyon Falls and Boomerang Falls; Andrew Johnston’s Scrub NR; Snow’s Gully Nature Reserve (NR); Boatharbour NR; Victoria Park NR and Davis Scrub NR, plus the Booyong Flora Reserve. Rehabilitation work at these sites is prioritised in the major new four-year Conservation Co-funding project funded jointly by BSL and the NSW government’s Saving our Species program. Big Scrub Foundation (BSF) funding has enabled BSL to continue maintenance work in remnants that have reached or are approaching the maintenance stage.

Monitoring outcomes has become more rigorous and has demonstrated ongoing improvements in vegetation structure, with decreasing levels of weed invasion and improvements in native species cover.

BSL’s partner Envite Environment, with some assistance from BSL, is creating an important linkage between Nightcap NP and Goonengerry NP by the restoration of rainforest through the progressive removal of weeds that had dominated the 80 ha Wompoo/Wanganui corridor between these two NPs.

 Re-establishment of rainforest by planting. The area of LSR is being re-established by planting on cleared land has also continued to expand.   In the last 7 years  more than 0.5 million rainforest trees have been planted in the Big Scrub region, contributing to the restoration of another 175 ha of LSR, expanding total area of re-established rainforest by another 13%. While landscape-scale landholder driven work is inevitably opportunistic rather than strategic, the establishment of new patches of LSR enhance valuable stepping-stone corridors across the Big Scrub. Since 2012 the number of regenerators working fulltime in the Big Scrub region has increased by approximately 50%.  Another trend that has strengthened in the last 7 years is that larger plantings are now being carried out by well-resourced landowners. This is accounting for about 40% of the annual plantings. Offsets for residential development account for another 40% of trees planted. The remaining 20% is made up by small landowners, cabinet timber plantations, large-scale landscaping, and other planting of Big Scrub species. This is a significant change from the more dominant grant-based small landowner/Landcare group plantings prior to 2012.

 Camphor conversion. Larger areas of Camphor forest are being converted to rainforest, with project areas increasing substantially from less than a hectare to ten and twenty hectares. BSL estimates that more than 150 ha of Camphor forest are currently under conversion. Some landowners underake camphor injection which leaves bare trees standing, creating light and an opportunity for existing native seedlings and seed in the soil (or seed dropped by perching birds) to naturally regenerate (Fig 1). Others are choosing the more expensive option of physically removing the Camphor trees and carefully leaving the rainforest regrowth (Fig 2).  Improved techniques and landholder capacity building continue to progress and camphor conversion is now a significant component of rainforest restoration.

BSL alone is facilitating the conversion of almost 40 ha of Camphor forest to LSR funded by two 3-year grants from the NSW Environmental Trust, together with contributions from the 19 landholders involved in these projects. The ecological outcomes being achieved are significant and less costly than revegetation via plantings.

Figure 2a. Camphor forest under conversion using heavy machinery leaving rainforest regrowth intact (Photo © Big Scrub Landcare)

Figure 2b. Aerial photo showing camphor conversion by removal
(Photo © Big Scrub Landcare)

Greater security of funding. Australian Government funding for biodiversity conservation is at a very low level. Competition for existing NSW state government funding is increasing. BSL therefore has continued to  develop new strategies for fund raising to ensure continuity of its long-term program for the ecological restoration of critically endangered LSR in the Big Scrub and elsewhere. Ongoing funding of at least $150,000 annually is needed to ensure the great progress made  over the past 20 years in rehabilitating remnants is  maintained and expanded to new areas of large remnants. These funds finance weed control and monitoring; weeds will always be a part of the landscape and an ongoing threat to our rainforest remnants.

Establishment of the Big Scrub Foundation in 2016 was a major development in BSL’s fund raising strategy. The Foundation received a donation of AUD $1M to establish a permanent endowment fund that is professionally invested to generate annual income that helps finance BSL’s remnant care program and its other activities. Generous donors are also enabling the Foundation to help finance the Science Saving Rainforest Program.

Figure 3a. Australian gardening celebrity Costa Gregoriou at a Big Scrub community tree planting (part of the 17th annual Big Scrub Rainforest Day) in 2015 (Photo © Big Scrub Landcare)

Figure 3b. Founder of the Australian Greens political party Bob Brown and Dr. Tony Parkes at the 18th annual Big Scrub Rainforest Day in 2016. (Photo © Big Scrub Landcare)

Community engagement. The  Big Scrub Rainforest Day continues to be BSL’s  major annual community engagement event, with the total number of attendees estimated to have exceeded 12,000 over the past 7 years; the 2016 day alone attracted more than 4000 people (Fig 3). Every second year the event is held at Rocky Creek Dam.  A new multi-event format involving many other organisations has been introduced on alternate years.

BSL’s Rainforest Restoration Manual has been updated in the recently published third edition and continues to inform and educate landowners, planners and practitioners.

BSL in partnership with Rous County Council produced a highly-commended book on the social and ecological values of the Big Scrub that has sold over 1000 copies. BSL’s website has had a major upgrade: its Facebook page is updated weekly; its e-newsletter is published every two months. BSL’s greatly improved use of social media is helping to raise its profile and contribute to generating donations from the community, local businesses and philanthropic organisations to fund its growing community education and engagement work and other activities.

Science saving rainforests program. BSL, the Royal Botanic Gardens Sydney, the BSF and their partners have commenced an internationally innovative program to apply the latest DNA sequencing and genome science to establish plantations to produce seed of key species with optimal genetic diversity for the ecological restoration of critically endangered lowland subtropical rainforest. This program will for the first time address the threat posed by fragmentation and isolation resulting from the extreme clearing of Australia’s LSR, which is estimated to have resulted in the destruction of 94% of this richly biodiverse Gondwana-descended rainforest.

Many  key  LSR species are trapped in small populations in  isolated remnants  that  lack the genetic diversity needed to adapt and survive in the long term, particularly faced with climate change Necessary  genetic diversity is also lacking in many key species in the 500 ha of planted and regrowth rainforest. The first stage of the program, already underway, involves collecting leaf samples from approximately 200 individual old growth trees in 35 remnant populations across the ranges of 19 key structural species of the ‘original’ forest. DNA will be extracted from the leaf samples of each species and sequenced. The  latest genome science will be applied to select the 20 individual trees of each species that will be cloned to provide planting stock with optimal genetic diversity for the establishment of a living seed bank in the form of a plantation that will produce seed  for use in restoration plantings. As the individual trees in the restoration plantings reproduce, seed with appropriate genetic diversity and fitness will be distributed across the landscape. The project focuses on key structural species and thus helping the survival of Australia’s critically endangered Lowland Subtropical Rainforest in the long term.

Lessons learned and current and future directions. A key lesson learned some five years ago was that BSL had grown to the point where volunteers could no longer manage the organisation effectively. BSL took a major step forward in 2015 by engaging a part-time Manager, contributing to BSL’s continuing success by expanding the scope, scale and effectiveness of its community engagement activities and improving its day to day management.

The principal lesson learned from BSL’s on-ground restoration program is to focus on rehabilitation of remnants and not to take on large planting projects, but rather support numerous partnered community tree planting events. Large grant-funded multi-site tree planting projects are too difficult to manage and to ensure landholders carry out the necessary maintenance in the medium to long term.

Acknowledgements.  BSL acknowledges our institutional Partners and receipt of funding from the NSW government’s Saving our Species program, NSW Environmental Trust and Big Scrub Foundation.

Contact:  Shannon Greenfields, Manager, Big Scrub Landcare (PO Box 106,  Bangalow NSW 2479 Australia; . Tel: +61 422 204 294; Email: info@bigscrubrainforest.org.au Web: www.bigscrubrainforest.org.au)

Recovering Murray-Darling Basin fishes by revitalizing a Native Fish Strategy – UPDATE of EMR feature

John Koehn, Mark Lintermans and Craig Copeland

[Update of EMR Feature: Koehn JD, Lintermans M, Copeland C (2014) Laying the foundations for fish recovery: The first 10 years of the Native Fish Strategy for the Murray‐Darling Basin, Australia. Ecological Management & Restoration, 15:S1, 3-12. https://onlinelibrary.wiley.com/toc/14428903/2014/15/s1]

Key words restoration, native fish populations, threatened species, Australia, Murray-Darling Basin

Figure 1. The construction of fishways can help restore river connectivity by allowing fish movements past instream barriers. (Photo: ARI.)

 Introduction. Fish populations in the Murray-Darling Basin (MDB), Australia, have suffered substantial declines due to a wide range of threats and there is considerable concern for their future. Given these declines and the high ecological, economic, social and cultural values of fish to the Australian community, there is a need to recover these populations. In 2003, a Native Fish Strategy (NFS) was developed to address key threats; taking a coordinated, long-term, multi-jurisdictional approach, focussed on recovering all native fish (not just angling species) and managing alien species. The strategy objective was to improve populations from their estimated 10% of pre-European settlement levels, to 60% after 50 years of implementation.

To achieve this the NFS was intended to be managed as a series of 10-year plans to assist management actions in four key areas; the generation of new knowledge, demonstration that multiple actions could achieve improvements to native fish populations, building of a collaborative approach, and the communication of existing as well as newly-acquired science. The NFS successfully delivered more than 100 research projects across six ‘Driving Actions’ in its first 10 years, with highlights including the implementation of the ‘Sea to Hume’ fishway program (restoring fish passage to >2 200 km of the Murray River, Fig 1), improved knowledge of fish responses to environmental water allocations, development of new technologies for controlling alien fish, methods to distinguish hatchery from wild-bred fish, creating a community partnership approach to ‘ownership’ of the NFS, and rehabilitating fish habitats using multiple interventions at selected river (demonstrations) reaches.  The NFS partnership involving researchers, managers, policy makers and the community delivered an applied research program that was rapidly incorporated into on-the-ground management activities (e.g. design of fishways; alien fish control, environmental watering; emergency drought interventions). The NFS largely coincided with the Millennium Drought (1997-2010) followed by extensive flooding and blackwater events, and its activities contributed significantly to persistence of native fish populations during this time.

Funding for the NFS program ceased in 2012-13, after only the first decade of implementation but the relationships among fishers, indigenous people and government agencies have continued along with a legacy of knowledge, development of new projects and collaborative networks with key lessons for improved management of native fishes (see http://www.finterest.com.au/).

Figure 2. Recreational fishers are a key stakeholder in the Murray-Darling Basin, with a keen desire to have sustainable fishing for future generations. (Photo: Josh Waddell.)

Further works undertaken. Whilst the NFS is no longer funded as an official project, many activities have continued though a range of subsequent projects; some are highlighted below:

  • Environmental water: development of fish objectives and implementation of the Basin Plan, northern MDB complementary measures, further investigation of mitigation measures for fish extraction via pumps and water diversions.
  • Fishways: Completion of sea to Lake Hume fishway program and other fishways such as Brewarrina
  • Community engagement: Continuation of many Demonstration (recovery) reaches and intermittent NFS Forums (Fig 2).
  • Recreational fishery management: engagement of anglers through the creation of the Murray Cod (Maccullochella peelii) fishery management group and OzFish Unlimited.
  • Threatened species recovery: success with Trout Cod (Maccullochella macquariensis)  (Fig 3) and Macquarie Perch (Macquaria australasica) populations, development of population models for nine MDB native fish species.
  • Knowledge improvement: research has continued, as has the publication of previous NFS research-related work.
  • Indigenous and community connection to fishes: development of the concept of Cultural flows, involvement in Basin watering discussions.

Figure 3. Trout Cod are a success story in the recovery of Australian threatened species. (Photo: ARI.)

Further results to date. The continued poor state of native fishes means there is a clear need for the continuation of successful elements of the NFS. There is need, however, for revision to provide a contemporary context, as some major changes have occurred over the past decade. The most dramatic of these, at least publicly, has been the occurrence of repeated, large fish kills (Fig 4). This was most evident in the lower Darling River in early 2019 when millions of fish died. The media coverage and public outcry followed the South Australian Royal Commission and two ABC 4Corners investigations into water management, highlighted that all was not well in the Murray-Darling Basin. Indeed, following two inquiries, political recommendations were made to develop a Native Fish Recovery Management Strategy (NFMRS), and a business case is currently being developed. The drought, water extraction and insufficient management efforts to support native fish populations, especially within a broader sphere of a ‘new’ climate cycle of more droughts and climatic extremes, have contributed to these fish kill events. For example, one of the necessary restoration efforts intended from the Basin Plan was to provide more water for environmental purposes to improve river condition and fish populations. Recent research, however, appears to indicate that flow volumes down the Darling River have generally decreased. There is also a continuing decline of species with examples such as Yarra Pygmy Perch (Nannoperca obscura), now being extinct in MDB, and the closely related Southern Pygmy Perch (Nannoperca australis) which is still declining. Monitoring of fish populations has indicated that they remain in poor health and the need for recovery may be even greater than in 2003. We need to act now.

While some of the legacy of the NFS has continued, there has been a loss of integrated and coordinated recovery actions that were a key feature of the NFS. This loss of a Basin-wide approach has resulted in some areas (e.g. small streams and upland reaches) being neglected, with a concentration on lowland, regulated river reaches. There has also been a shift from a multi-threat, multi-solution approach to recovery, to a narrower, flow-focussed approach under the Basin Plan. In addition, there has been the installation of infrastructure (known as Sustainable Diversion Measures) to ‘save’ water which may have deleterious impacts on fish populations (e.g. the impoundment of water on floodplains by regulators or the changed operations of Menindee Lakes on the Darling River).

A clear success of the NFS was improvements in community understanding of native fishes and their engagement in restoration activities. These community voices- indigenous, conservation, anglers, etc. have been somewhat neglected in the delivery of the Basin Plan. There has been ongoing fish researcher and stakeholder engagement, but this has been largely driven by enormous goodwill and commitment from individuals involved in the collaborative networks established through the NFS. While these efforts have been supported by many funding bodies and partners such as the Murray-Darlin Basin Authority, state and Commonwealth water holders and agencies and catchment management authorities, without true cross-basin agreement and collaboration the effectiveness of these efforts will be significantly reduced.

Figure 4. Fish kills have created great public concern and are an indication of the need for improved management of native fish populations. (Photo:Graeme McRabb.)

Lessons learned and future directions.  Native fish populations in the MDB remain in a poor state and improvements will not be achieved without continued and concerted recovery efforts. Moreover, a 5-year review of the NFS indicated that while the actions undertaken to that time had been positive, they needed to be a scaling up considerably to achieve the established goals.  Recovery actions must be supported by knowledge and the lessons learnt from previous experience.  Some fish management and research activities have continued under the auspices of the Basin Plan, but these have largely focussed on the delivery of environmental water, either through water buy-backs or improved efficiency of water delivery. A key requirement is therefore transparent and accurate measurement and reporting of how much flow has been returned to the environment, and how this may have improved fish populations. This remains problematic as evidenced by the recent inquiries into fish kills in the lower Darling River (and elsewhere) and the lack of available water accounting. Fish kills are likely to continue to reoccur and the lingering dry conditions across much of the Northern Basin in 2018-19 and climate forecasts have highlighted the need for further, urgent actions through an updated NFS.

The NFS governance frameworks at the project level were excellent and while some relationships have endured informally, there is a need for an overarching strategy and coordination of efforts across jurisdictions to achieve the improved fish outcomes that are required. The absence of the formal NFS thematic taskforces (fish passage, alien fishes, community stakeholder, demonstration reaches etc) and the absence of any overarching NFS structures means that coordination and communication is lacking, with a focus only on water, limiting the previously holistic, cross jurisdiction, whole-of-Basin approach. The priority actions developed and agreed to for the NFS remain largely relevant, just need revitalized and given the dire status of native fish, scaled up significantly.

Stakeholders and funding. The continuation of quality research and increased understanding of fish ecology, however, not have kept pace with the needs of managers in the highly dynamic area of environmental watering. The transfer of knowledge to managers and the community needs to be reinvigorated. Efforts to engage recreational fishers and communities to become stakeholders in river health are improving (e.g. OzFish Unlimited: https://ozfish.org.au; Finterest website: http://www.finterest.com.au/) but with dedicated, increased support, a much greater level of engagement would be expected.  Previously, the community stakeholder taskforce and Native Fish coordinators in each state provided assistance and direction, including coordination of the annual Native Fish Awareness week. Some other key interventions such as the Basin Pest Fish Plan have not been completed and recovery of threatened fishes have received little attention (e.g. no priority fish identified in the national threatened species strategy).  Funding for fish recovery is now piecemeal, inadequate and uncoordinated, despite the growing need. The $13 B being spent on implementation of the Basin Plan should be complemented by an appropriate amount spent on other measures to ensure the recovery of MDB fishes.

Contact information. John Koehn is a Principal Research Scientist at the Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, was an author the Murray-Darling Basin Native Fish Strategy and a member of various Native Fish Strategy panels and projects (Email:  John.Koehn@delwp.vic.gov.au). Mark Lintermans is an Associate Professor at Institute for Applied Ecology, University of Canberra, and was a member of various Native Fish Strategy panels and projects; (Email: Mark.Lintermans@canberra.edu.au). Craig Copeland is the CEO of OzFish Unlimited and a leading contributor to the development of the next stage of the Native Fish Strategy, the Northern Basin Complementary Measures Program and the 2017 MDB Native Fish Forum (Email: craigcopeland@ozfish.org.au).

 

The Tiromoana Bush restoration project, Canterbury, New Zealand

Key words: Lowland temperate forest, animal pest control, weed control, restoration plantings, public access, cultural values, farmland restoration

Introduction. Commencing in 2004, the 407 ha Tiromoana Bush restoration project arose as part of the mitigation for the establishment of the Canterbury Regional Landfill at Kate Valley, New Zealand. The site lies one hour’s drive north of Christchurch City in North Canterbury coastal hill country (Motunau Ecological District, 43° 06’ S, 172° 51’ E, 0 – 360 m a.s.l.) and is located on a former sheep and beef farm.

Soils are derived from tertiary limestones and mudstones and the site experiences an annual rainfall of 920mm, largely falling in winter. The current vegetation is a mix of Kānuka (Kunzea robusta) and mixed-species shrubland and low forest, restoration plantings, wetlands, Gorse (Ulex europaeus) and European Broom (Cytisus scoparius) shrubland and abandoned pasture. Historically the area would have been forest, which was likely cleared 500-700 years ago as a result of early Māori settlement fires. A total of 177 native vascular plant and 22 native bird species have been recorded, including four nationally threatened species and several regionally rare species.

Before and after photo pair (2005-2018). showing extensive infilling of native woody vegetation on hill slopes opposite, restoration plantings in the central valley, and successional change from small-leaved shrubs to canopy forming trees in the left foreground. (Photos David Norton.)

 

Project aims. The long-term vision for this project sees Tiromoana Bush, in 300 years, restored to a: “Predominantly forest ecosystem (including coastal broadleaved, mixed podocarp-broadleaved and black beech forests) where dynamic natural processes occur with minimal human intervention, where the plants and animals typical of the Motunau Ecological District persist without threat of extinction, and where people visit for recreation and to appreciate the restored natural environment.”

Thirty-five year outcomes have been identified that, if achieved, will indicate that restoration is proceeding towards the vision – these are:

  1. Vigorous regeneration is occurring within the existing areas of shrubland and forest sufficient to ensure that natural successional processes are leading towards the development of mature lowland forest.
  2. The existing Korimako (Bellbird Anthornis melanura) population has expanded and Kereru (Native Pigeon Hemiphaga novaeseelandiae) are now residing within the area, and the species richness and abundance of native water birds have been enhanced.
  3. The area of Black Beech (Fuscospora solandri) forest has increased with at least one additional Black Beech population established.
  4. Restoration plantings and natural regeneration have enhanced connectivity between existing forest patches.
  5. Restoration plantings have re-established locally rare vegetation types.
  6. The area is being actively used for recreational, educational and scientific purposes.

Day-to-day management is guided by a five-year management plan and annual work plans. The management plan provides an overview of the approach that is being taken to restoration, while annual work plans provide detail on the specific management actions that will be undertaken to implement the management plan.

Forest restoration plantings connecting two areas of regenerating Kānuka forest. Photo David Norton.

 

Restoration approach and outcomes to date. The main management actions taken and outcomes achieved have included:

  • An Open Space Covenant was gazetted on the title of the property in July 2006 through the QEII National Trust, providing in-perpetuity protection of the site irrespective of future ownership.
  • Browsing by cattle and sheep was excluded at the outset of the project through upgrading existing fences and construction of new fences. A 16 km deer fence has been built which together with intensive animal control work by ground-based hunters has eradicated Red Deer (Cervus elaphus) and helped reduce damage caused by feral pigs (Sus scrofa domesticus).
  • Strategic restoration plantings have been undertaken annually to increase the area of native woody and wetland vegetation, as well as providing food and nesting resources for native birds. A key focus of these has been on enhancing linkages between existing areas of regenerating forest and re-establishing rare ecosystem types (e.g. wetland and coastal forest).
  • Annual weed control is undertaken focusing on species that are likely to alter successional development (e.g. wilding conifers, mainly Pinus radiata, and willows Salix cinerea and fragilis) or that have the potential to smother native regeneration (e.g. Old Man’s Beard Clematis vitalba). Gorse and European Broom are not controlled as they act as a nurse for native forest regeneration and the cost and collateral damage associated with their control will outweigh biodiversity benefits.
  • Establishment of a public walking track was undertaken early in the project and in 2017/2018 this was enhanced and extended, with new interpretation included. Public access has been seen as a core component of the project from the outset so the public can enjoy the restoration project and access a section of the coastline that is otherwise relatively inaccessible.
  • Part of the walkway upgrade included working closely with the local Māori tribe, Ngāi Tūāhuriri, who have mana whenua (customary ownership) over the area. They were commissioned to produce a pou whenua (land marker) at the walkway’s coastal lookout. The carvings on the pou reflect cultural values and relate to the importance of the area to Ngāi Tūāhuriri and especially values associated with mahinga kai (the resources that come from the area).
  • Regular monitoring has included birds, vegetation and landscape, with additional one-off assessments of invertebrates and animal pests. Tiromoana Bush has been used as the basis for several undergraduate and postgraduate student research projects from the two local universities.
Vigorous regeneration of Mahoe under the Kānuka canopy following exclusion of grazing animals. Photo David Norton.

 

Lessons learned. Important lessons learned over the 15-years have both shaped the approach to management at this site and have implications for the management of other projects:

  • Control of browsing mammals, both domestic and feral, has been essential to the success of this project. While domestic livestock were excluded at the outset of the project, feral Red Deer and pigs have the potential to seriously compromise restoration outcomes and these species have required additional management inputs (fencing and culling).
  • Since removal of grazing, the dominant exotic pasture grasses, especially Cocksfoot (Dactylis gomerata), now form tall dense swards. These swards severely restrict the ability of native woody plants to establish and herbicide control is used both pre- and post-planting to overcome this. During dry summers (which are common) the grass sward is also a significant fuel source and the walkway is closed during periods of high fire risk to avoid accidental fires which would decimate the restoration project.
  • Regular monitoring is important for assessing the biodiversity response to management. Annual photo-monitoring now spanning 15-years is highlighting significant changes in land cover across the site, while more detailed monitoring of plants and birds is strongly informing management actions. For example, seven-years of bird monitoring has indicated an ongoing decline in some native birds that is most likely due to predation (by cats, mustelids, rodents, hedgehogs). As a result, a predator control programme is commencing in 2019.
  • Simply removing grazing pressure from areas of existing regenerating native woody vegetation cannot be expected to result in the return of the pre-human forest because of the absence of seed sources. Permanent plots suggest that Kānuka is likely to be replaced by Mahoe (Melicytus ramiflorus), with few other tree species present. Gap creation and enrichment planting is therefore being used to speed up the development of a more diverse podocarp-angiosperm forest canopy.
Kate Pond on the Tiromoana Bush walkway. The pond and surrounding wetland provides habitat for several native water birds. Photo Jo Stilwell.
The pou whenua on the coastal lookout platform looking north up the coastline. Photo David Norton.

 

Looking to the future. Considerable progress in restoring native biodiversity at Tiromoana Bush has been achieved over the last 15 years and it seems likely that the project will continue to move towards achieving its 35-year outcomes and eventually realising the long-term vision. To help guide management, the following goals have been proposed for the next ten-years and their achievement would further help guarantee the success of this project:

  • The main valley floor is dominated by regenerating Kahikatea (Dacrycarpus dacrydioides) forest and wetland, and the lower valley is dominated by regenerating coastal vegetation.
  • At least one locally extinct native bird species has been reintroduced.
  • Tiromoana Bush is managed as part of a wider Motunau conservation project.
  • The restoration project is used regularly as a key educational resource by local schools.
  • The walkway is regarded as an outstanding recreational experience and marketed by others as such.
  • Tiromoana Bush is highly valued by Ngāi Tūāhuriri.
Kereru, one of the native birds that restoration aims to help increase in abundance. Photo David Norton.

 

Stakeholders and funding. The project is funded by Transwaste Canterbury Ltd., a public-private partnership company who own the landfill and have been active in their public support for the restoration project and in promoting a broader conservation initiative in the wider area. Shareholders of the partnership company are Waste Management NZ Ltd, Christchurch City Council and Waimakariri, Hurunui, Selwyn and Ashburton District Councils.

Contact Information. Professor David Norton, Project Coordinator, School of Forestry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand. Phone +64 (027) 201-7794. Email david.norton@canterbury.ac.nz