Category Archives: Ecosystem services

Donaghy’s Corridor – Restoring tropical forest connectivity

Key words: tropical forest restoration, habitat connectivity, small mammal recolonisation, ecological processes, community partnerships.

Introduction. Closed forest species are considered especially susceptible to the effects of forest fragmentation and habitat isolation. The Wet Tropics of north Queensland contains many forest fragments between 1ha and 500ha, mostly surrounded by dairy and beef pastures, and crops such as maize, sugar cane and bananas. Larger blocks are often internally fragmented by roads and powerlines. The Lake Barrine section of Crater Lakes National Park is a 498ha fragment that is 1.2km distant from the 80,000ha Wooroonooran N.P, and ecologically isolated since the 1940s with detectable effects on genetic diversity of rainforest mammals.

In 1995 the Qld Parks and Wildlife Service, along with landholders and the local ecological restoration group TREAT Inc., began riparian forest restoration along Toohey Creek to re-connect the Barrine fragment to Wooroonooran and to document colonisation by small mammals and native plants typically associated with rain forest environments (Fig 1).

AERIAL VIEW

Fig 1. Donahy’s Corridor, Atherton Tablelands, linking Crater Lakes NP and Wooroonooran NP, Qld (Photo TREAT).

Connectivity Works. Prior to works commencement, small mammal communities (e.g. Rattus spp. and Melomys spp.) along and adjacent to Toohey Creek were sampled, along with a full vegetation survey, to determine base-line community composition and structure. Permanent stock exclusion fencing was erected and off-stream stock watering points established.

A 100m wide corridor of vegetation was established over a four year period using local provenances of 104 native species comprising around 25% pioneer species, 10% Ficus spp., and the remainder from selected primary and secondary species. In total, 20,000 trees, shrubs and vines were planted along the creek, and a three-row shelterbelt was planted adjacent to the corridor to reduce edge effects. Species were selected on a trait basis, including suitability as food plants for targeted local fauna e.g. Cassowary (Casuarius casuarius johnsonii).

Ecological furniture (e.g., rocks, logs) was placed prior to planting. On completion, the 16ha Donaghy’s Corridor Nature Refuge was declared over the area, recognising the Donaghy family’s significant land donation and the corridor’s protection by legislation. A three year monitoring program, conducted quarterly, commenced on completion of planting.

TREAT2012Donaghy'sCorridor22

Fig. 2. Developing rainforest in Donahys Corridor (Photo Campbell Clarke)

Monitoring. Flora monitoring was conducted along transects bisecting the four annual plantings (1995/96/97/98), and small mammal colonisation in 11, 20m x 20m plots located in the plantings, adjacent open paddocks, and in forests at either end. Small mammal sampling included mark-recapture and DNA studies, to determine colonisation and movement patterns and genetic effects.

Results. Three years after establishment, over 4000 native plants were recorded – representing 119 species from 48 families. This included 35 species naturally dispersed from the adjacent forest (Figs 2 and 3). Small mammal sampling showed 16 long-distance movements by Rattus species and the appearance of an FI hybrid Bush Rat (Rattus fuscipes) in the central section of the corridor in the third year of the study. The rainforest rodent Fawn-footed Melomys (Melomys cervinipes) had established territories in the second year of the study. A study of wood-boring beetles (Coleoptera)in ecological furniture showed 18 morpho-species in a three year period. Many other orders/families were also recorded.

Water quality in Toohey Creek was not studied but has continued to increase since the replacement exotic grasses with woody vegetation, and the exclusion of cattle from accessing the stream. There is increased shade available for stock and less pressure on the limited number of existing paddock shade trees.

TREAT2012Donaghy'sCorridor18

 Fig. 3. Indicators of rainforest structure (species and layering) and functions (habitat providion, nutrient cycling, recruitment) are now highly evident. (Photo Campbell Clarke).

What we learned.

  • Plant colonisation was rapid, dominated by fleshy-fruited species (10-30mm diameter), of which a proportion are long-lived climax species
  • Plant colonisation was initially highest in the interior, close to the creek margin, but has become more even over time
  • Vegetation structural complexity and life form diversity have continued to increase since establishment
  • Small mammal communities changed in response to habitat structure, grassland species dominate until weeds are shaded out when they are replaced by closed forest species
  • Many long distance mammal movements occurred that were only detected by genetic analysis
  • Monitoring showed small mammals used the new habitat to traverse from end to end until resources were worth defending: at that time long distance movements declined and re-capture of residents increased
  • Partnerships between government, research bodies, community groups, and landholders are essential if practical solutions to fragmentation are to be developed and applied

Acknowledgements: Trees for the Evelyn and Atherton Tableland acknowledges and appreciates the support of all the volunteers involved in this project, staff from the Qld Parks and Wildlife Service-Restoration Services, , James Cook University, University of Qld, Griffith University and UCLA Berkely. In particular we would like to acknowledge the Donaghy family.

Contact: TREAT Inc. PO Box 1119, Atherton. 4883 QLD Australia. http://www.treat.net.au/

SEE ALSO:

Global Restoration Network Top 25 report: http://www.treat.net.au/projects/index.html#donaghy

Watch the video on RegenTV – presented by Nigel Tucker

 

 

 

 

 

 

 

 

Thiaki biodiversity-ecosystem functioning and restoration experiment

P1010852-Gabriela-small

Fig 1. Research students measuring planted Queensland Maples for modelling studies

Noel Preece

Key words rainforest reforestation, carbon sequestration, cost-effectiveness, old fields, weeds

Introduction. Restoring agricultural landscapes to forest is time-consuming, expensive and often hit-and-miss. Trees take years to show survival and growth rates and effects of planting methods and maintenance. World-wide, there are few large-scale reforestation experiments designed to test the effectiveness of and functional responses to reforestation, especially in the tropical regions for biodiversity and carbon benefits.

In the wet tropics of Australia, far north Queensland, the Thiaki Restoration Research project was established to examine aspects of reforestation (Figs 1-3). The reference model for the project is ‘Simple to complex notophyll vine forest of cloudy wet highlands on basalt, Regional Ecosystem 7.8.4’. Three fully-replicated experiments were established in 2010, 2011 and 2013 to examine different approaches to reforestation. The experimental plots are all replicated, with control plots, to examine different aspects of reforestation. Plot size varies from 25 m square up to 50 m square, and we now manage 90 experimental plots over more than 30 hectares of planted land.

Experimental design. The first experiment is examining the effect of different planting methods; the second is researching three combinations of native rainforest species and two treatments (high and low planting densities); and the third is examining the effects of two different herbicide treatments (blanket spraying and strip spraying). One of the major emphases of the experiments is to analyse planting practices for their cost-effectiveness for the carbon sequestration industry. Reducing establishment and maintenance costs for carbon sink forests is essential, as published and anecdotal costs of establishing forests in the region and elsewhere has been so high as to make the carbon economy unreachable for environmental planting practitioners to ‘make a buck’ from carbon farming. We will publish these findings in the near future, as most of the plantings have reached an (almost) self-maintaining height and size.

Current work, which will be published from the experiments, includes:

  • examination of field-based measurements compared with national modelling tools;
  • effects of herbicide spraying and grass suppression practices; rates and patterns of natural recruitment;
  • functional responses of trees to soil nutrients and characteristics (such as compaction, moisture and organic content); functional responses of dung beetles and mammals to restoration;
  • responses of ants to restoration and remnant patches and proximity to remnant forests; and
  • the functioning of barriers to recruitment by rainforest fauna.

Weeds also present a significant research component, and examination of the effects and faculty of weeds to restoration is being conducted. We are also examining the effects of different planters on survival rates, which is of vital interest to restorationists.

P1020070-sml

Fig. 2. Sampling soils and roots to study functional responses of tree families.

Results to date. The experiments have resulted in important findings which affect reforestation success, and publications which have contributed some of the first replicated experimental results on: planting methods; allometrics for young trees; functional responses of several taxa to restoration; young tree root:shoot ratios; improved wood density data on young trees; and cost-effectiveness of planting methods. Some of the related research has contributed to better Australian models of carbon sequestration in the tropics.

Lessons learned and future directions. Top priority lessons include the preparation and planting stage, as all else follows and mistakes made at this point ramify later. Vital considerations are: site preparation, especially early weed control; selecting species which will survive the harsh exposed conditions; nurturing and sun-hardening seedlings; ensuring that the soil is very wet and that seedlings are soaked immediately before planting; and, ensuring that planters plant in ways that don’t damage the seedlings.

Collaborators. Charles Darwin, James Cook, Adelaide, Lancaster (UK), and Queensland Universities. Funding: Australian Research Council Linkage project LP0989161, Biome5 Pty Ltd, Terrain NRM, Greening Australia, Stanwell Corporation, Biodiversity Fund.

Contact. Dr Noel Preece, Director, Biome5 Pty Ltd, PO Box 1200, Atherton Qld 4883, +61407996953; email: noel@biome5.com.au. Website www.biome5.com.au.

Read also: https://site.emrprojectsummaries.org/2011/09/16/thiaki-creek-cost-effective-rainforest-restoration-for-carbon-biodiversity/

 

 

 

 

 

Conserving and restoring biodiversity of the Great Barrier Reef through the Representative Areas Program (RAP)

Key words: Coral reef, no take zones,

The Great Barrier Reef is the world’s largest coral reef ecosystem (344,400 square km) and a World Heritage Area on the north-east coast of Australia. It contains a high diversity of endemic plants, animals and habitats. It is a multiple-use area with different zones in which a wide range of activities and uses are allowed, including tourism, fishing, recreation, traditional use, research, defence, shipping and ports. Components of the ecosystem have been progressively showing symptoms of decline.

TroutBarra3

Coral Trout is one of more than 1625 fish found on the Great Barrier Reef

Existing ecosystems. Coral reefs are like the building blocks of the Great Barrier Reef, and comprise about seven per cent of the ecosystem. The balance is an extraordinary variety of other marine habitats and communities ranging from shallow inshore areas to deep oceanic areas over 250 kilometres offshore and deeper than 1000 metres, along with their associated ecological processes. The abundant biodiversity in the Great Barrier Reef includes:

  • Some 3000 coral reefs built from more than 400 species of hard coral
  • Over one-third of all the world’s soft coral and sea pen species (150 species)
  • Six of the world’s seven species of marine turtle
  • The largest aggregation of nesting green turtles in the world
  • A globally significant population of dugongs
  • An estimated 35,000 square kilometres of seagrass meadows
  • A breeding area for humpback whales and other whale species
  • More than 130 species of sharks and rays
  • More than 2500 species of sponges
  • 3000 species of molluscs
  • 630 species of echinoderms
  • More than 1625 species of fish
  • Spectacular seascapes and landscapes such as Hinchinbrook Island and the Whitsundays
  • 215 species of bird
Crown-of-thorns single injection (C) GBRMPA cropped

Diver injecting Crown of Thorns Starfish

Impacts on the ecosystem. The main threats to the Great Barrier Reef ecosystem are:

  • Climate change leading to ocean acidification, sea temperature rise and sea level rise
  • Catchment run-off of nutrients, pesticides and excessive sediments
  • Coastal development and associated activities such as clearing or modifying wetlands, mangroves and other coastal habitats
  • Overfishing of some predators, incidental catch of species of conservation concern, effects on other discarded species, fishing of unprotected spawning aggregations, and illegal fishing.
4. GBRMPA staff - public consultation(2)

GBRMPA staff meeting to plan and discuss Representative Areas Program (RAP) at Townsville offices

Restoration goals and planning. A primary aim of the Great Barrier Reef Marine Park Authority (GBRMPA) is to increase biodiversity protection, with the added intent of enabling the recovery of areas where impacts had occurred. A strong foundation for this has been achieved through the Representative Areas Program, by developing a representative and comprehensive network of highly protected no-take areas, ensuring they included representative examples of all different habitat types.

The rezoning also provided an opportunity to revise all the zone types to more effectively protect the range of biodiversity.

A further aim was to maximise the benefits and minimise the negative impacts of rezoning on the existing Marine Park users.

These aims were achieved through a comprehensive program of scientific input, community involvement and innovation.

More information on the extensive consultation process is available at http://www.gbrmpa.gov.au.

6. green and yellow zone examples

An example of Green Zones (marine national park) and Yellow Zones  (conservation park)

Monitoring. An independent scientific steering committee with expertise in Great Barrier Reef ecosystems and biophysical processes was convened to define operational principles to guide the development of a comprehensive, adequate and representative network of no-take areas in the Marine Park (Fernandes et al 2005). Science (both biophysical and social science) provided the best available information as a fundamental underpinning for the Representatives Areas Program.

There are currently over 90 monitoring programs operating in the Great Barrier Reef World Heritage Area and adjacent catchment. These programs have largely been designed to address and report on specific issues, location or management.

Reef management. GBRMPA’s 25-year management plan outlines a mix of on-ground work, policies, strategies and engagement. The actions include:

  • increasing compliance focus to ensure zoning rules are followed
  • controlling Crown-of-thorns Starfish (Acanthaster planci) outbreaks
  • ensuring cumulative impacts are considered when assessing development proposals
  • setting clear targets for action and measuring our success
  • monitoring the health of the ecosystem on a Reef-wide scale
  • implementing a Reef Recovery program to restore sites of high environmental value in regional areas — regional action recognises the variability of the Reef over such a large area and the variability of the issues and interests of communities and industries in each area.

Benefits of zoning to date. The benefits reef ecosystem health are already occurring including:

  • More and bigger fish: Larger fish are important to population recovery as they contribute more larvae than smaller fish. James Cook University research shows the network of no-take marine reserves benefits species of coral reef fish targeted by fishers (especially Coral Trout), with not only more fish, but bigger fish in reserves — some zones have around twice as much fish biomass compared to zones open to fishing.
  • Improved fish recruitment: Research in the Keppel Islands suggests increased reproduction by the more abundant, bigger fish in reserves. This not only benefits populations within those reserves, it also produces a ‘spill over’ when larvae are carried by currents to other reefs, including areas open to fishing.
  • Improved resilience: The spillover effects also mean the connectivity between reserve reefs is intact. Spatial analysis shows most reserve reefs are within the dispersal range of other reserve reefs, so they are able to function as a network.
  • Sharks, dugongs and turtles: These species are harder to protect because they are slow growing and slow breeding. They are also highly mobile, moving in and out of protected zones. Despite this, available evidence shows zoning is benefiting these species.
  • Reduced crown-of-thorns starfish outbreaks: Outbreaks of crown-of-thorns starfish appear to be less frequent on reserve reefs than fished reefs. This is particularly important as Crown-of-thorns Starfish have been the greatest cause of coral mortality on the Reef in recent decades.
  • Zoning benefits for seabed habitats: Zoning has improved protection of seabed habitats, with at least 20 per cent of all non-reefal habitat types protected from trawling.

How the project has influenced other projects. In November 2004, the Queensland Government mirrored the new zoning in most of the adjoining waters under its control. As a result, there is complementary zoning in the Queensland and Australian Government managed waters within the Great Barrier Reef World Heritage Area.

The approach taken in the Representative Area Program is recognised as one of the most comprehensive and innovative global advances in the systematic protection and recovery of marine biodiversity and marine conservation in recent decades and has gained widespread national international, and local acknowledgement of the process and outcome as best practice, influencing many other marine conservation efforts.

Stakeholders. As a statutory authority within the Australian Government, the Great Barrier Reef Marine Park Authority is responsible for managing the Marine Park. However, as a World Heritage Area, management of the ecosystem is complex jurisdictionally.

Both the Australian and Queensland governments are involved in managing the waters and islands within the outer boundaries through a range of agencies. GBRMPA works collaboratively with the Queensland Parks and Wildlife Service through the joint Field Management Program to undertake day-to-day management of the Great Barrier Reef, including its 1050 islands, many of which are national parks. The program’s activities include surveying reefs and islands, dealing with environmental risks such as ghost nets and invasive pests, responding to incidents, maintaining visitor facilities, and upholding compliance with Marine Park legislation and the Zoning Plan.

A wide range of stakeholders have an interest in the Great Barrier Reef, including the community, Traditional Owners, a range of industries and government agencies, and researchers. The public, including the one million people who live in the adjacent catchment (around 20 per cent of Queensland’s population), benefit from economic activities. In recent years, the number of tourists carried by commercial operators to the Great Barrier Reef averaged around 1.6 to 2 million visitor days each year (GBRMPA data) with an estimate of an additional 4.9 million private visitors per annum.

Resourcing. The resourcing required for rezoning of the Great Barrier Reef over the five-year period of the RAP (1999–2003) was significant. It became a major activity for the agency for several years, requiring the re-allocation of resources particularly during the most intense periods of public participation. However, the costs of achieving greater protection for the Reef are readily justified when compared to the economic benefits that a healthy Great Barrier Reef generates every year (about AUD$5.6 billion per annum).

Further information: www.gbrmpa.gov.au

Contact: info@gbrmpa.gov.au

All images courtesy Great Barrier Reef Marine Park Authority

 

Dewfish Demonstration Reach: Restoring native fish populations in the Condamine Catchment

Key words: native fish, riparian habitat, fish passage, aquatic habitat, Native Fish Strategy

The Dewfish Demonstration Reach is a 110 kilometre stretch of waterway in the Condamine catchment in southern Queensland consisting of sections of the Condamine River, Myall Creek and Oakey Creek near Dalby. The Reach was established in 2007 with the purpose of promoting the importance of a healthy river system for the native fish population and the greater river catchment and demonstrating how the restoration of riverine habitat and connectivity benefits native biodiversity and local communities. Landholders, community groups, local governments and residents have worked together to learn and apply new practices to improve and protect this part of the river system.

The purpose of the project is to demonstrate how the restoration of riverine habitat and connectivity benefits native biodiversity and promote the importance of a healthy river system for native fish and the greater river catchment. The goal is to restore native fish populations to 60% of pre-European settlement levels and improve aquatic health within the Reach.

Image 3 - Adding structural timber to Oakey Creek

Fig 1. Adding structural timber to Oakey Creek

Image 4 - Installing a fish hotel into Oakey Creek

Fig 2. Installing a fish hotel into Oakey Creek

Works undertaken. A range of activities to improve river health and native fish communities have been undertaken primarily at seven key intervention sites within the Dewfish Demonstration Reach. These include:

  • Re-introduction of large structural habitat at five sites, involving the installation of 168 habitat structures consisting of trees, fish hotels, breeding pipes and Lunkers (simulated undercut banks).
  • Improvement of fish passage (by more than 140 km) with the upgrade of the fishway on Loudoun Weir and the installation of two rock-ramp fishways on crossings in Oakey Creek.
  • Ongoing management of pest fish, involving carp angling competitions, carp specific traps, electrofishing and fyke nets.
  • Rehabilitation of the riparian vegetation over 77 km of the Reach using stock exclusion fencing, off-stream watering points, weed control and replanting of native vegetation. In Dalby, a 1 metre wide unmown buffer was established on the banks Myall Creek.

Twice-yearly monitoring using a MBARCI model (multiple-before-after-reference-control-intervention) was undertaken to detect the local and reach-wide impacts of the intervention activities. Surveys involved sampling of the fish assemblage at fixed sites and assessment of the instream and riparian habitat.

Image 5 - Wainui crossing before the fishway

Fig. 3 Wainui crossing before the fishway

Image 6 - Wainui crossing after installation of the rock-ramp fishway

Fig 4. Wainui crossing after the installation of the rock ramp fishway

Results. The surveys indicated many of the intervention activities had a positive impact. The fish assemblage and riparian habitat improved at all intervention sites in the Dewfish Demonstration Reach since rehabilitation activities commenced.

The fish assemblages at introduced habitat structures were very similar to those found on natural woody debris, suggesting the introduced habitat is functioning well as a surrogate.

There were significant increases in the abundance of larger fish species, including Golden Perch (Macquaria ambigua) (up to 5-fold), Murray Cod (Maccullochella peelii peelii) (from absent to captured every survey), Spangled Perch (Leiopotherapon unicolor) (up to 9-fold) and Bony Bream Nematolosa erebi (up to 11-fold) in intervention sites following re-snagging. Murray Cod and Golden Perch are now consistently being caught from introduced woody structures and local anglers are reporting that the fishing has improved greatly. Despite this increase there is still limited evidence of recruitment in the area. There have also been small increases in Eel-tailed Catfish (Tandanus tandanus) and Hyrtls Tandan (Neosilurus hyrtli) abundances and a limited amount of recruitment has been observed for these species.

The abundance of smaller native fish has improved significantly in response to the intervention activities undertaken, especially where bankside and instream vegetation was improved. In Oakey Creek Carp Gudgeon (Hypseleotris spp.) abundance increased 1200-fold, Murray-Darling Rainbowfish (Melanotaenia fluviatilis) increased 60-fold and the introduced species Mosquitofish (Gambusia holbrooki) increased 9-fold following intervention activities.

Establishment of a bankside unmown buffer on Myall Creek has enabled natural regeneration of vegetation and resulted in significant increases in aquatic vegetation and native trees. This has led to substantial increases in the smaller bodied native fish assemblage, including a 3-fold increase in Bony Bream, 237-fold increase in Carp Gudgeon, 60-fold increase in Murray-Darling Rainbowfish and a 35-fold in the introduced Mosquitofish.

The abundance of pest fish remains low, except for Mosquitofish which have increased in abundance with the improvements in the aquatic vegetation. There is little evidence of Carp recruitment (Cyprinus carpio), suggesting active management may continue to suppress the population and minimise this species impacts in the Reach.

Image 1 - Myall Creek prior to restoration

Fig 5.  Myall Creek prior to restoration

Image 2 - Myall Creek after restoration

Fig 6. Myall Creek after restoration

Lessons learned and future directions. Improvements of the waterway health and ecosystems can lead to positive responses from native fish populations.

  • Targeting rehabilitation activities to specific classes of fish has been very effective.
  • Introducing habitat structures has been effective for larger fish, and
  • Re-establishing healthy bankside and aquatic vegetation has been vital in boosting the abundance of juveniles and smaller species.

Improvements in the extent of aquatic vegetation have unfortunately also resulted in increased numbers of the introduced pest, Mosquitofish. However, the overall benefits to native fish far outweigh impacts from the increase in the Mosquitofish population.

Stakeholders and Funding bodies. A large number of stakeholders have been involved in this project. The project’s success is largely due to the high number of engaged, involved and committed stakeholders. Without this broad network, costs to individual organizations would be higher and strong community support less likely.

Major funding has been provided by the Murray Darling Basin Authority, Condamine Alliance, Queensland Department of Agriculture and Fisheries and Arrow Energy.

 

Contact. Dr Andrew Norris, Senior Fisheries Biologist, Queensland Department of Agriculture and Fisheries, Bribie Island Research Centre, PO Box 2066, Woorim, QLD 4507; Tel (+61) 7 3400 2019; and Email: andrew.norris@daf.qld.gov.au

READ MORE:

Finbox demonstration reach toolbox: http://www.finterest.com.au/finbox-a-demonstration-reach-toolbox/

Native Fish Strategy – first 10 years. http://onlinelibrary.wiley.com/enhanced/doi/10.1111/emr.12090

Demonstration reaches – Looking back, moving forward http://onlinelibrary.wiley.com/enhanced/doi/10.1111/emr.12092

Monitoring in demonstration reaches https://site.emrprojectsummaries.org/2014/01/25/establishing-a-framework-for-developing-and-implementing-ecological-monitoring-and-evaluation-of-aquatic-rehabilitation-in-demonstration-reaches/

 

Twelve years of healing: Rehabilitating a willow-infested silt flat – Stormwater Management.

Alan Lane

Key words: urban stream, erosion, siltation, soft engineering, head wall

Introduction: Popes Glen Creek is a small permanent stream rising close to the centre of the township of Blackheath, NSW, Australia. Its upper catchment (10 ha) comprises low-permeability urban development, roadways, shops and parklands.

The funneling of runoff from the low-permeability catchment into the headwaters of Popes Glen Creek resulted in intense and destructive runoff after rain, carrying down large and small debris, depositing sheets of silt, uprooting or burying vegetation, causing erosion of the creek banks and threatening to undermine the head wall of the silt flat downstream. This resulted in the formation of a 1 ha silt flat at the headwaters of the creek, covered with dense infestations of mature Crack Willow (Salix fragilis), Purple Ossier (S. purpurea) and mid-storey and ground-layer weeds. This has been revegetated as a permanent wetland as described in a previous summary (https://site.emrprojectsummaries.org/2015/02/22/)

This summary describes the runoff management aspects of the project, where the aims were:

  1. to reduce the impact of runoff
  2. to reduce the incursion of silt
  3. to remediate the main channel
  4. to stabilise the head wall.
Fig 1: Notched weir diverting water towards sedimentation pond.

Figure 1: Notched weir diverting water towards sedimentation pond.

Figure 2: Sedimentation pond

Figure 2: Sedimentation pond

Works carried out:

1. Diversion of part of the flow and capturing sediment. A diversion channel was constructed with flow regulated by a notched weir in the main stream. This diverts approximately half the volume of the flow into a sedimentation pond were silt is captured, reducing the quantity deposited downstream (Figures 1 and 2).

2. Construction of low-impact detention cells. “Soft engineering” detention cells constructed across the silt flat from coir logs and woody debris found on site retain and slow the release of flow, dispersing it across the silt flat and raising the water table, suppressing weeds and supporting the vegetation of the created wetland (Figures 3 and 4).

3. Elimination of the highly incised main channel. Natural debris falling into the main channel creates a series of small pondages. These retain and slow the flow and allow overflow to disperse across the silt flat. (Figure 5).

4. Protection of the creek banks. Dense plantings of deep-rooted swamp vegetation e.g. Red-fruited Saw Sedge (Gahnia sieberiana) and Black Wattle (Callicoma serratifolia) (Figure 6), and loosely woven structures constructed from woody debris (Figure 7) protect creek banks and silt flat from erosion and scouring.

5. Stabilisation of the headwall. Contractors employed with funds from the Environmental Trust have constructed a major structure with railway sleepers and rock armouring to stabilise the head wall (Figures 8 and 9).

Figure 3: Volunteers building a detention cell from woody debris found on site.

Figure 3: Volunteers building a detention cell from woody debris found on site.

Figure 4: Raised water table enabled wetland sedges (Carex gaudichaudiana and Eleocharis sphacolata) to displace Creeping Buttercup (Ranunculus repens).

Figure 4: Raised water table enabled wetland sedges (Carex gaudichaudiana and Eleocharis sphacolata) to displace Creeping Buttercup (Ranunculus repens).

 

Lessons learned and future directions:  This project is on track to replace the forest of willows with wetland vegetation, transform a highly incised creek and weed-infested silt flat into a healthy Upper Blue Mountains Swamp – an endangered ecological community scheduled under the Commonwealth’s Environment Protection and Biodiversity Conservation Act 1999.

The volunteer group will continue working with Council and contractors to complete the planting program and to monitor the evolution of the site, including its vegetation, water quality and colonisation by macroinvertebrates, birds and frogs.

Stakeholders and funding bodies: This work is supported by a grant from the Government of New South Wales through its Environmental Trust and by the Blue Mountains City Council,  which also oversaw the engineering works. All photographs: Alan Lane and Paul Vale.

Figure 5: A natural pondage formed when debris was allowed to remain in the stream.

Figure 5: A natural pondage formed when debris was allowed to remain in the stream.

Figure 6: Dense plantings of Black Wattle (Calicoma serratifolia) and Gahnia (Gahnia sieberiana) protect creek banks from erosion.

Figure 6: Dense plantings of Black Wattle (Callicoma serratifolia) and Gahnia (Gahnia sieberiana) protect creek banks from erosion.

Figure 7: Volunteers using woody debris to protect the silt flat from scouring.

Figure 7: Volunteers using woody debris to protect the silt flat from scouring.

Figure 8: Part of the original head wall approximately 3 m high and 20 m wide.

Figure 8: Part of the original head wall approximately 3 m high and 20 m wide.

Figure 9:  Part of structure constructed to stabilise the head wall.

Figure 9: Part of structure constructed to stabilise the head wall.

Contact information: Dr Alan Lane, Coordinator Popes Glen Bushcare Group, PO Box 388, Blackheath NSW 2785, Australia. Tel: +61 2 4787 7097; Paul Vale, Deputy Coordinator Popes Glen Bushcare Group, 81 Prince Edward St, Blackheath NSW 2785, Australia. Tel: +61 2 4787 8080; and Ray Richardson, Chairman of Steering Committee, Environmental Trust Grant 2011/CBR/0098. Tel: +61 2 4759 2534.

Slopes2Summit Bushlinks Project

Keywords – landscape, connectivity, restoration, revegetation, NSW southwest slopes

The Slopes2Summit (S2S) Bushlinks project commenced in August 2012 and is in the first stage of implementing on-ground works to build landscape-scale connectivity across private lands in the southwest Slopes of NSW – from the wet and dry forest ecosystems of the upper catchment and reserves to the threatened Grassy Box Woodlands of the lower slopes and plains (Fig 1.).

Fig 1. Map of the S2S area and priority landscapes for Bushlinks

Fig 1. Map of the S2S area and priority landscapes for Bushlinks

The increasing isolation of plant and animal populations in “island” reserves scattered through an agricultural landscape is a recognised threat to the long term viability and resilience of ecosystems under potential impact of climate change. If we can increase the viable breeding habitat through off-reserve remnant conservation, and increase the habitat for dispersal by increasing connectivity, we may be able to influence the trajectory for some of our species – the Squirrel Glider (Petaurus norfolcensis)) and threatened woodland birds in particular.

The S2S Bushlinks Project is attempting to address connectivity issues through the following approaches:

1. Cross property planning. Foster and encourage cross property planning for habitat connectivity between neighbours, community, Landcare and/or subcatchment groups resulting in more integrated on-ground works projects, and raising awareness of the benefits of connectivity for wildlife.

2. On-ground investment in connectivity. The project is partnering with farmers and land managers to support and encourage fencing and revegetation in strategic places in the landscape with the objective of increasing habitat connectivity.  S2S Bushlinks applies scientific principles to the site assessments and evaluation, which then sets the level of investment in a site.  High scoring sites receive the highest rates of rebate, but the provision of low levels of public investment in sites that may not be of high priority is important for fostering participation in revegetation of any sort to encourage the culture of caring for the land.

Site assessment and scoring for funding level uses the following criteria:

  • Connectivity and landscape value – Does the site link to or create new patches of habitat according to principles of habitat connectivity? (Fig 2)  Is there existing vegetation in 1000ha radius around the site in an optimal range of 30-60%?
  • Area : perimeter ratio – Bigger blocks of revegetation are more cost-efficient and better habitat than linear strips of revegetation, and the project scoring encourages landholder to go bigger and wider in order to qualify for a higher level of funding.
  • Habitat Values – Does the site have existing values like old paddock trees, rocky outcrops or intact native ground layer, and therefore become a more valuable site? Is it in the more fertile, productive parts of the landscape and therefore of more productivity benefit for wildlife as well?
  • Carbon value – The scoring is based on the size of the revegetation and rainfall zone. The CFI Reforestation tool is being used to value the collective potential carbon sequestration of the Bushlinks project.

The emphasis on cross-property planning flows through to the implementation of on-ground works. Landholders are encouraged to work with neighbours and the site evaluation system is used to assess site value without the property boundaries – cooperation makes the site bigger and usually increases the connectivity value, and therefore scores higher.

3. Review and adaptive management process. The site assessment is to be reviewed in July 2013 against the objectives – did it work to prioritise sites well – did we invest wisely? The scientists and experts are then able to work closely with Holbrook Landcare to adjust the project eligibility, assessment and evaluation criteria to continually improve the outcomes in subsequent funding years.

4. Monitoring framework. As part of the in-kind contribution to the project, S2S partners Dr Dave Watson, CSU Albury and Dr. Veronica Doerr, CSIRO are working towards a framework for the long-term monitoring of landscape scale connectivity for continental-scale initiatives like Great Eastern Ranges (GER).  As part of a GER Environmental Trust Project in 2013, an expert panel workshop will be convened to begin this process in 2013.

The framework will then be used to pilot a project-scale design for Bushlinks, which will allow us to measure ecological outcomes.

Bushlinks will contribute to the Slope2Summit portal of the Atlas of Living Australia, supported by the Slopes2Summit facilitator. To develop community participation in monitoring and evaluation, participants and the wider community will be encouraged to contribute wildlife sightings and other data to the atlas.

The S2S partnership applied for funds through the Australian Governments Clean Energy Futures Biodiversity Fund in 2011 and was successful in the 2011/12 funding year for a six year project. Holbrook Landcare Network is managing the S2S Bushlinks Project on behalf of the Slopes2Summit and the Great Eastern Ranges Initiative, in partnership with Murray CMA.

Contact: Kylie Durant, Bushlinks Project Officer, Holbrook Landcare Network, PO Box 121 Holbrook, NSW 2644 Australia. Tel: +61 2 6036 3121

Fig 2. Summary of the connectivity model outlined in Doerr, V.A.J., Doerr, E. D and Davies, M.J. (2010) Does Structural Connectivity Facilitate Dispersal of Native Species in Australia’s Fragmented Terrestrial Landscapes? CEE Review 08-007 (SR44). Collaboration for Environmental Evidence: www.environmentalevidence.org/SR44.html

Fig 2. Summary of the connectivity model outlined in Doerr, V.A.J., Doerr, E. D and Davies, M.J. (2010) Does Structural Connectivity Facilitate Dispersal of Native Species in Australia’s Fragmented Terrestrial Landscapes? CEE Review 08-007 (SR44). Collaboration for Environmental Evidence: http://www.environmentalevidence.org/SR44.html

Fig 3. Revegetation in the farming landscape in the Southwest Slopes of NSW

Fig 3. Revegetation in the farming landscape in the Southwest Slopes of NSW

 

 

Holbrook Landcare “Rebirding the Holbrook Landscape” – assessing performance and learning in action

Chris Cumming and  Kylie Durant

Key words: tree dieback, lerps, restoring the agricultural landscape, community involvement, Holbrook Landcare Network

Holbrook producers established Holbrook Landcare Network in 1988.  It was one of the first Landcare groups in Australia, covering initially 171,000 ha of productive agricultural land in the upper reaches of the Murray Darling Basin. The organisation has directly managed grants of more than $6M across more than 85 projects to address NRM and agricultural issues including salinity and erosion control, soil and pasture management the protection of wildlife habitat.

Of the habitat projects, one of the most successful has been the “Rebirding Project”. A recognition of the importance of birds in the landscape occurred in 1994, when there was widespread concern in Holbrook over eucalypt tree dieback and the potential loss of paddock trees in the landscape. Holbrook Landcare commissioned a survey that identified 41% of the trees in the district were showing signs of dieback, and initiated (with support from our own extension staff and Greening Australia) education programs to inform landholders about the causes of dieback, including the link between cycles of lerp and other insect attack exacerbated by the loss of insectivorous birds.

In 1999 the group was successful in gaining funding for the “Rebirding the Holbrook Landscape to mitigate dieback” revegetation program through the Australian Governments Natural Heritage Trust (NHT), with the aim of drawing birds back onto farms and reducing eucalypt tree dieback.

Actions undertaken. Bird surveys were undertaken at 94 study sites in remnant vegetation on hills, flats and along creek lines. Education components succeeded in engaging the community and increased community knowledge and awareness of habitat issues in Holbrook.  The research information was used to recommend specific guidelines for the revegetation component, including ideal patch size (min 6ha), distance to remnant (1km), position in the landscape and habitat values.

The Rebirding on-ground projects (1999 – 2002) achieved 2150ha of remnant and revegetation work and put 475,000 plants back in the landscape across 118 properties – estimated at 80% of the Holbrook landholders.

Outcomes achieved. Measuring success of the program was very important to the community. A partnership with CSIRO Sustainable Ecosystems gave rise to a research project measuring bird use of plantings and remnant vegetation on local farms in 2004 to 2006.  This found that a range of bird species rapidly colonised planted areas and showed evidence of breeding activity, a positive message about the early signs of success of the Rebirding project. Tree health monitoring is ongoing by the community. Current ANU research is showing the positive benefit of the revegetation work in the landscape at the site, farm and landscape scale. The science is therefore indicating that yes, “rebirding” of the Holbrook landscape is underway, and HLN will continue to look to science to help us with the longer term outcomes for birds and tree health, and provide the feedback to us to adaptively manage our programs for the best outcomes.

The lessons and recommendations that come from the research are being applied directly to inform the design of subsequent programs such as the current major biodiversity project being managed by Holbrook Landcare – the “Slopes to Summit Bushlinks Project”.

Contacts: Chris Cumming (Executive Officer) and Kylie Durant,  Holbrook Landcare Network, PO Box 181 Holbrook NSW, Australia.  2644 Tel: +61 2 6036 3121, Email: kyliedurant@holbrooklandcare.org.au.

Paddock tree health field day, Holbrook, 2011.

Paddock tree health field day, Holbrook, 2011.

Before planting habitat blocks at Woomargama station, Holbrook.

Before planting habitat blocks at Woomargama station, Holbrook.

Stands of trees and shrubs established at Woomargama station, Holbrook.

Stands of trees and shrubs established at Woomargama station, Holbrook.

The Ridgefield Multiple Ecosystem Services Experiment: restoring and sustaining function in degraded ecosystems

Key words: carbon sequestration, invasion resistance, nutrient cycling, novel ecosystems, intervention ecology

Mike Perring

Introduction. Multiple, simultaneous, and rapid environmental changes make sustaining and restoring ecosystem functions an increasingly important but challenging task. The Ridgefield Multiple Ecosystem Services Experiment, being undertaken at the University of Western Australia’s Future Farm in the Western Australian wheat belt, tests the application of current ideas in ecology to ecological restoration, and seeks insights into how management interventions can sustain and restore multiple ecosystem functions in an era of rapid environmental change.

Design. Our experiment tests how different woody plant species mixtures affect provision of ecosystem functions and services, including carbon storage, nutrient cycling, invasion resistance, biodiversity maintenance, and prevention of soil erosion. We also consider potential tradeoffs in the provision of ecosystem functions, how different plant species mixtures may respond to simultaneous environmental changes, and how different plant species assemblages may affect other trophic levels, both above and below ground.

Experimental treatments, across 124 23x11m rip line plots, comprise native tree and shrub species, and span a diversity gradient from bare and single-species to mixtures of eight species. Species belong to four different functional groups based on differing nutrient acquisition strategies and morphologies. Plant assemblage treatments are replicated across former grazing and cropped landscapes.

The Ridgefield experimental site with formerly cropped area to the right and grazed blocks in middle and left (December 2010)

In addition to the role of species composition in determining ecosystem functions and services, we will examine the effect of simultaneous environmental changes (nitrogen deposition and weed invasion) on our chosen functions and services, particularly since the presence of exotics creates potentially novel ecosystem states. Our experiment will allow us to understand more about how combinations of plant species, and their associated traits, can be utilized to intervene and manage ecosystems to ensure capacity for ongoing function and service provision in the Anthropocene. In terms of theory, we are also interested in whether the provision of multiple ecosystem functions requires greater biodiversity than provision of single services, if there are tradeoffs among services as diversity levels increase, and how the traits of included species affect functioning.

York gum only plot (January 2011)

Participants and potential for collaboration. Participants include: Mike Perring, Kris Hulvey, Rachel Standish, Lori Lach, Tim Morald, Rebecca Parsons and Richard Hobbs. The study provides a platform for the investigation of a wide variety of ecologically and socially important questions, and we encourage interested parties to contact us should they wish to collaborate or conduct trials at the site.

Contact: Mike Perring, School of Plant Biology, University of Western Australia; Tel: +61 (0)8 6488 4692; Email: michael.perring@uwa.edu.au