Category Archives: Indigenous land & sea management

Regeneration of indigenous vegetation at Third Reedy Lake as it has dried over summer and autumn 2022

Damien Cook

Introduction.  Third Reedy Lake is a freshwater wetland in the Kerang region in north central Victoria. It is part of the Kerang Wetlands Ramsar Site, which means that it is recognised as being of international significance for wetland conservation as it supports threatened plant and animal species and ecological communities and rookeries of colonial nesting wetland birds.

Prior to European occupation this wetland, along with Middle Lake and Reedy Lake, would have been inundated only when floodwaters came down the Loddon River and caused the intermittent Wandella and Sheep Wash Creeks to flow. At that time the wetland experienced a natural wetting and drying cycle, filling up from floodwaters and drying out completely between floods, which occurred on average once every 3 to 4 years.

In the 1920s, however, this natural wetting and drying cycle was discontinued. Third Reedy Lake became part of the Torrumbarry Irrigation Scheme. Water was diverted out of the Murray River at Torrumbarry Weir and made to flow through a series of natural wetlands including Kow Swamp, the Reedy Lakes, Little Lake Charm and Kangaroo Lake to deliver water to irrigate farms. The lakes and swamps became permanently inundated.  While this meant farmers had a reliable supply of water it also profoundly altered the ecology of the wetlands (Fi. 1).

Figure 1. Third Reedy Lake in February 2013 prior to being bypassed. Continuous inundation for around a century had drowned the native vegetation, leaving only skeletons of trees. (Photo D. Cook)

Trees such as River Red Gum (Eucalyptus camaldulensis) and Black Box (E. largiflorens) were drowned, lake bed plants that relied on a drying cycle could no longer grow and the ecological productivity of the wetlands was massively reduced. The density of wetland birds has been found to be positively correlated to wetland productivity and this metric has been used in a variety of ecological studies to compare the use of different habitats by wetland birds. During bird counts conducted in 2018 the highest density of birds on Third Reedy Lake was about 5 birds/hectare. In contrast the naturally intermittent Lake Bael Bael supported over 60 birds/hectare, a density 12 times higher. While Third Reedy Lake supported a maximum of 17 wetland bird species Lake Bael Bael supported a maximum 38 wetland bird species.

Works undertaken

Hydrological works.  Third Reedy Lake was deemed to be inefficient for moving water due to losses caused by evaporation and so it was intentionally bypassed by the irrigation scheme in 2020. The lake therefore dried for the first time in one hundred years over the summer of 2022. Environmental water will be periodically delivered to the wetland in the future to mimic its natural wetting and drying cycle and assist ecological recovery.

Revegetation works. Over 2000 River Red Gum trees and 1000  understorey plants, including Tangled Lignum (Duma florulenta) and Southern Cane-grass (Eragrostis infecunda), have been planted across the centre of the lake where no natural regeneration was likely to occur in the short to medium term. Members of the local Barapa Barapa and Wemba Wemba Traditional owner communities were employed to plant the trees and other plants (Fig. 2). The Barapa Barapa and Wemba Wemba Traditional Owners have a strong interest in the wetland because of its cultural values.


Figure 2. Uncle Trevor Kirby with a Red Gum he has just planted and guarded at Third Reedy Lake April 2022. . Virtually no native vegetation remained visible on the lake bed immediately after the long inundation. (Photo T. McDonald)

The River Red Gum seedlings have been planted next to dead River Red Gum stumps to replicate the original woodland structure of the wetland (Fig  3). Planting next to the stumps has other advantages; they provide shelter from the wind and sun and soil carbon and moisture levels are highest close to the rotting wood.

Figure 3. River Red Gum seedling planted next to an old red gum stump, Third Reedy Lake May 2022. (Photo D. Cook)

Results to date.  In the first 3 months without inundation the lakebed muds dried out, followed by deep cracking (Fig 2). Planted trees thrived as there was still ample moisture in the sub-soil.  Site inspections in May 2022 revealed that substantial natural regeneration of the wetland has begun (Fig. 4).

After 100 years without drying it was not known if any seed bank of the original lakebed vegetation would have survived. However, 46 native species have been recorded growing on the lakebed since the last of the water evaporated from the lake in April 2022. This includes two threatened species: Floodplain Groundsel (Senecio campylocarpus) and Applebush (Pterocaulon sphacelatum) (Fig. 5) . The germination of Applebush is particularly surprising given that this is only the fourth record of this plant in Victoria, the species being more common in the arid centre of Australia. Other indigenous species that have regenerated on the lakebed are shown in Figs 6 and 7.

Figure 4. Lake bed herbs regenerating after the drying phase, at Third Reedy Lake, May 2022 . A total of 46 native species have been recorded as having regenerated on the lakebed since the last of the water evaporated from the lake in April 2020 (Photo D. Cook)

Figure 5. Among the 46 native species regenerating is Applebush (Pterocaulon sphacelatum) which is particularly surprising as it is listed as endangered in Victoria and known to occur in only three other locations. (Photo Dylan Osler)

Figure 6. Spreading Nut-heads (Sphaeromorphaea littoralis), Third Reedy Lake May 2022. This species is uncommon in the Kerang region, the closest records to Third Reedy Lake being from the Avoca Marshes. (Photo D. Cook)

Figure 7. Golden Everlasting (Xerochrysum bracteatum) and Bluerod (Stemodia florulenta) make an attractive display of wildflowers. These species are uncommon at present but if weeds are controlled adequately, they should recolonise much of the wetland floor. (Photo D. Cook)

River Red Gum regeneration has been localised on the bed of the lake and has mainly occurred on the fringes close to where living Red Gum trees have shed seed. The densest Red Gum regeneration has occurred on a sandy rise close to the inlet of the lake, where the trees have grown rapidly (Figs 8 and 9). Many of the seedlings that have germinated on the edge of the lakebed are being heavily grazed by rabbits or wallabies.

Figure 8. Regenerating Red Gums and native grasses and sedges on a sandy rise near the inlet of Third Reedy Lake, May 2022.(Photo D. Cook)

Figure 9. River Red Gum seedling on cracking clay soil that has germinated near the lake edge. Many of these seedlings are being heavily grazed, probably by rabbits or wallabies. (Photo D. Cook)

The young trees will take many years to develop the hollows required by many species of wildlife, but hopefully the old stumps will persist for some time to provide this important habitat feature (Fig 10). When these trees grow large enough, they will provide shady nesting sites for colonial nesting wetland birds such as Australasian Darter (Anhinga novaehollandiae) (Fig. 10) and Great Cormorant  (Phalacrocorax carbo) and replace the dead standing trees as they rot and fall over.

Figure 10. Australasian Darter chicks on a nest in a live River Red Gum in the creek that joins Middle Lake to Third Reedy Lake. (Photo D. Cook)

Stakeholders: Barapa Barapa, Wemba Wemba, Goulburn-Murray Water, North Central Catchment Management Authority and Kerang Wetlands Ramsar Site Committee

Contact:  Damien Cook, restoration ecologist, Wetland Revival Trust, Email: damien@wetlandrevivaltrust.org

Biological and cultural restoration at McDonald’s Swamp in northern Victoria, Australia

Dixie Patten (Barapa Wemba Working for Country Committee) and Damien Cook (Wetland Revival Trust.

Introduction. McDonald’s Swamp is a 164-ha wetland of high ecological and cultural significance, and is one of the Mid Murray Wetlands in northern Victoria. The restoration this wetland is part of broader project, led by the Indigenous Barapa Wamba Water for Country Committee in collaboration with the Wetlands Revival Trust, to address the loss of thousands of wetland trees and associated understorey  plants that were killed by poor agricultural and water management that caused prolonged water logging and an elevated the saline water table.

Figure 1. Laura Kirby of the Barapa Wamba Water for Country restoration team beside plantings of two culturally important plants that are becoming well established; Common Nardoo (Marsilea drummondii) and Poong’ort (Carex tereticaulis). (Photo D. Cook.)

The project has a strong underpinning philosophy of reconciliation as it is a collaboration between the Wetland Revival Trust and Aboriginal Traditional Owners on Country – access to which was denied to our people for a long time, disallowing us to practice our own culture and have places to teach our younger generations.  One of the main aims of the project is  to employ Barapa and Wemba people on our own land (Fig 1), not only to restore the Country’s health but also to provide opportunities for a deeper healing for us people. Many of the species we are planting are significant cultural food plants or medicine plants. Indeed it’s actually about restoring people’s relationships with each other –Indigenous and non-Indigenous Australians – and maintaining our connection to  Country.

Over recent years the hydrology of many wetlands in the Kerang region has been vastly improved by a combination of drought, permanently improved irrigation practices in the catchment and the delivery of environmental water.  This has restored a more natural wetting and drying cycle that will enable regeneration of some prior species, largely through colonisation from the wetland edges and through reintroduction by waterbirds.

However, supplementary planting is needed to accelerate the recovery of keystone species at all strata and the ~50 ha of the wetland that has been assessed as highly degraded with little potential f or in-situ recovery from soil-stored seedbanks.

Figure 2. Aquatic species planted at McDonald’s Swamp, including Robust Water-milfoil (Myriophyllum papillosum), Common Water Ribbons (Cycnogeton procerum) and the endangered Wavy Marshwort (Nymphoides crenata). (Photo D. Cook)

Works undertaken: To date the project has employed 32 Traditional Owners, planting out and guarding canopy trees to replace those that have died, undertaking weed control, and replanting wetland understorey vegetation.

Over a period of 5 years,, around 60% of the presumed pre-existing species, including all functional groups, have been reintroduced to the site, involving 7000 plants over 80 ha of wetland. This includes scattered plantings of the canopy species River Red Gum (Eucalyptus camaldulensis), Black Box (Eucalyptus largiflorens) and Eumong (Acacia stenophylla).  Dense nodes have also been planted of a wide diversity of herbaceous wetland species including water ribbons (Cycnogeton spp.), Nardoo (Marsilea drummondii) and Old Man Weed (Centipeda cunninghamii). These nodes have been protected from waterbird grazing by netting structures for 3-6 months, after which time they have reproduced and spread their seeds and begun recruiting throughout the broader wetland..

Some areas of the swamp are dominated by overabundant native reeds due extended inundation in the past.  Such reeds – including Cumbungi (Typha orientalis) and Common Reed (Phragmites australis) – will be future targets for burning or cutting followed by flooding by environmental watering to reduce their abundance prior to reintroduction and recolonization by other indigenous species.

Figure 3. Prolific regeneration of the nationally endangered Stiff Grounsel (Senecio behrianus). The species is presumed extinct in South Australia and New South Wales and is now only known only from 5 wild and 6 re-introduced populations in Victoria. (Photo G Little)

Outcomes to date: Very high establishment and growth rates have been attained for the canopy tree species, many individuals of which have flowered and set seed within the 6 years since project commencement.  All the planted understorey species are now recruiting very well – particularly the Water Ribbons (Cycnogeton procerum and C. multifructum), Floating Pondweed (Potamogeton  cheesmannii), Common Nardoo (Marselia drummondii), Wavy Marshwort (Nymphoides crenata), Water Milfoils (Myriophyllum papillosum  and M. crispatum), Forde Poa (Poa fordeana), Swamp Wallaby-grass  (Amphibromus nervosus), River Swamp Wallaby-grass (Amphibromus fluitans) and the nationally endangered Stiff Groundsel (Senecio behrianus) (Fig.  3.).  The important Brolga (Antigone rubicunda) nesting plant Cane Grass (Eragrostis infecunda) has also spread vegetatively.  Where hundreds of individuals were planted, there are now many thousands recruiting from seed, building more and more potential to recruit and spread within the wetland.

After 7 years of a more natural wetting and drying regime, natural regeneration has also occurred of a range of native understorey species including populations of the important habitat plant Tangled Lignum (Duma florulenta), Lagoon Saltbush (Atriplex suberecta) and Common Spike-rush (Elaeocharis acuta) (Fig 4.).

Figure 4. Planted River Red Gum (Eucalyptus camaldulensis) and naturally regenerating Tangled Lignum (Duma florulenta) and a range of other native colonisers and some herbaceous weed at McDonald’s Swamp some6 years after hydrological amendment and supplementary planting. (Photo T McDonald)

Stakeholders:  Barapa Land and Water, Barapa Wamba Water for Country Committee, Parks Victoria, Department of Environment, Land, Water and Planning and the North Central Catchment Management Authority.

Contact: Damien Cook, Wetland Revival Trust, Email: damien@wetlandrevivaltrust.org

Addressing ghost nets in Australia and beyond – update of EMR feature

Britta Denise Hardesty, Riki Gunn and Chris Wilcox

[Update of EMR feature  – Riki Gunn, Britta Denise Hardesty and James Butler (2010) Tackling ghost nets: local solutions to a global issue in Northern Australia, Ecological Management & Restoration, 11:2, 88-98. https://onlinelibrary.wiley.com/doi/10.1111/j.1442-8903.2010.00525.x]

Key words.  derelict fishing nets, ghost gear, GGGI, Indigenous livelihoods

Figure 1. Dead turtle caught in a derelict ghost net. (Photo: Jane Dermer, Ghost Nets Australia)

Introduction. The focus of our 2009 feature was to highlight the work of Indigenous rangers in addressing the local but widespread problem of abandoned, lost or derelict fishing gear (ALDFG) in Northern Australia, particularly ‘ghost nets’ that are carried on the currents and continue to fish long after they are no longer actively used (Figs 1-4). We also aimed to raise awareness of the efforts required to address this complex issue, whilst highlighting the work of Indigenous rangers working in the region.  The feature reported ghost net removal efforts taking place in Australia’s Gulf of Carpentaria – which, by 2009, involved the removal of 5532 nets by over 90 Indigenous rangers from more than 18 Indigenous communities.  This highlighted the transboundary nature of the ghost gear issue, and identified that most nets likely originated from beyond Australia’s waters.

Figure 2. Napranum ranger Philip Mango releasing juvenile turtle trapped in ghost net. (Photo: Ghost Nets Australial)

Further work. Since 2010, the understanding of and approaches to addressing the derelict fishing gear issue have increased substantially. This has been reflected both in domestic efforts within Australia, and more broadly in the international community.

Domestically, in the last decade, the ranger program across northern Australia has evolved and grown, enabling more Indigenous people to remain culturally connected to their land and sea country through meaningful employment.  Ranger activities generally involve a range of restoration activities including feral and weed management, in addition to (for  coastal groups) ghost net removal. Across northern Australia, Indigenous ranger groups continue to remove nets on their country, demonstrating the success of the initial program supported by the Australian government. To date, nearly 15,000 ghost nets (three times the number reported in 2010) have been removed from the region. The net removal program has extended beyond Ranger groups working in the Gulf of Carpentaria to include the Torres Strait, the western part of the Northern Territory Coast, and parts of the Kimberly coastline in Western Australia.

Globally, the world is focused on the United Nations Sustainability Development Goals (SDGs) which aims to provide a ‘shared blueprint for peace and prosperity for people and the planet, now and into the future’ (https://sustainabledevelopment.un.org/sdgs).

A key focus for the SDGs is to help preserve the world’s oceans, a topic which touches on food security, poverty and economic growth, among other goals. Ensuring fishing practices are aligned with these goals includes reducing gear losses into the marine and coastal environment. In recognition of the issue and to end ALDFG, there is now a multi-stakeholder alliance of fishing industry, private sector, multinational corporations, non-government organizations, academics and governments, the Global Ghost Gear Initiative (GGGI), which is focused on solving the problem of abandoned, lost and derelict fishing gear worldwide. Both CSIRO and GhostNets Australia were founding members of this alliance and have been instrumental in engagement and scientific endeavours which inform the GGGI.

Fig 3. An enormous effort is invested by Indigenous rangers in removing ghost nets from beaches along the northern Australian coastline (Photo: World Animal Protection/Dean Sewell)

Based on collaborative research between GhostNets Australia and CSIRO, it was determined that the primary source of derelict nets washing ashore along Australia’s northern coastline was the Arafura Sea. Engagement with fishers in the region through a series of workshops identified that major causes of gear loss included snagging of nets and over-capacity in the region. We also identified opportunities to help resolve ghost net issues in the region, though stakeholder engagement, points of intervention and livelihood tradeoffs. Much of this overcapacity and overcrowding has been attributed to illegal, unreported and unregulated (IUU) fishing. Subsequently, Indonesia went through a substantial change in practices with regards to allowing foreign vessels in their waters, effectively closed their borders to foreign fisheries operators. Anecdotally, information from multiple ranger groups in Northern Australia suggests that this highly publicized and significant change in practice has resulted in a substantial decrease in the number of ghost nets washing ashore along at least part of the northern Australian coastline.

Another outcome from the collaborative research effort was a new understanding based on deep citizen science engagement and modelling to identify potential high risk areas where ghost nets were likely to cause the most harm to turtles. In this work, we were able to suggest interdiction points for ghostnets, before they entered the Gulf of Carpentaria where they were likely to kill wildlife. We also identified the nets that were most harmful to wildlife and we estimated that nearly 15,000 marine turtles had likely been killed by derelict nets in the region.

There have also been some technological improvements in this area. These fall into both reporting and in tracking nets. Electronic data collection has improved the quality of data collection and can ensure errors are minimised. Development of the tool has also been designed such that those with reduced literacy are also able to collect valuable information, a feature that can be important in many communities. Using icons and photos to help identify nets improved data reliability.

Also within Australia, alternative livelihoods programs such as Ghost Net Gear evolved into the Ghost Net Art Project where the art works have excited the International art community.  This has resulted in purchases by many internationally renowned purveyors of artwork including the British Museum, the Australian National Museum and the Australian Maritime Museum. Works from Indigenous artists can also be seen at Australia’s Parliament House, and exhibitions have taken place in Monaco, Alaska, Singapore and France as well as in numerous national and regional galleries around Australia. A commemorative stamp was even made from the Ghost Nets artwork that lives in the Australian National Museum.

Figure 4. Large nets can become entangled in coastal vegetation. (Photo: World Animal Protection/Dean Sewell)

Future directions. While GhostNets Australia has not formally continued as a non-governmental organization, many of the components initiated through the program have continued and grown through time, as exemplified above. This early work also helped springboard CSIRO’s engagement in capacity building with the Indonesian government to tackle Illegal, Unreported and Unregulated (IUU) fishing. This had led to a strong research collaboration relationship between the two countries, with a shared goal of reducing IUU fishing, building capacity on marine resource management, and improved monitoring, control and surveillance efforts in Indonesia.

CSIRO is also involved in an aerial (re)survey of the coastline across Northern Australia. In affiliation with World Animal Protection and Norm Duke and Jock Mackenzie from James Cook University, we are looking at changes in the number of ghost nets along the shoreline (Figs 3 and 4). Stereo images were recorded along the entire coastline and we are comparing ghost nets observed across the region with two other aerial surveys that have taken place in the last decade. The team have just completed flights (September 2019), so we are looking forward to analysing the images and comparing ghost net numbers across the region.

ContactDenise.hardesty@csiro.au; CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia. rikigunn1@outlook.com; chris.wilcox@csiro.au

The rise of invasive ant eradications since the success of the Kakadu project  – UPDATE of EMR feature

Benjamin D Hoffmann

[Update of EMR feature – Hoffmann,  Benjamin D and Simon O’Connor (2004) Eradication of two exotic ants from Kakadu National Park. Ecological Management & Restoration, 5:2, 98-105. https://onlinelibrary.wiley.com/doi/10.1111/j.1442-8903.2004.00182.x]

Key words. pest species management, invasive species, biosecurity

Figure 1. Kakadu staff in 2001 spreading formicide over a super-colony of African Big-headed Ant. This involved a team of people, aligned in a row, walking from one edge of the infested area to the other in parallel paths. (Photo courtesy of Simon O’Connor.)

Introduction. Invasive species management, especially eradications, has been at the forefront of biodiversity conservation gains over the past two decades. For example, over 1,200 invasive vertebrate eradications have been achieved on over 800 islands worldwide and the conservation benefits of such actions have been overwhelmingly positive and often dramatic. Efforts against invasive ants have also been particularly notable over the past two decades, with ants now being the second-most eradicated taxa globally having been eradicated from more than 150 locations, with the largest eradication covering 8300 ha. Two decades ago there were only 12 confirmed ant eradications using modern baits with a combined area totalling a mere 12 ha.

As reported in our original EMR feature, the last treatments against two invasive ants in Kakadu National Park, northern Australia: The African Big-headed Ant (Pheidole megacephala) and the Tropical Fire Ant, (Solenopsis geminata) were conducted in 2003; and the ants were declared eradicated two years later (Hoffmann & O’Connor 2004). At the time this was a globally significant eradication, and the positive outcome was a partial catalyst for the creation of many other relatively small exotic ant eradication attempts around Australia, including against Tropical Fire Ant on Melville island, and African Big-headed Ant on Lord Howe Island. Incidentally, the work coincided with the approximate timeframe of when two other highly invasive ant species were first detected in Australia: Red Imported Fire Ant (RIFA) (Solenopsis invicta), and Electric Ant (Wasmannia auropunctata), prompting the initiation of two massive national cost-shared eradication programs. One of these, the RIFA program, has become Australia’s second-most expensive eradication program at AUD $428 million as of at July 2019. Together, all of these actions put ants high on Australia’s biosecurity and environmental management radars, prompting the development of Australia’s Tramp Ant Threat Abatement Plan and yet even more eradication programs.

Figure 2. Ant bait being dispersed aerially by helicopter using an underslung spreader and side-mounted dispersers. (Photos Ben Hoffmann)

Further advancements in ant eradication programs.  As Australia’s eradication programs became more numerous and larger, it became apparent very quickly that the methodologies and technologies available were insufficient to achieve success in the increasingly challenging conditions being encountered. In response, over the next two decades, there has been an impressive range of advancements that significantly improved our capacity to manage and eradicate invasive ant incursions.

The biggest issue was that work needed to be conducted over such large or inaccessible areas that ground-based work (Fig 1) was not feasible. So, treatments quickly became aerial, using multiple helicopter-based delivery platforms (e.g. underslung buckets and side-mounted hoppers, Fig 2). Even so, there have been locations that are too remote, too small, or too difficult (ie cliffs) to treat using a helicopter. To meet this challenge, in just the last five years treatments have been conducted for the first time using drones, and there is a great focus now to improve the technology so that it becomes more cost effective and more autonomous (Fig 3). This is occurring at such a pace that just a few years ago drones could only operate for a few hours at most on battery power, and only carry a few kilograms. This year we will be using a drone with unlimited flying capacity (petrol driven) that can lift 70 kg per load.

Figure 3. The Fazer with side-mounted bait carriers that can lift up to 40kg of payload. This is soon to be superseded by a drone that can lift a 70k g payload. (Photo Ben Hoffmann)

Assessments for the presence of ants, either before or after treatments, was originally very time consuming, involving teams of people walking ground very slowly and often utilising thousands of attractive lures (Fig 4). At most, only small ant populations (about less than 20 ha) within good working environments (ie open landscapes) could be assessed using teams of people, and it took large amounts of time. It was found very quickly that detector dogs could be trained on the scent of each ant species, and a single dog could cover more than five times the area of a team of people in a single day with greater efficacy (Fig 5). There are now more than 20 detector dogs operating in Australia and New Zealand that have been trained on the scent of four ant species. But even a team of dogs cannot fully cover entire areas at the landscape-scale, such as is the case for the RIFA program, especially in areas with long grass or rugged terrain. One of the saving technologies for the RIFA program has been the development of a multi-spectral sensor and associated algorithms that can identify RIFA nests from imagery captured by remote sensing (Fig 6). This allows program staff to assess just a few identified point locations in a landscape rather than the entirety of landscapes, to determine RIFA presence or absence. The next envisaged step is the development of biosensors that can detect the odours of target ant species, just like detector dogs, and with time these will become small enough to be transported by small drones throughout landscapes to detect ants.

Figure 4. An area covered with hundreds of flags marking spoonfulls of catfood being used as lures to attract African big-headed ant to assess eradication success or failure. (Photo Ben Hoffmann)

Figure 5. An ant detector dog searching for the presence of Red imported fire ant. (Photo courtesy of The State of Queensland (Department of Agriculture and Fisheries 2010–2019))

Australia was caught particularly unprepared two decades ago when the two new exotic ant species were detected for the first time because there were no baits registered for their management in Australia, so legally there were no treatment products that could be used. Even with the implementation of Emergency Use Permits for some unregistered products, as well as the use of the few products that were available for other species, it was often found that individual products could not be used in particular circumstances, especially around water, within crops and on organic farms. Additionally, available baits often did not have high efficacy. With time many baits (comprised of combinations of an attractive food laced with an active constituent) have been formulated and tested providing a greater array of baits that can be used on any new incursion and in numerous settings. The most recent has been the development of hydrogel baits that essentially deliver a liquid product in a solid form.

Figure 6 a and b. Multi-spectral camera flown underneath a helicopter to detect Red imported fire ant nests. (Photos courtesy of The State of Queensland (Department of Agriculture and Fisheries) 2010–2019)

Among the numerous advances described already, possibly the greatest development is on the threshold of becoming a reality, in the form of genomic solutions for individual species. RNA interference, and gene-drive technology are rapidly being developed for a suite of economically important species, and ants are among the taxa that are highest on the priority list as targets for this research. At best, these genomic advances promise to provide species-specific solutions, thereby alleviating the current non-target issues of using toxicants.

Conclusion. Our ability to eradicate ants has improved dramatically over the past two decades, with technologies and methodologies available now that were as yet not thought of back when our work was conducted in Kakadu National Park. New programs are constantly arising, and forging ahead in increasingly challenging situations, and a great deal of effort is placed in information-sharing among programs. Simultaneously there is a sustained focus to improve biosecurity at Australia’s borders, as well as throughout our region to help prevent the need for eradications in the first place.

Contact. Ben Hoffmann, Principal Research Scientist, CSIRO Health & Biosecurity (PMB 44 Winnellie NT 0822 Australia; Tel: +61 8 89448432; Email: Ben.Hoffmann@csiro.au).

Monitoring the Wunambal Gaambera Healthy Country Plan, Kimberley, Western Australia – UPDATE of EMR feature

[Update to EMR feature: Moorcroft, Heather, Emma Ignjic, Stuart Cowell, John Goonack, Sylvester Mangolomara, Janet Oobagooma, Regina Karadada, Dianna Williams and Neil Waina (2012) Conservation planning in a cross‐cultural context: the Wunambal Gaambera Healthy Country Project in the Kimberley, Western Australia,  Ecological Management & Restoration, 13:1, 16-25. See https://doi.org/10.1111/j.1442-8903.2011.00629.xk]

Key words: conservation planning, participatory conservation, Indigenous people, Kimberley

Figure 1. Location map of Wunambal Gaambera land and sea country. (Source: WGAC)

Introduction. The development of the Wunambal Gaambera Healthy Country Plan (HCP) was a key enabler for Wunambal Gaambera people to look after country (Fig 1) and occurred at an important time when native title rights to country were being secured. The plan came about through a partnership between Wunambal Gaambera Aboriginal Corporation (WGAC) and Bush Heritage Australia (BHA), who brought the planning approach and supported WGAC to develop a plan that met the needs of Traditional Owners. This plan then became the basis of a long term partnership between the two organisations to support implementation.

Healthy Country Planning, a term coined by this project, adapted the Open Standards for the Practice of Conservation (http://cmp-openstandards.org/ ) to an Indigenous native title community context. The approach has subsequently flourished in Australia, adopted by a further 30 indigenous groups ( see doi: 10.1111/emr.12267).

The unique partnership model established between BHA and WGAC, underpinned by Healthy Country Planning, has also expanded (https://www.bushheritage.org.au/what-we-do/aboriginal-partnerships). The program supports indigenous partners to achieve their community and conservation aspirations articulated through Healthy Country Planning.

Figure 2. Terrick Bin Sali handling a northern quoll (Dasyurus hallucatus). (Photo WGAC)

Conservation planning with a difference. Our experience has been that the Open Standards can be successfully applied to an Indigenous context but some important adaptation is required. For example:

  1. People, culture and country are inseparable in Australian indigenous worldviews. As such, Healthy Country Planning is much wider in scope than mainstream conservation or natural resource management planning. The vision in the HCP typically sets long-term goals that include aspirations for looking after country and achieving health conditions for landscapes, seascapes, plants and animals, as well as for people and culture (Figs 2-4). These outcomes are collectively referred to as “Healthy Country”. An indigenous plan will always recognize and value people in the landscape rather than as separate. Traditional Owners, and/or their culture, become a conservation target alongside species and habitats with ‘key cultural attributes’ established alongside ‘key ecological attributes’. HCPs also have a greater degree of management strategies that relate to people and culture than would be found in mainstream management plans, and culture and Indigenous Knowledge is incorporated into land management activities that could be considered mainstream, such as the inclusion of cultural rules within visitor management.
  2. The Open Standards include approaches and tools for stakeholder participation that lend themselves well to Indigenous peoples, however given that Indigenous lands are communally-owned and governed by unique law and culture systems, participation requirements are higher and more complex. Traditional systems of governance are often recognized under State and Federal Law (such as the Native Title Act) requiring additional process steps. In developing the HCP, WGAC undertook a process of involving all Traditional Owner families in various stages of planning and the plan was authorized at a Traditional Owner meeting.
  3. A Healthy Country Plan typically applies to the whole traditional estate of a Traditional Owner group regardless of tenure, consistent with the concept of “Country-based Planning”. WGAC initially dedicated stage I of the Uunguu Indigenous Protected Area over several aboriginal reserves in 2010, and later added exclusive possession lands following native title determination. The marine environment will also be added to the IPA once agreement is reached with State and Commonwealth Governments, as articulated in the Uunguu Wundaagu Plan.

Figure 3. Traditional Owners undertaking a ‘junba’ traditional dance workshop. (Photo: WGAC)

Monitoring & evaluation since 2012. Aspects of the monitoring and evaluation framework established by WGAC include the establishment of the Uunguu Monitoring & Evaluation Committee (UMEC) and the completion of mid-term evaluation of the HCP (see 2017 review doi:10.1111/emr.12257). The UMEC is composed of Traditional Owners and external experts who undertake key Healthy Country Planning steps and functions. A significant investment of time and money was required to support annual or biennial meetings “on country” (ie. on Wunambal Gaambera lands), however the review showed that the investment has proven worthwhile because WGAC has been able to implement the plan to a high degree.

In 2015 a major mid-term evaluation was undertaken to assess the progress of the HCP. It utilized some standard evaluation tools examining Open Standards process. It also incorporated some new approaches to include the views of the wider Traditional Owner community in the evaluation of the plan to ensure the plan was meeting their needs and following effective process with regard to governance and participation. The review made a number of observations as follows.

  1. Considerable progress had been made in the implementation of fire management strategies in the HCP to the point that the health condition of the “Right Way Fire” target was changed from ‘fair’ to ‘good’. Unmanaged wildfires have significantly reduced in size as a result of increased capabilities of the Uunguu Rangers to undertake burning. At the same time “right way” cultural principles have been incorporated into operations to ensure that Traditional Owner families are making decisions about burning and undertaking fire operations on their family areas.
  2. Significant progress has been made against a visitor management strategy. One of the key concerns of elders when developing the plan was unregulated visitation to important cultural sites by the expedition cruise industry and independent travelers. The Uunguu Visitor Pass, launched in 2017, requires visitors to obtain a permit to access authorized visitor locations as well as generating funds for looking after country. Over 90% of commercial tour operators have now registered for the UVP, with a similar independent traveler compliance, generating funds to support Traditional Owner participation in visitor management and delivering tour products.
  3. Progress was not made, however, in the health of cultural targets in the plan. As a result, the 2015 review recommended further investment and effort in culture strategies. Two important books have been completed to document elders’ knowledge of biodiversity and cultural places. There has been an increase in cultural activities including language and corroboree dance workshops and annual culture camps for school children. Law and culture dictates that visitors to country (indigenous or non-indigenous) need to be accompanied by the right local Traditional Owners when undertaking activities on country. In this way Healthy Country work supports large numbers of Traditional Owners to visit country and guide participation in the implementation of the plan. A number of actions have been undertaken to support Traditional Owners to live on country and remote ranger infrastructure has been developed.

Figure 4. Uunguu Rangers during a cultural fire walk. (Photo WGAC)

Future Directions. The first 8 years of the HCP implementation has focused on building WGAC’s land and sea management capacity and resources, with funding from WGAC,  the Australian Governments Indigenous Protected Area and Indigenous Ranger Programs and from Bush Heritage Australia. Traditional Owners currently hold certificate level roles of rangers, tourism workers and construction workers but further work is now needed to support Traditional Owners to take on roles that require higher levels of training. There is also a need to support the development of a wider range of livelihoods to support Traditional Owners to live and/or work on country.

Contact information. Wunambal Gaambera Aboriginal Corporation, PMB 16 Kalumburu via Wyndham WA 6740, Australia.

Email: info@wunambalgaambera.org.au

Web: www.wunambalgaambera.org.au

Facebook: https://www.facebook.com/uunguulife/

 

 

 

 

 

 

Restoration and conservation in an iconic National Park – UPDATE of EMR feature

David Lindenmayer, Chris MacGregor, Natasha Robinson, Claire Foster, and Nick Dexter

[Update of EMR feature – David B. Lindenmayer, Christopher MacGregor, Nick Dexter, Martin Fortescue and Peter Cochrane (2013)  Booderee National Park Management: Connecting science and management.  Ecological Management & Restoration, 14:1, 2-10. https://onlinelibrary.wiley.com/doi/10.1111/emr.12027]

Keywords: Invasive animal and plant control, reintroduction, monitoring

Introduction. Booderee National Park is an iconic, species-rich, coastal reserve that supports a range of threatened and endangered native animals and plants. Several key management actions have been implemented to promote the conservation of biodiversity in Booderee National Park. These include the control of an exotic predator (the Red Fox Vulpes vulpes), the control of highly invasive Bitou Bush (Chrysanthemoides monilifera subsp. rotundata), the management of fire, and the reintroduction of previously extinct native mammals. A key part of work at Booderee National Park has been a long-term monitoring program that commenced in late 2002 and which has aimed to quantify the effectiveness of major management interventions, including the four listed above. The monitoring program has documented the long-term trajectories of populations of birds, arboreal marsupials, terrestrial mammals, reptiles, frogs and native plants in a range of major vegetation types (from heathland and sedgeland to woodland, forest and rainforest) and in response to fire, and weed and feral predator control. Importantly, the monitoring program has provided a foundational platform from which a suite of post-graduate studies and other research programs have been completed.

Further works undertaken. A key part of the researcher-manager partnership has been to analyse the long-term trajectories of populations of mammals, birds and reptiles in Booderee National Park. The monitoring data indicate that many species of mammals are declining, with some having become recently locally extinct (e.g. Greater Glider Petauroides volans) or close to extinction in the reserve (e.g. Common Ringtail Possum Pseudocheirus peregrinus) . This is despite populations of these species persisting in nearby reserves.  Robust interrogation of the multi-taxa monitoring data has been unable to identify reasons for these declines. Interestingly, the declines observed for mammals have not been observed to date in other vertebrate groups, including birds, reptiles and amphibians. An experimentally-based reintroduction program for the Greater Glider aims to not only re-establish populations of the species in Booderee National Park, but also to identify the reasons for the original decline. That program will be in addition to reintroduction programs already underway for other mammal species, the Long-nosed Potoroo (Potorous tridactylus), the Southern Brown Bandicoot (Isoodon obesulus) and Eastern Quoll (Dasyurus vivverinus) that used to inhabit Booderee National Park but which went extinct many decades earlier.

Additional research being undertaken in Booderee National Park has included: (1) studies of the effectiveness of control efforts for Bitou Bush and associated recovery of native vegetation and native fauna, (2) the interactive effects of fire and browsing on native plants and an array of animal groups, and (3) studies of leaf litter and other fuel dynamics in relation to previous fire history and macropod browsing.

Figure 1. Key area of Booderee National Park showing an area of coastal forest before and after Bitou Bush treatment.

Further results to date. Research and monitoring in the past six years have resulted in many new insights including some of considerable value for informing restoration programs. A small subset of these findings is outlined below.

  • Conventional approaches to the control of invasive Bitou Bush entail spraying ultra-low volume herbicide (Fig. 1), followed by burning of the “cured” dead material, and then respraying of the seedlings that germinate after fire. This spray-burn-spray protocol is both the most ecologically effective and the most cost-effective way of controlling Bitou Bush and, at the same time, facilitates the recovery of native vegetation. More recent analysis has revealed spray frequency as the most important determinant of long-term control. There are mixed effects of control methods on native species; plant species abundance was positively related to Bitou Bush control, while native bird abundance (except for Eastern Bristlebird Dasyornis brachypterus, Fig 2.) and mammal abundance were weakly negatively associated with Bitou control.
  • There can be strong interactions between the occurrence of fire and browsing by macropods on native plants as well as particular groups of animals such as spiders.
  • Reintroduction programs for the Southern Brown Bandicoot and Eastern Quoll have been relatively successful, although the latter species suffers high rates of mortality, particularly as a result of fox predation and collisions with motor vehicles. Nevertheless, populations of both species have survived over multiple years and reproduced successfully.

Figure 2. The Eastern Bristlebird, a species for which Booderee National Park is a stronghold. Notably, the species responds positively to management interventions to control Bitou Bush. (Photo Graeme Chapman)

Lessons learned and future directions. The work at Booderee National Park is a truly collaborative partnership between reserve managers, a university and the local Indigenous community.  A key part of the enduring, long-term success of the project has been that a full-time employee of The Australian National University has been stationed permanently in the Parks Australia office in the Jervis Bay Territory. That person (CM) works on an almost daily basis within Booderee National Park and this provides an ideal way to facilitate communication of new research and monitoring results to managers. It also enables emerging management concerns to be included as part of adaptive monitoring practices.

One of the key lessons learned from the long-term work has been the extent of ecological “surprises” – that is, highly unexpected results, including those which continue to remain unexplained. An example is the rapid loss of the Greater Glider and the major decline in populations of the Common Ringtail Possum. One of the clear benefits of this integrated monitoring-management team has been the rapid response to emerging threats. For example in response to high rates of mortality of reintroduced Eastern Quolls, control of the Red Fox was intensified within the park and greater cross-tenure control efforts with neighbouring private and public land managers have commenced. Regular evaluation of monitoring data and management actions has also enabled careful examination of the kinds of risks that can compromise reintroduction programs. These and other learnings will inform other, future reintroduction and translocation programs that are planned for Booderee National Park such as that for the Greater Glider.

Stakeholders and funding bodies. Ongoing work has been supported by many funding bodies and partners. These include the Wreck Bay Aboriginal Community who are the Traditional Owners of Booderee National Park as well as Parks Australia who co-manage the park with the Wreck Bay Aboriginal Community. Other key funders include the Department of Defence, the Thomas Foundation, The National Environmental Science Program (Threatened Species Recovery Hub), the Australian Research Council, the Margaret Middleton Foundation, and the Norman Wettenhall Foundation. Partnerships with Rewilding Australia, Taronga Conservation Society, WWF Australia, NSW Forestry Corporation and various wildlife sanctuaries have been instrumental to reintroduction programs.

Contact information. David Lindenmayer, Chris MacGregor, Natasha Robinson and Claire Foster are with the National Environmental Science Program (Threatened Species Recovery Hub), Fenner School of Environment and Society, The Australian National University (Canberra, ACT, 2601, david.lindenmayer@anu.edu.au). Nick Dexter is with Parks Australia, Jervis Bay Territory, Australia, 2540.

The Tiromoana Bush restoration project, Canterbury, New Zealand

Key words: Lowland temperate forest, animal pest control, weed control, restoration plantings, public access, cultural values, farmland restoration

Introduction. Commencing in 2004, the 407 ha Tiromoana Bush restoration project arose as part of the mitigation for the establishment of the Canterbury Regional Landfill at Kate Valley, New Zealand. The site lies one hour’s drive north of Christchurch City in North Canterbury coastal hill country (Motunau Ecological District, 43° 06’ S, 172° 51’ E, 0 – 360 m a.s.l.) and is located on a former sheep and beef farm.

Soils are derived from tertiary limestones and mudstones and the site experiences an annual rainfall of 920mm, largely falling in winter. The current vegetation is a mix of Kānuka (Kunzea robusta) and mixed-species shrubland and low forest, restoration plantings, wetlands, Gorse (Ulex europaeus) and European Broom (Cytisus scoparius) shrubland and abandoned pasture. Historically the area would have been forest, which was likely cleared 500-700 years ago as a result of early Māori settlement fires. A total of 177 native vascular plant and 22 native bird species have been recorded, including four nationally threatened species and several regionally rare species.

Before and after photo pair (2005-2018). showing extensive infilling of native woody vegetation on hill slopes opposite, restoration plantings in the central valley, and successional change from small-leaved shrubs to canopy forming trees in the left foreground. (Photos David Norton.)

 

Project aims. The long-term vision for this project sees Tiromoana Bush, in 300 years, restored to a: “Predominantly forest ecosystem (including coastal broadleaved, mixed podocarp-broadleaved and black beech forests) where dynamic natural processes occur with minimal human intervention, where the plants and animals typical of the Motunau Ecological District persist without threat of extinction, and where people visit for recreation and to appreciate the restored natural environment.”

Thirty-five year outcomes have been identified that, if achieved, will indicate that restoration is proceeding towards the vision – these are:

  1. Vigorous regeneration is occurring within the existing areas of shrubland and forest sufficient to ensure that natural successional processes are leading towards the development of mature lowland forest.
  2. The existing Korimako (Bellbird Anthornis melanura) population has expanded and Kereru (Native Pigeon Hemiphaga novaeseelandiae) are now residing within the area, and the species richness and abundance of native water birds have been enhanced.
  3. The area of Black Beech (Fuscospora solandri) forest has increased with at least one additional Black Beech population established.
  4. Restoration plantings and natural regeneration have enhanced connectivity between existing forest patches.
  5. Restoration plantings have re-established locally rare vegetation types.
  6. The area is being actively used for recreational, educational and scientific purposes.

Day-to-day management is guided by a five-year management plan and annual work plans. The management plan provides an overview of the approach that is being taken to restoration, while annual work plans provide detail on the specific management actions that will be undertaken to implement the management plan.

Forest restoration plantings connecting two areas of regenerating Kānuka forest. Photo David Norton.

 

Restoration approach and outcomes to date. The main management actions taken and outcomes achieved have included:

  • An Open Space Covenant was gazetted on the title of the property in July 2006 through the QEII National Trust, providing in-perpetuity protection of the site irrespective of future ownership.
  • Browsing by cattle and sheep was excluded at the outset of the project through upgrading existing fences and construction of new fences. A 16 km deer fence has been built which together with intensive animal control work by ground-based hunters has eradicated Red Deer (Cervus elaphus) and helped reduce damage caused by feral pigs (Sus scrofa domesticus).
  • Strategic restoration plantings have been undertaken annually to increase the area of native woody and wetland vegetation, as well as providing food and nesting resources for native birds. A key focus of these has been on enhancing linkages between existing areas of regenerating forest and re-establishing rare ecosystem types (e.g. wetland and coastal forest).
  • Annual weed control is undertaken focusing on species that are likely to alter successional development (e.g. wilding conifers, mainly Pinus radiata, and willows Salix cinerea and fragilis) or that have the potential to smother native regeneration (e.g. Old Man’s Beard Clematis vitalba). Gorse and European Broom are not controlled as they act as a nurse for native forest regeneration and the cost and collateral damage associated with their control will outweigh biodiversity benefits.
  • Establishment of a public walking track was undertaken early in the project and in 2017/2018 this was enhanced and extended, with new interpretation included. Public access has been seen as a core component of the project from the outset so the public can enjoy the restoration project and access a section of the coastline that is otherwise relatively inaccessible.
  • Part of the walkway upgrade included working closely with the local Māori tribe, Ngāi Tūāhuriri, who have mana whenua (customary ownership) over the area. They were commissioned to produce a pou whenua (land marker) at the walkway’s coastal lookout. The carvings on the pou reflect cultural values and relate to the importance of the area to Ngāi Tūāhuriri and especially values associated with mahinga kai (the resources that come from the area).
  • Regular monitoring has included birds, vegetation and landscape, with additional one-off assessments of invertebrates and animal pests. Tiromoana Bush has been used as the basis for several undergraduate and postgraduate student research projects from the two local universities.
Vigorous regeneration of Mahoe under the Kānuka canopy following exclusion of grazing animals. Photo David Norton.

 

Lessons learned. Important lessons learned over the 15-years have both shaped the approach to management at this site and have implications for the management of other projects:

  • Control of browsing mammals, both domestic and feral, has been essential to the success of this project. While domestic livestock were excluded at the outset of the project, feral Red Deer and pigs have the potential to seriously compromise restoration outcomes and these species have required additional management inputs (fencing and culling).
  • Since removal of grazing, the dominant exotic pasture grasses, especially Cocksfoot (Dactylis gomerata), now form tall dense swards. These swards severely restrict the ability of native woody plants to establish and herbicide control is used both pre- and post-planting to overcome this. During dry summers (which are common) the grass sward is also a significant fuel source and the walkway is closed during periods of high fire risk to avoid accidental fires which would decimate the restoration project.
  • Regular monitoring is important for assessing the biodiversity response to management. Annual photo-monitoring now spanning 15-years is highlighting significant changes in land cover across the site, while more detailed monitoring of plants and birds is strongly informing management actions. For example, seven-years of bird monitoring has indicated an ongoing decline in some native birds that is most likely due to predation (by cats, mustelids, rodents, hedgehogs). As a result, a predator control programme is commencing in 2019.
  • Simply removing grazing pressure from areas of existing regenerating native woody vegetation cannot be expected to result in the return of the pre-human forest because of the absence of seed sources. Permanent plots suggest that Kānuka is likely to be replaced by Mahoe (Melicytus ramiflorus), with few other tree species present. Gap creation and enrichment planting is therefore being used to speed up the development of a more diverse podocarp-angiosperm forest canopy.
Kate Pond on the Tiromoana Bush walkway. The pond and surrounding wetland provides habitat for several native water birds. Photo Jo Stilwell.
The pou whenua on the coastal lookout platform looking north up the coastline. Photo David Norton.

 

Looking to the future. Considerable progress in restoring native biodiversity at Tiromoana Bush has been achieved over the last 15 years and it seems likely that the project will continue to move towards achieving its 35-year outcomes and eventually realising the long-term vision. To help guide management, the following goals have been proposed for the next ten-years and their achievement would further help guarantee the success of this project:

  • The main valley floor is dominated by regenerating Kahikatea (Dacrycarpus dacrydioides) forest and wetland, and the lower valley is dominated by regenerating coastal vegetation.
  • At least one locally extinct native bird species has been reintroduced.
  • Tiromoana Bush is managed as part of a wider Motunau conservation project.
  • The restoration project is used regularly as a key educational resource by local schools.
  • The walkway is regarded as an outstanding recreational experience and marketed by others as such.
  • Tiromoana Bush is highly valued by Ngāi Tūāhuriri.
Kereru, one of the native birds that restoration aims to help increase in abundance. Photo David Norton.

 

Stakeholders and funding. The project is funded by Transwaste Canterbury Ltd., a public-private partnership company who own the landfill and have been active in their public support for the restoration project and in promoting a broader conservation initiative in the wider area. Shareholders of the partnership company are Waste Management NZ Ltd, Christchurch City Council and Waimakariri, Hurunui, Selwyn and Ashburton District Councils.

Contact Information. Professor David Norton, Project Coordinator, School of Forestry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand. Phone +64 (027) 201-7794. Email david.norton@canterbury.ac.nz

Motuora Restoration Project, New Zealand

Key Words: Ecological restoration, reintroductions, island restoration, community engagement, Motuora Restoration Society

Motuora Restoration Society (http://motuora.org.nz) is recognised by the New Zealand Department of Conservation as the lead community agency for the restoration of Motuora, an 80 ha island in the Hauraki Gulf, New Zealand.  Since 2003 the Society has taken responsibility for the Island’s day-to-day management as well as developing and implementing the Island’s long term restoration strategy. Our aspiration is summed up in our  statement “It is our dream that future generations will enjoy a forest alive with native birds, reptiles and insects”.

Figure 1 – Aerial view of the Island before planting began. Area to bottom left has been sprayed in preparation for planting (Photo from cover of 2007 Motuora Native Species Restoration Plan).

Figure 1 – Aerial view of the Island before planting began. Area to bottom left has been sprayed in preparation for planting (Photo from cover of 2007 Motuora Native Species Restoration Plan).

 Figure 2 – Aerial view of the Island after completion of the pioneer planting. (Photo by Toby Shanley)


Figure 2 – Aerial view of the Island after completion of the pioneer planting. (Photo by Toby Shanley)

Background. Motuora is located on the east coast of New Zealand’s North Island near Auckland City. Motuora would once have been tree-covered and have hosted a wide range of native plants, invertebrates, reptiles and birds, particularly burrow-nesting seabirds. It was visited by early Polynesian settlers, later Māori, who would have initially camped, but later lived more permanently on the Island raising crops and harvesting fish, shellfish and presumably seabird eggs, chicks and adults. European settlers later occupied the Island, burning off most of the bush to encourage growth of grasses for their grazing livestock.

Towards the end of the farming period in the 1980s most of the Island’s native flora and fauna were gone. Interestingly however, there were never breeding populations of introduced mammalian pests on the Island so the remnant ecosystem had not been impacted by mice, rats, mustelids, hedgehogs, possums, goats, pigs or deer.

From about 1987 onwards both Government and members of the public began to take an interest in the Island and to promote the idea of adopting it as a predator-free bird habitat. Discussions continued over the next few years and by 1992 a sub-committee of the mid-North Royal Forest and Bird Protection Society had been formed and, in partnership with the Department of Conservation, drew up the first ‘strategy plan’ for the Island. Work parties began seed collecting, trial tree planting, weeding and fencing upgrades. By 1995 it had become apparent that the project could best proceed by way of an independent group dedicated to the task and the Motuora Restoration Society was formed.

The work on Motuora was designed to be a true restoration project combining firm ideas about the model ecosystem desired and a ‘bottom-up’ approach (vegetation-invertebrates-reptiles-birds) timing planting and introductions in a logical sequence. The historical presence of species on Motuora was inferred from comparisons with other less modified islands off the north east of the North Island, and particularly those from within the Rodney and Inner Gulf Ecological Districts, and using paleological information collected from the adjacent mainland.  Motuora Restoration Society has resisted the temptation to add iconic attractive species not originally present on the Island which might have raised the profile of the project.

Works carried out. The Society and its volunteers have contributed many thousands of hours to the restoration of the Island since 1995, raising and planting more than 300,000 native seedlings. This was particularly challenging with the logistics of working on an island without a regular ferry service or wharf. The project also included seabird and other species translocations, monitoring, weeding and track maintenance as well as fundraising.

The framework adopted began with reforestation so that appropriate habitat could be reinstated. A nursery was set up and seeds were collected from the Island, from nearby islands and, when necessary, from the mainland. With the exception of some areas of higher ground providing panoramic views from the Island, the land area was prepared (by weed-killing rampant kikuyu grass) and planted with hardy, wind and salt tolerant tree species. Once the trees were established, the canopy closed and sufficient shelter available, less hardy species and those requiring lower light levels were planted among the pioneers.  Today the planting of 400,000 trees of pioneer species is all but complete; and the raising and planting of ‘canopy’ and less hardy species continues.

In terms of fauna, invertebrate populations were surveyed and have been monitored as the forest has matured. One species, Wētāpunga (Deinacrida heteracantha) has been introduced.   Four reptiles have been introduced: Shore Skink (Oligosoma smithi), Duvaucel’s Gecko (Hoplodactylus duvaucelii),  Raukawa Gecko (Woodworthia maculata) and Pacific Gecko (Dactylocnemis pacificus).  One small land bird – Whitehead (Mohoua albicilla) has been translocated with 40 individuals moved to the Island.  Four seabird species have been attracted or translocated to the Island including the Common Diving Petrel (Pelecanoides urinatrix), and Pycroft’s Petrel (Pterodroma pycrofti).

Results. The project has restored Motuora from a pastoral farm (dominated by introduced grasses, weeds and only a small remnant fringe of naturally regenerating native forest) to a functioning native ecosystem, predominantly covered in early succession native forest with an intact canopy.

Initially the population of invertebrates was dominated by grassland species but the range and population size of forest dwellers has now much improved and the invertebrate fauna is now rich and plentiful (although rarer and endangered species are still to be added).  An initial suite of populations of flightless invertebrates remain depauperate.  Whitehead, an insectivorous bird species, has flourished with a current population of several hundred. At this early stage in the introduction of native fauna it is possible to report successful breeding and, for the most part, sufficient survival of initial colonisers of the species introduced to suggest that new populations will be established.  Sound attraction systems have led to initial breeding of Fluttering Shearwater (Puffinus gavia) and Australasian Gannet (Morus serrator).

Partnerships. Management of the Island is shared with the Department of Conservation (DOC) who administer the site on behalf of the Crown. DOC has legal commitments to engage with and act on behalf of the general public and particularly with iwi (Māori) who have generally expressed strong support for the restoration project and are expected to have co-management rights over the Island in the future.

Over the years the combined efforts of DOC staff, University researchers, the committee, thousands of volunteers and a host of donors and sponsors have worked hard to bring the Island to its present state.

Future directions. A sustained effort will continue to be required each year on biosecurity and weeding programmes. It will be many more decades before the forest matures and seabird and reptile populations reach capacity levels and a substantial workload is anticipated in managing and monitoring the emerging ecosystem for many years to come.

Acknowledgements: The success of the project is reinforced by the fact that the Society has maintained a close collaboration with a range of scientists and have inspired the active support and engagement of so many volunteers.  We thank all our inspiring volunteers and the following participating academics and researchers who have contributed to the project over the past ten years: Plants: Shelley Heiss Dunlop, Helen Lindsay (contractor). Reptiles: Marleen Baling (Massey University), Dylan van Winkel (consultant), Su Sinclair (Auckland Council), Manuela Barry (Massey University). Invertebrates: Chris Green (DOC), Robin Gardner-Gee (Auckland University), Jacqueline Beggs (Auckland University), Stephen Wallace (Auckland University). Birds: Robin Gardner-Gee (Auckland University), Jacqueline Beggs (Auckland University), Kevin Parker (Massey University), Richard Griffiths (DOC), Graeme Taylor (DOC), Helen Gummer (DOC contractor). The restoration project has been supported financially though grant aid received from a wide range of funders.

Contact: Secretary, Motuora Restoration Society, Email: secretary@motuora.org.nz; www: http://motuora.org.nz/

Nowanup: Healing country, healing people

Keith Bradby, Eugene Eades, Justin Jonson, Barry Heydenrych.

Key words: Noongar, Gondwana Link, cultural restoration, ecological restoration, design

Introduction. Greening Australia’s 754 ha Nowanup property was one of the first purchased with donor funds to help achieve the Gondwana Link programme’s goal of reconnecting native habitats across south-western Australia (Fig 1). The ecological work of Gondwana Link is underpinned by the involvement of people living within the region’s landscapes.

Nowanup (Fig 2) is a visually compelling place, with rising breakaway mesas, broad sweeping plains, and views south down the Corackerup valley and south west to the Stirling Range. Its remaining native vegetation systems are dominated by mallee shrublands, mallet and moort woodlands and banksia heathlands. It contains large populations of the locally endemic eucalypts Corackerup Moort (Eucalyptus vesiculosa) and Corackerup Mallet (E. melanophitra) and it is expected that additional rare flora species will be found. It also supports populations of a range of threatened fauna species including Malleefowl (Leipoa ocellata), Western Whipbird (Psophodes nigrogularis), Shy Groundwren (Hylacola cauta whitlocki), Crested Bellbird (Oreoica gutturalis gutturalis) and Black-gloved wallaby (Macropus irma). The original native vegetation remains in the upper section of the property (Fig 3), though much of this area has been cleared and burnt for farming, but never farmed. The farmland areas are now largely replanted.

Fig 1 Fitz-Stirling Corridor

Fig. 1. Nowanup is part of the broader Gondwana Link Program

Fig 2. Nowanup rock features

Fig. 2. Nowanup has visually compelling rock features and expansive landscapes.

Cultural significance. The groups involved in Gondwana Link support a range of social and cultural activities involving donors, farmers, government agencies, research bodies, industry groups and various landcare and natural resource management groups. Primary among these are the Aboriginal People, which for Nowanup is the local Noongar community.

Many Noongar elders knew the area well before it was cleared for farming, and speak of its cultural significance. Cultural mapping on the property has underlined that significance by locating a number of cultural sites and concentrations of artefacts. After purchase in 2004 the property was made available to the Noongar community, to support their aspirations, and Noongar leader Eugene Eades resides on Nowanup. Initially employed by Greening Australia as an Indigenous Engagement Officer, and now running camps and events at Nowanup as a Noongar led program, Eugene liaises with educational, corrections and welfare institutions and agencies to coordinate a range of educational and rehabilitation programmes. Eugene has also managed, with a team of young Noongar men, construction of a ‘Meeting Place’ that has assumed considerable significance for the local Noongar community (Fig 4).

Located in the heart of the Fitz-Stirling section of Gondwana Link, with its striking scenic qualities, a powerful sense of place, basic building infrastructure, cultural ‘Meeting Place’, and resident Noongar manager, Nowanup has become the focus for educational and cultural activities and programmes in the Fitz-Stirling, including an increasing level of Noongar involvement in the restoration plantings. These have included planting seedlings during community days and the expert planting of thousands of seedlings by four Noongar boys undertaking an eight week justice diversion program under Eugene Eades.

Fig 3 Nowanup aerial 2014. Courtesy Airpix

Fig. 3. The upper section of the property contains remnant or regrowth native vegetation, with the rest actively farmed prior to the revegetation

Approximately 340ha of the northern portion of the property is remnant bushland, with approximately 350 hectares of cleared land to the south, which has now been largely revegetated, including with trials of local species with commercial potential.

Some of the earlier plantings reflected a low-diversity revegetation approach, which was later improved across Gondwana Link plantings to better reflect the goal of ecological restoration modelled on local reference sites (see Monjebup summary). Nowanup’s early revegetation efforts were also impacted by difficulties in achieving good germination of a number of species on the sites difficult clay soils, with the result that many areas are dominated by a few species of eucalypts and acacias. These have been enriched recently by in-fill plantings which also demonstrate an improvement in the standard of work over 10 years. This has included improvements in the agronomy of direct seeding techniques (by Geoff Woodall), such as using direct drilling instead of scalping, that Greening Australia undertook in 2014, and which has subsequently been more widely used. In addition, integration of cultural and ecological aspects was advanced through a 2015 direct seeding project collaboratively designed by Eugene Eades and restoration practitioner Justin Jonson, which integrates indigenous cultural meaning and values into an ecological restoration project (Fig 4). The planting is only a year old, but the integration of cultural values and the sites biophysical conditions into one inclusive design is a powerful and innovative step forward. The site has been coined ‘Karta-Wongkin-Jini’ by Mr. Eades, which means ‘place where people come together’, and , with fantastic germination to date, is on track to serve as an important demonstration of culturally informed ecological restoration in practice.

Fig 4. Cultural EcoRestoration Systems 2015

Fig. 4. Eco-restoration design by Eugene Eades and Justin Jonson

Fig5. Cultural presentation Nowanup

Fig. 5. Schoolchildren enjoying a cultural presentation at the ‘Meeting Place’

Healing nature, healing people. Greening Australia was committed from the outset to engagement of the Noongar community in its operation in the Fitz-Stirling section of Gondwana Link. A cultural benefit of the project that was largely unforeseen but which developed rapidly has been the realization of the opportunities Nowanup presents for a range of programmes that support young Noongars at risk, as well as for rehabilitation and respite care. Eugene Eades has already supervised several Court arranged and respite care programmes on the property, and there is intense interest from a wide range of organisations in utilizing Eugene and Nowanup for running an extended range of programmes in the future (Fig 5). A project focused on the healing of country has great potential also for healing people.

The running of such programmes is out of scope for a conservation NGO whose mission is the transformation of landscape at scale. The programmes to date have made do with the very basic infrastructure that currently exists on Nowanup, with Greening plus supporters and donors subsidizing Eugene’s role in managing the programmes. Even while operating on this ad hoc basis, the programmes have proved Nowanup’s enormous potential for expanded cultural and social endeavours in the future. Greening Australia is keen to contribute to a transition that will allow for Nowanup’s full potential for such purposes to be realized.

Fig 6. Noongar planters by Ron D'Raine

Fig 6. Elder Aden Eades, Eugene Eades and Bill Woods lead a community planting day on Nowanup

Issues and Options. The framework plantings and larger scale direct seeding on Nowanup is now essentially complete, with the last significant works having been undertaken in 2015 – although infill plantings and seeding will occur as funding allows (Fig 6). From this point on, continuing conservation management of the property is required to ensure its contribution to ecological health in the Fitz-Stirling increases as the restoration work matures. With Greening Australia’s key focus on ecological restoration, there is no reason why properties that have been restored should not be subsequently divested to alternative ownership, so long as the necessary conservation covenants and management arrangements are in place. With Nowanup this would ideally be a body representative of local Noongar community interests. With both the original habitat areas and the revegetation and restoration areas already under protective covenant, the agreements and arrangements can be put in place to provide certainty for investment by corrections and/or welfare agencies into the infrastructure required to run properly-resourced programmes on the property. Nowanup will then be better placed to realize its full potential in healing country and people.

Funding: Revegetation costs were largely met through the Reconnections program, funded by Shell Australia, the Commonwealth Government’s Biodiversity Fund and 20 Million Trees Programme. Eugene Eades funds the cultural and social programs as a private business. Gondwana Link Ltd and Greening Australia provide support as needed.

Contact: Keith Bradby, Gondwana Link. PO Box 5276, Albany WA 6332. Phone: +61 (0)8 9842 0002. Email: bradby@gondwanalink.org

Read also EMR project summaries:

 

Re-introducing burning to Themeda Headland Grassland EEC, Narooma, NSW.

Tom Dexter, Jackie Miles, Deb Lenson

Key Words: Fire management, threatened ecosystem, Kangaroo Grass, weed management, Themeda

Introduction: In 2012, Eurobodalla Shire Council commenced a project to preserve local stands of declining Themeda Headland Grassland on Council managed land on three small headlands north of Narooma, NSW. Themeda Grassland on Seacliffs and Coastal Headlands is an Endangered Ecological Community (EEC) that grows on higher fertility soils and is listed under the NSW Threatened Species Conservation Act 1995.

Burning was trialed at two of the three sites to test whether fire could improve the environmental integrity of these sites. This trial has potential implications for the much larger stands of this EEC in various conservation reserves scattered along the NSW coastline as there are many which are not currently actively managed.

The three sites were slashed annually until 2010. While the dominant grass, Kangaroo Grass (Themeda triandra) was still present on all sites, the sites exhibited some decline in Kangaroo Grass cover and vigour, with weed present on all three sites (Fig 1). Slashing had kept the headlands free from shrubs however windrows of slashed grass suppressed Kangaroo Grass and appeared to encourage weed invasion. One of the sites, which was left unburnt for logistic reasons, was initially in worse condition than the other two due to the presence of an old vehicle track and more extensive weed cover particularly from Kikuyu (Pennisetum clandestinum).

The intensity of a burn is likely to vary on a seasonal basis and is dependent on the build-up of dead thatch and the prevailing conditions on the day. There is basis to believe that the traditional aboriginal burning would have taken place in Autumn and would have been a relatively cool burn. The optimum time to burn when considering the constraints of weed invasion is early spring.

Fig 1. Mowing damage at Duesburys Beach headland

Fig 1. Lines of bare ground indicate the location of windrows of dead grass from a history of mowing at Duesburys Beach headland

Works undertaken: Two successive burns were conducted in early spring on 2 of the 3 headlands, in August 2013 and August 2014 (Fig 2). The burn in 2013 was hotter than the burn in 2014 due to a higher build up of Kangaroo Grass thatch prior to the burn.

Follow-up weed control was implemented after the burns as the fire created gaps between the grasses and allowed targeted chemical control minimizing off target damage to Kangaroo Grass and other native species.

Data were collected on three occasions using ten 1 x 1 m quadrats, established along a 50 m transect spaced at 5 m intervals (one of these for each headland). The initial baseline data were recorded in Nov 2012, prior to the spring burns, and in each successive summer (2013/14 and 2014/15) following the burns.

Fig 2. Dalmeny Headlands burn 2015

Fig 2. Typical burn on the headlands

Results to date: The burnt areas (Figs 3 and 4) showed a significant decrease of annual exotic grasses; especially of Quaking Grass (Briza maxima) and Rats Tail Fescue (Vulpia spp.). The burnt areas also showed vigorous Kangaroo Grass growth and moderate seed production of that species. Two native species -Dwarf Milkwort (Polygala japonica) and Matgrass (Hemarthria uncinata Fig 5) not recorded prior to treatment were found after treatment in the quadrats. The most abundant native forbs, Swamp Weed (Selliera radicans) and Indian Pennywort (Centella asiatica) have persisted on the quadrats but not increased (Fig 6). Some exotic forbs – e.g. Yellow Catsear (Hypochaeris radicata) and Scarlet Pimpernel (Anagallis arvensis) have taken advantage of the removal of grass biomass and have also increased, further future analysis will determine whether this increase will impact on the native forbs. Perhaps the most important finding is the Coast Banksia (Banksia integrifolia) seedlings were killed by the fire allowing the sites to remain grassland.

The unburnt headland continues to deteriorate, with ongoing evidence of continued senescense of Kangaroo Grass, no Kangaroo Grass seed production, and exotic plants continuing to replace Kangaroo Grass in parts of the site. Kikuyu is the main exotic species on this site and is responsible for continued suppression of the native components of the grassland. There is also evidence of shrub invasion beginning to occur. It is anticipated that this site will be burnt in spring 2015.

Fig 2. Duesburys Point just after fire, Sept 2013

Fig 3. Duesburys Point just after burning, Sept 2013

Fig 3. Same site 11 months later, Aug 2014

Fig 4. Same site 11 months later, Aug 2014

What we learned: Kangaroo Grass remains vigorous throughout the burnt sites. The results to date show annual burning to be generally beneficial to the herbaceous components and associated grasses of this EEC. There was a higher success of exotic annual grass control in the first year which is most likely attributed to a hotter fire and perhaps timing. The first year also had accumulated multiple years of thatch which may have assisted fire intensity. Supplementary chemical control was effective, particularly when the fire created gaps between the grasses, allowing for better targeted chemical control.

Future directions: So far the results have shown that an August fire followed by the targeted chemical control of exotic grasses has considerable positive influence on the overall environmental integrity of this ecosystem. The annual burning allows the EEC to remain a grassland by killing off Coast Banksia and Coastal Acacia seedlings. It invigorates Kangaroo Grass growth and reduces the biomass of exotic perennial grasses at least in the short term. This again creates an opportunity in the aforementioned targeted chemical control. The herbaceous composition of the headland also remains intact and future analysis will determine whether burning has either a neutral or positive effect on growth. Kikuyu, Paspalum (Paspalum dilitatum) and annual exotic weeds continue to be the main problem. Increased post-burn selective herbicide application or hand weeding and planting of Kangaroo Grass tubestock may help to restore the grassland more rapidly than use of fire with limited weed control alone. Ongoing funding is being sought to continue the works over coming years and achieve further positive future outcomes.

Acknowledgements: The works were undertaken by Eurobodalla Shire Council with funding from the NSW Environmental Trust. Fire assistance from the NSW Rural Fire Service and cultural advice provided by Elders of the Walbunja people.

Contact: Tom Dexter; Environment and Sustainability Project Officer; Eurobodalla Shire Council (PO Box 99 Vulcan St Moruya 2537, Australia. Email: tom.dexter@eurocoast.nsw.gov.au).

Fig 5. Hemarthria uncinata was more evident after fire. (Duesburys Beach headland.)

Fig 5. Hemarthria uncinata was only evident after fire. (Duesburys Beach headland.)

Fig 5. More forbs among the grass after fire at Duesburys Point – e.g. Sellaria radicans

Fig 6. The forb Sellaria radicans persisted  among the grass after fire.