Category Archives: Landscape pattern & design

Donaghy’s Corridor – Restoring tropical forest connectivity

Key words: tropical forest restoration, habitat connectivity, small mammal recolonisation, ecological processes, community partnerships.

Introduction. Closed forest species are considered especially susceptible to the effects of forest fragmentation and habitat isolation. The Wet Tropics of north Queensland contains many forest fragments between 1ha and 500ha, mostly surrounded by dairy and beef pastures, and crops such as maize, sugar cane and bananas. Larger blocks are often internally fragmented by roads and powerlines. The Lake Barrine section of Crater Lakes National Park is a 498ha fragment that is 1.2km distant from the 80,000ha Wooroonooran N.P, and ecologically isolated since the 1940s with detectable effects on genetic diversity of rainforest mammals.

In 1995 the Qld Parks and Wildlife Service, along with landholders and the local ecological restoration group TREAT Inc., began riparian forest restoration along Toohey Creek to re-connect the Barrine fragment to Wooroonooran and to document colonisation by small mammals and native plants typically associated with rain forest environments (Fig 1).

AERIAL VIEW

Fig 1. Donahy’s Corridor, Atherton Tablelands, linking Crater Lakes NP and Wooroonooran NP, Qld (Photo TREAT).

Connectivity Works. Prior to works commencement, small mammal communities (e.g. Rattus spp. and Melomys spp.) along and adjacent to Toohey Creek were sampled, along with a full vegetation survey, to determine base-line community composition and structure. Permanent stock exclusion fencing was erected and off-stream stock watering points established.

A 100m wide corridor of vegetation was established over a four year period using local provenances of 104 native species comprising around 25% pioneer species, 10% Ficus spp., and the remainder from selected primary and secondary species. In total, 20,000 trees, shrubs and vines were planted along the creek, and a three-row shelterbelt was planted adjacent to the corridor to reduce edge effects. Species were selected on a trait basis, including suitability as food plants for targeted local fauna e.g. Cassowary (Casuarius casuarius johnsonii).

Ecological furniture (e.g., rocks, logs) was placed prior to planting. On completion, the 16ha Donaghy’s Corridor Nature Refuge was declared over the area, recognising the Donaghy family’s significant land donation and the corridor’s protection by legislation. A three year monitoring program, conducted quarterly, commenced on completion of planting.

TREAT2012Donaghy'sCorridor22

Fig. 2. Developing rainforest in Donahys Corridor (Photo Campbell Clarke)

Monitoring. Flora monitoring was conducted along transects bisecting the four annual plantings (1995/96/97/98), and small mammal colonisation in 11, 20m x 20m plots located in the plantings, adjacent open paddocks, and in forests at either end. Small mammal sampling included mark-recapture and DNA studies, to determine colonisation and movement patterns and genetic effects.

Results. Three years after establishment, over 4000 native plants were recorded – representing 119 species from 48 families. This included 35 species naturally dispersed from the adjacent forest (Figs 2 and 3). Small mammal sampling showed 16 long-distance movements by Rattus species and the appearance of an FI hybrid Bush Rat (Rattus fuscipes) in the central section of the corridor in the third year of the study. The rainforest rodent Fawn-footed Melomys (Melomys cervinipes) had established territories in the second year of the study. A study of wood-boring beetles (Coleoptera)in ecological furniture showed 18 morpho-species in a three year period. Many other orders/families were also recorded.

Water quality in Toohey Creek was not studied but has continued to increase since the replacement exotic grasses with woody vegetation, and the exclusion of cattle from accessing the stream. There is increased shade available for stock and less pressure on the limited number of existing paddock shade trees.

TREAT2012Donaghy'sCorridor18

 Fig. 3. Indicators of rainforest structure (species and layering) and functions (habitat providion, nutrient cycling, recruitment) are now highly evident. (Photo Campbell Clarke).

What we learned.

  • Plant colonisation was rapid, dominated by fleshy-fruited species (10-30mm diameter), of which a proportion are long-lived climax species
  • Plant colonisation was initially highest in the interior, close to the creek margin, but has become more even over time
  • Vegetation structural complexity and life form diversity have continued to increase since establishment
  • Small mammal communities changed in response to habitat structure, grassland species dominate until weeds are shaded out when they are replaced by closed forest species
  • Many long distance mammal movements occurred that were only detected by genetic analysis
  • Monitoring showed small mammals used the new habitat to traverse from end to end until resources were worth defending: at that time long distance movements declined and re-capture of residents increased
  • Partnerships between government, research bodies, community groups, and landholders are essential if practical solutions to fragmentation are to be developed and applied

Acknowledgements: Trees for the Evelyn and Atherton Tableland acknowledges and appreciates the support of all the volunteers involved in this project, staff from the Qld Parks and Wildlife Service-Restoration Services, , James Cook University, University of Qld, Griffith University and UCLA Berkely. In particular we would like to acknowledge the Donaghy family.

Contact: TREAT Inc. PO Box 1119, Atherton. 4883 QLD Australia. http://www.treat.net.au/

SEE ALSO:

Global Restoration Network Top 25 report: http://www.treat.net.au/projects/index.html#donaghy

Watch the video on RegenTV – presented by Nigel Tucker

 

 

 

 

 

 

 

 

Managing fire for nature conservation in subtropical woodlands

Emma Burgess, Murray Haseler and Martine Maron

Introduction. A study investigating the response of bird assemblages to mosaic burning is being conducted on 60,000 hectares private nature reserve in the Brigalow Belt bioregion of Queensland (Fig 1). The Brigalow Belt has recently experienced high rates of native vegetation clearing, motivating Bush Heritage Australia (BHA) to purchase and protect the property in 2001. The subsequent removal of cattle and horses from Carnarvon Station Reserve has increased grass and herb biomass. The seasonal surge in productivity the property now experiences however, increases the potential for more intense, frequent and extensive fires in hot, dry conditions. The risk of such wildfires needs to be managed, and a common approach to such management is prescribed burning. But how to ensure nature conservation objectives are still met?

Fig 1. Locality map of Carnarvon Station Reserve

Fig 1. Locality map of Carnarvon Station Reserve

In fire ecology, there is a common assumption that if we introduce a range of burn conditions to produce a mosaic of patches with different fire histories (pyrodiversity) – then the resulting diversity in fire histories and the greater representation of successional stages of vegetation is expected to accommodate more species in a given area (Fig. 2). Reducing the spatial scale at which fire history turns over- the “breaking up” of country- is also known as the patch mosaic burning approach.

Fig 2. Diagram of mosaic burning approach

Fig 2. Diagram of mosaic burning approach

Whilst we assume that pyrodiversity will give us increased habitat diversity, and therefore greater animal diversity, there is uncertainty as to the scale (alpha, beta or gamma diversity) at which pyrodiversity might influence biodiversity (Fig. 3). Alpha diversity is the total number of different species within a site or habitat; beta diversity is the difference in species composition between sites or habitats; and gamma diversity is the number of different species across all sites or habitats in the area of interest. At what spatial scale do we see the benefit for birds of mosaic burning (Fig. 3)?

Fig 4. Fire-sensitive semi-evergreen vine-thicket extending into Mountain Coolibah (Eucalyptus orgadophila) woodland, Carnarvon Station Reserve

Fig 4. Fire-sensitive semi-evergreen vine-thicket extending into Mountain Coolibah (Eucalyptus orgadophila) woodland, Carnarvon Station Reserve

Methods: We examine the relative influence of the diversity of fire histories, spatial configuration of these fire histories, spatial extent of particular fire histories and other measures of environmental heterogeneity on:

  1. Aggregated measures of bird species richness at both the landscape- (100 ha) and local-scale (1 ha); and
  2. Response of different bird foraging guilds to mosaic burning, at both the landscape- and local-scale.

 So what did we find? The diversity of fire regimes in the 100-ha landscape did not correlate with average site (alpha) or landscape- (gamma) diversity of birds. Rather, the total area of longer-unburnt vegetation was important for increasing bird richness at the landscape-scale, and sites in longer-unburnt vegetation had more species.

Although areas burnt in prescribed burns supported lower bird diversity compared to long-unburnt areas, prescribed burns are still necessary to reduce the risk of extensive wildfire. Such burns should focus on breaking up areas of high fuel at the beginning of the dry season (Fig. 4). The extent of long-unburnt vegetation that can be maintained with careful fire management is yet to be determined, but its importance as bird habitat is clear.

Acknowledgements: This work could not have been completed without funding and logistical support provided by AndyInc Foundation, Bush Heritage Australia and UQRS. Thanks to Peta Mather and Donna Oliver who assisted with field work. This study was carried out with approval from the Animal Ethics Committee at the University of Queensland (approval no. SGPEM/325/11/UQ).

Fig 4. Fire-sensitive semi-evergreen vine-thicket extending into Mountain Coolibah (Eucalyptus orgadophila) woodland, Carnarvon Station Reserve

Fig 4. Fire-sensitive semi-evergreen vine-thicket extending into Mountain Coolibah (Eucalyptus orgadophila) woodland, Carnarvon Station Reserve

Contact: Dr Emma Burgess University of Queensland, Email: e.burgess4@uq.edu.au

[This project summary is a precis of a talk presented to the Nature Conservation Council of NSW’s 10th Biennial Bushfire Conference, ‘Fire and Restoration: Working with Fire for Healthy Lands’ 26-27 May 2015. For full paper see: http://www.nature.org.au/healthy-ecosystems/bushfire-program/conferences/%5D

Scoping study to determine the methodologies and data availability for identifying native fish hotspots in the Murray-Darling Basin

Key words: hotspots, resilience, native fish, Native Fish Strategy

Recent ecological research at the landscape scale suggests that there may be key locations, or “hotspots”, that play a disproportionate role in sustaining species and ecological communities. The identification of native fish “hotspots’ in the Murray-Darling Basin (MDB) would greatly assist managers in protecting biodiversity and maintaining important ecological processes for native fishes.

Broad aim and specific objectives: This scoping study was undertaken to help guide future investment in the identification of “hotspots” in the Basin, by conducting broad reviews of the literature and available data, and consulting extensively with a range of relevant experts to:

  • develop an appropriate definition for what constitutes a native fish hotspot in the MDB;
  • identify the requirements of resource managers and other stakeholder groups including the Authority to maximise utility and adoption of the hotspots project;
  • identify information already available which may be useful to identify native fish ‘hotspots’;
  • determine appropriate metrics/methodologies to identify geographical areas or ‘hotspots’ across the MDB that are significant for native fishes in terms of species diversity, population densities and key ecological processes;
  • develop an appropriate experimental design for a large-scale project to demonstrate the applicability of the hotspots concept and subsequently enable the extrapolation across the whole of the MDB; and,
  • provide a template for similar studies to be undertaken on other fish species in the Basin.
Figure 1. A healthy stretch of the Murrumbidgee with plenty of habitat for native fish (Photo courtesy of Jamin Forbes)

Figure 1. A healthy stretch of the Murrumbidgee with plenty of habitat for native fish (Photo courtesy of Jamin Forbes)

Figure 2. Identification of native fish 'hotspots' would greatly assist in the management of native fish communities (Photo courtesy of Jamin Forbes)

Figure 2. Identification of native fish ‘hotspots’ would greatly assist in the management of native fish communities (Photo courtesy of Jamin Forbes)

Methods:  The first stage of the scoping study was to define the hotspots concept and management applicability of the project for key stakeholders within the MDB. This was achieved through an extensive review of the background literature of the hotspots concept (both within Australia and globally) and an expert panel workshop to:

  • clearly define the hotspots concept for use in the MDB and within the project, with particular reference to types of criteria;
  • explore spatial and temporal variability within existing datasets for identifying hotspots; and,
  • explore the management applicability and use of MDB hotspots for native fish.

A second expert panel workshop was held to review relevant ecological information for the priority species and communities, sampling methodologies and the spatial and temporal coverage of existing data and with the aims of:

  • determining appropriate sampling methodologies for identifying hotspots of priority species and communities; and,
  • using this methodology and data availability to develop an appropriate study design which could be used in Stage II of the of the project to identify ‘hotspots’ across the MDB that are significant for native fish.

Findings: The study mainly focussed on four high priority native fish species; Murray Cod (Macculochella peelii), Silver Perch (Bidyanus bidyanus), Golden Perch (Macquaria ambigua) and Freshwater Catfish (Tandanus tandanus), though some consideration was also given to some other species of conservation concern. The study defined a “hotspot” as being “areas within riverscapes that have extraordinary importance for fish or processes that sustain native fish populations”.

The study highlighted the importance of understanding the processes underlying hotspots in order to maximise the efficiency of management actions and conservation measures to ensure cost-effective return on interventions. To achieve this, a suite of suitable metrics were developed which encompassed both direct measures of fish and measures of the ecological drivers supporting them for each of the priority species and communities.

The study concluded that insufficient data currently exists to adequately identify hotspots across the MDB. However, this project provided an approach and suitable methods to collect relevant data that could then be used with current data to determine and describe hotspots in the MDB.

It was recommended that the next step should be to investigate large-scale patterns in focus species abundance using existing datasets, determine the applicability of the hotspots concept for all metrics in a subset of river valleys, then expand on observed trends to other valleys to identify hotspots throughout the MDB.

Lessons learned and future directions:

The identification of “hotspots’ in the Murray-Darling Basin (MDB) would greatly assist managers in protecting biodiversity and maintaining important ecological processes for native fishes. This study provides a pathway by which to engage the next step in the process of validating the hotspot concept in the MDB. This will identify critically important habitat required for protecting or rehabilitation to support priority native fish species.

Stakeholders and Funding bodies:  This project was funded through the Murray-Darling Basin Authority’s Native Fish Strategy.

Contacts: Zeb Tonkin, South Australian Research and Development Institute. Tel: + 61 3 9450 8600, Email: zeb.tonkin@depi.vic.gov.au.

Assessing fishway options for weirs of the northern Murray-Darling Basin

Key words: Fish passage, fish migration, fisway, prioritisations, northern Murray-Darling Basin

Threats and Impacts: Barriers to migration have been identified as a major contributor to the decline of native fish species within the Murray-Darling Basin. The Murray-Darling Basin Authority have made significant investment in improving fish passage along the Murray River and associated anabranches through the Lake Hume to the Sea program and the Living Murray Initiative. Despite the improvements along the Murray River, this investment has not been matched in the Northern Murray-Darling Basin. At present, the movement of fish within and between river systems north of Menindee Lakes remains significantly restricted by dams and weirs without adequate fish passage. 

Broad aim and methods: This project set out to develop concept designs and engineering costings for the highest priority weirs in the Northern Murray-Darling Basin.

A review of literature was undertaken initially to assess the likely composition and migratory requirements of the fish fauna in the Northern Basin. An analysis of available options for fish passage was undertaken, and justification provided for the preferred options in terms of the ecological, hydraulic and technical design constraints associated with each weir.

Assessment of structures within the northern Basin identified 12 priority sites within four sub-catchments. These structures were identified as priority sites due to their impact on migrating fish fauna, their potential benefit-cost ratio, and the river length that would be reinstated should the fish passage be provided at the site.

Of the 12 priority weir sites identified, five were investigated for feasibility of fishway installation and identification of fishway designs that would be directly applicable to five of the other sites plus generic types of weir (e.g. sheet pile with rock-fill face) in the northern Basin.

Of the two remaining sites, one has existing detailed design and cost estimates (Bourke Weir), while the second (Chinchilla Weir and gauge) requires further investigations – the costs of which were not possible within the budget for this project.

Fishway concept designs were developed at key representative sites which were specifically designed to suit the fish assemblage and semi-arid ecology of the northern Basin. Designs considered constructability, materials, regional context, maintenance and ownership, and allowed the development of cost estimates, with contingencies, to enable the financial and practical scope of the project to be assessed.

Figure 1 - Priority structures identified in the Northern Murray-Darling Basin

Figure 1 – Priority structures identified in the Northern Murray-Darling Basin

Figure 2 - Cunnamulla Weir, one of the priority sites identified for fish passage remediation in the northern basin. Photo courtesy of Scott Nichols

Figure 2 – Cunnamulla Weir, one of the priority sites identified for fish passage remediation in the northern basin. Photo courtesy of Scott Nichols

Findings: The river reaches where the weirs are located were noted to have high ecological value, with known native fish populations, high quality fish habitat, and long river reaches that would be reinstated for migration, either because of few nearby barriers or because of nearby weirs with fishways.

Spanning river systems in both NSW and Queensland, 12 high priority sites were identified, together with concept designs and investment costs to fix the top five barriers to fish passage. These weirs were chosen because of their anticipated high benefit/cost ratio.

The project identified that there are two feasible approaches to rehabilitating fish passage in the northern Basin:

  • provide fish passage at the top 11 priority structures to reinstate 2,086 km of river channel. The total cost was estimated at $14.56 m.
  • provide a strategic, holistic, program re-establishing broad-scale river connectivity of over 3,242 km. The total cost was estimated to be approximately $70 m.

The key features that make a fish passage program feasible in this area are:

  • the main-stem barriers are not numerous (42 for a broad-scale program reinstating over 3,200 km of river).
  • most of the barriers are low-level weirs between 1.5 m and 4.5 m high, with the exception of only eight structures.
  • most of the sites are relatively easy to work with.

Lessons learned and future directions: This project has provided a clear direction for strategic investment to deliver substantial improvements in fish passage connectivity, reducing fragmentation of fish populations in the northern Murray-Darling Basin. Fishway concepts were specifically designed to suit the fish assemblage and semi-arid ecology of the northern Basin and considered the feasibility of construction, materials, regional context, maintenance and ownership. 

Stakeholders and Funding bodies: This project was funded through the Murray-Darling Basin Authority’s Native Fish Strategy.

Contact: Scott Nichols, Fisheries New South Wales, (02) 66261396, scott.nichols@industry.nsw.gov.au, 1243 Bruxner Highway, Wollongbar, NSW 2477

Link: http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0020/456203/Fishway-Options-for-Weirs-of-the-Northern-MDB-FINAL-for-web-Jan13.pdf

 

 

Developing a ‘toolkit’ for management of freshwater protected areas in the Murray-Darling Basin

Key words: habitat, protection, native fish, Murray-Darling Basin

Native fish in the Murray-Darling Basin (MDB) have suffered severe declines in distribution and abundance since European settlement. Currently, six MDB freshwater fish species are listed under national threatened species legislation, and 22 out of a possible 34 MDB native fish species are listed under State and Territory threatened species legislation or advisory lists.

Protected areas are used for a variety of functions across many different ecosystems. Knowledge of the types, extent and purposes of these protected areas allows for more effective management of restoration and conservation goals.

Broad aim and methods: The objectives of the first of the two studies was to draw upon international and national experiences, to determine the science needed to underpin establishment of a network of freshwater protected areas, or Habitat Management Areas (HMA) in the MDB. The second of the projects aimed to assemble a GIS system of freshwater protected areas across the MDB, to gain an understanding of what comprises this ‘estate’, and, to produce a simple and easy to use toolkit for distribution among users.

The first study considered the theory and practice of designing a system of freshwater protected areas, including such aspects as scale, purpose, opportunities and impediments. The project also considered opportunities to work within existing policy, and generating support and involvement from primary stakeholder groups. Content considered was then used to develop a range of recommendations to take the issue forward.

In the second project a number of datasets and layers were integrated into a ‘protected areas’ GIS system. An audit was undertaken of eleven categories of protected area to determine whether they could be considered as a ‘river park’.

Figure 1: There is value in establishing a network of riverine and floodplain sites that work collectively to maintain biological, social and cultural values and improve river health across the Murray-Darling Basin.  (Photo courtesy Jamin Forbes)

Figure 1: There is value in establishing a network of riverine and floodplain sites that work collectively to maintain biological, social and cultural values and improve river health across the Murray-Darling Basin. (Photo courtesy Jamin Forbes)

Findings: The initial review identified many opportunities and some impediments, both potential and real, to the establishment of the proposed HMA system across the MDB. These opportunities and impediments occur at a range of levels, and within several sectors of society: political, institutional, stakeholder, community and scientific. Each opportunity and impediment needs to be well understood and addressed in the plan for going forward.

A vision for the system of river parks in the MDB was given as: “A network of riverine and floodplain sites that work collectively to maintain biological, social and cultural values and improve river health across the Murray-Darling Basin.”

The review of theory and international and national experiences in the field of HMA focussed on three different levels of approach to designing a ‘river parks’ system; namely, a species-based, aquatic biodiversity-based or ecosystem services-based approach; as well as the positives and negatives of each.

The second study compiled the first-ever audit of the MDB’s protected areas and indicated that there are close to 4,500 such areas, although if State Forests are not included this reduces the number by approximately 1,700 to around 2,800 sites. A subset of these represents the current ‘river parks’ network of the MDB. Allowing for the omission of exclusively dryland, terrestrial parks and reserves, and taking into account some duplication across these protected area types (some areas have several ‘tags’) it seems likely that there are at least 1,000 sites that could, following further investigation, form the foundation of a Basin-wide collaborative ‘river parks’ initiative.

Most significantly, what this project has shown is that, with some further investigation to clarify which of the 1,000 (or more) protected areas of the MDB may be considered ‘river parks’, a considerable foundation already exists on which to launch this umbrella initiative . This will show stakeholders that ‘river parks’ is not some new, restrictive or regulatory push by government, but rather an initiative to add cohesion and open up opportunities for more direct community participation from then on.

Figure 2: Ensuring that high quality habitat such shown here is well protected is one way to help manage native fish communities.  (Photo courtesy Jamin Forbes)

Figure 2: Ensuring that high quality habitat such shown here is well protected is one way to help manage native fish communities. (Photo courtesy Jamin Forbes)

Lessons learned and future directions: The outputs of this project will help restore and conserve key aquatic habitats in the MDB by lifting the profile of ‘river parks’ and increasing opportunities for community participation. Protection and restoration of riverine habitat and function is fundamental for protecting and rehabilitation native fish communities.

Stakeholders and Funding bodies: These projects were funded through the Murray-Darling Basin Authority’s Native Fish Strategy.

Contacts: Dr Bill Phillips, MainStream Environmental Consulting Pty Ltd., Tel +61 2 62817470, Email: bill.phillips@riversmart.org.au

Slopes2Summit Bushlinks Project

Keywords – landscape, connectivity, restoration, revegetation, NSW southwest slopes

The Slopes2Summit (S2S) Bushlinks project commenced in August 2012 and is in the first stage of implementing on-ground works to build landscape-scale connectivity across private lands in the southwest Slopes of NSW – from the wet and dry forest ecosystems of the upper catchment and reserves to the threatened Grassy Box Woodlands of the lower slopes and plains (Fig 1.).

Fig 1. Map of the S2S area and priority landscapes for Bushlinks

Fig 1. Map of the S2S area and priority landscapes for Bushlinks

The increasing isolation of plant and animal populations in “island” reserves scattered through an agricultural landscape is a recognised threat to the long term viability and resilience of ecosystems under potential impact of climate change. If we can increase the viable breeding habitat through off-reserve remnant conservation, and increase the habitat for dispersal by increasing connectivity, we may be able to influence the trajectory for some of our species – the Squirrel Glider (Petaurus norfolcensis)) and threatened woodland birds in particular.

The S2S Bushlinks Project is attempting to address connectivity issues through the following approaches:

1. Cross property planning. Foster and encourage cross property planning for habitat connectivity between neighbours, community, Landcare and/or subcatchment groups resulting in more integrated on-ground works projects, and raising awareness of the benefits of connectivity for wildlife.

2. On-ground investment in connectivity. The project is partnering with farmers and land managers to support and encourage fencing and revegetation in strategic places in the landscape with the objective of increasing habitat connectivity.  S2S Bushlinks applies scientific principles to the site assessments and evaluation, which then sets the level of investment in a site.  High scoring sites receive the highest rates of rebate, but the provision of low levels of public investment in sites that may not be of high priority is important for fostering participation in revegetation of any sort to encourage the culture of caring for the land.

Site assessment and scoring for funding level uses the following criteria:

  • Connectivity and landscape value – Does the site link to or create new patches of habitat according to principles of habitat connectivity? (Fig 2)  Is there existing vegetation in 1000ha radius around the site in an optimal range of 30-60%?
  • Area : perimeter ratio – Bigger blocks of revegetation are more cost-efficient and better habitat than linear strips of revegetation, and the project scoring encourages landholder to go bigger and wider in order to qualify for a higher level of funding.
  • Habitat Values – Does the site have existing values like old paddock trees, rocky outcrops or intact native ground layer, and therefore become a more valuable site? Is it in the more fertile, productive parts of the landscape and therefore of more productivity benefit for wildlife as well?
  • Carbon value – The scoring is based on the size of the revegetation and rainfall zone. The CFI Reforestation tool is being used to value the collective potential carbon sequestration of the Bushlinks project.

The emphasis on cross-property planning flows through to the implementation of on-ground works. Landholders are encouraged to work with neighbours and the site evaluation system is used to assess site value without the property boundaries – cooperation makes the site bigger and usually increases the connectivity value, and therefore scores higher.

3. Review and adaptive management process. The site assessment is to be reviewed in July 2013 against the objectives – did it work to prioritise sites well – did we invest wisely? The scientists and experts are then able to work closely with Holbrook Landcare to adjust the project eligibility, assessment and evaluation criteria to continually improve the outcomes in subsequent funding years.

4. Monitoring framework. As part of the in-kind contribution to the project, S2S partners Dr Dave Watson, CSU Albury and Dr. Veronica Doerr, CSIRO are working towards a framework for the long-term monitoring of landscape scale connectivity for continental-scale initiatives like Great Eastern Ranges (GER).  As part of a GER Environmental Trust Project in 2013, an expert panel workshop will be convened to begin this process in 2013.

The framework will then be used to pilot a project-scale design for Bushlinks, which will allow us to measure ecological outcomes.

Bushlinks will contribute to the Slope2Summit portal of the Atlas of Living Australia, supported by the Slopes2Summit facilitator. To develop community participation in monitoring and evaluation, participants and the wider community will be encouraged to contribute wildlife sightings and other data to the atlas.

The S2S partnership applied for funds through the Australian Governments Clean Energy Futures Biodiversity Fund in 2011 and was successful in the 2011/12 funding year for a six year project. Holbrook Landcare Network is managing the S2S Bushlinks Project on behalf of the Slopes2Summit and the Great Eastern Ranges Initiative, in partnership with Murray CMA.

Contact: Kylie Durant, Bushlinks Project Officer, Holbrook Landcare Network, PO Box 121 Holbrook, NSW 2644 Australia. Tel: +61 2 6036 3121

Fig 2. Summary of the connectivity model outlined in Doerr, V.A.J., Doerr, E. D and Davies, M.J. (2010) Does Structural Connectivity Facilitate Dispersal of Native Species in Australia’s Fragmented Terrestrial Landscapes? CEE Review 08-007 (SR44). Collaboration for Environmental Evidence: www.environmentalevidence.org/SR44.html

Fig 2. Summary of the connectivity model outlined in Doerr, V.A.J., Doerr, E. D and Davies, M.J. (2010) Does Structural Connectivity Facilitate Dispersal of Native Species in Australia’s Fragmented Terrestrial Landscapes? CEE Review 08-007 (SR44). Collaboration for Environmental Evidence: http://www.environmentalevidence.org/SR44.html

Fig 3. Revegetation in the farming landscape in the Southwest Slopes of NSW

Fig 3. Revegetation in the farming landscape in the Southwest Slopes of NSW

 

 

Holbrook Landcare “Rebirding the Holbrook Landscape” – assessing performance and learning in action

Chris Cumming and  Kylie Durant

Key words: tree dieback, lerps, restoring the agricultural landscape, community involvement, Holbrook Landcare Network

Holbrook producers established Holbrook Landcare Network in 1988.  It was one of the first Landcare groups in Australia, covering initially 171,000 ha of productive agricultural land in the upper reaches of the Murray Darling Basin. The organisation has directly managed grants of more than $6M across more than 85 projects to address NRM and agricultural issues including salinity and erosion control, soil and pasture management the protection of wildlife habitat.

Of the habitat projects, one of the most successful has been the “Rebirding Project”. A recognition of the importance of birds in the landscape occurred in 1994, when there was widespread concern in Holbrook over eucalypt tree dieback and the potential loss of paddock trees in the landscape. Holbrook Landcare commissioned a survey that identified 41% of the trees in the district were showing signs of dieback, and initiated (with support from our own extension staff and Greening Australia) education programs to inform landholders about the causes of dieback, including the link between cycles of lerp and other insect attack exacerbated by the loss of insectivorous birds.

In 1999 the group was successful in gaining funding for the “Rebirding the Holbrook Landscape to mitigate dieback” revegetation program through the Australian Governments Natural Heritage Trust (NHT), with the aim of drawing birds back onto farms and reducing eucalypt tree dieback.

Actions undertaken. Bird surveys were undertaken at 94 study sites in remnant vegetation on hills, flats and along creek lines. Education components succeeded in engaging the community and increased community knowledge and awareness of habitat issues in Holbrook.  The research information was used to recommend specific guidelines for the revegetation component, including ideal patch size (min 6ha), distance to remnant (1km), position in the landscape and habitat values.

The Rebirding on-ground projects (1999 – 2002) achieved 2150ha of remnant and revegetation work and put 475,000 plants back in the landscape across 118 properties – estimated at 80% of the Holbrook landholders.

Outcomes achieved. Measuring success of the program was very important to the community. A partnership with CSIRO Sustainable Ecosystems gave rise to a research project measuring bird use of plantings and remnant vegetation on local farms in 2004 to 2006.  This found that a range of bird species rapidly colonised planted areas and showed evidence of breeding activity, a positive message about the early signs of success of the Rebirding project. Tree health monitoring is ongoing by the community. Current ANU research is showing the positive benefit of the revegetation work in the landscape at the site, farm and landscape scale. The science is therefore indicating that yes, “rebirding” of the Holbrook landscape is underway, and HLN will continue to look to science to help us with the longer term outcomes for birds and tree health, and provide the feedback to us to adaptively manage our programs for the best outcomes.

The lessons and recommendations that come from the research are being applied directly to inform the design of subsequent programs such as the current major biodiversity project being managed by Holbrook Landcare – the “Slopes to Summit Bushlinks Project”.

Contacts: Chris Cumming (Executive Officer) and Kylie Durant,  Holbrook Landcare Network, PO Box 181 Holbrook NSW, Australia.  2644 Tel: +61 2 6036 3121, Email: kyliedurant@holbrooklandcare.org.au.

Paddock tree health field day, Holbrook, 2011.

Paddock tree health field day, Holbrook, 2011.

Before planting habitat blocks at Woomargama station, Holbrook.

Before planting habitat blocks at Woomargama station, Holbrook.

Stands of trees and shrubs established at Woomargama station, Holbrook.

Stands of trees and shrubs established at Woomargama station, Holbrook.

Yarrilinks: a vital bridge between city and country

Key words: community volunteers, environmental repair, revegetation, multiculturalism

Rae Talbot

A successful one-off revegetation project in the Yarriambiack Shire, Victoria, has led to ‘Yarrilinks’ – an annual revegetation event that combines environmental benefit, community involvement, cultural exchange,  lots of fun and friendship. Yarrilinks is one of several Wimmera Biolink Plantout events which happen throughout the year across the region. The plantouts build on broader biolink programs coordinated by Wimmera Catchment Management Authority as part of the Federal Government’s Caring for our Country program.

Betty Barry of Minyip is a regular host of volunteers at Yarrilinks. Mrs Barry is pictured with Adut Chol, one of the chefs from the not-for-profit restaurant chain ‘Lentil As Anything’ who help cater the Saturday night feast at Yarrilinks each year.

The unique feature of Yarrilinks is its partnerships with the Melbourne-based Adult Multicultural Education Services and Sudanese Australian Integrated Learning programs. This offers an opportunity for new residents of Australia, often refugees from wars in their own countries, to engage with local families closely working within a rural Australian environment.  Through this event, held each August, local families and new arrivals learn from each other, experiencing new cultures whilst building up the environment.

The project works by local families hosting the visitors.  Between 30 and 40 local families participate each year, with about 500 visitors being hosted from 24 different nationalities over the past 12 years.  The weekend community events have enabled the planting of 120,000 plants on 40 different sites on farms and roadsides.

On 6-7 August this year, paddocks in the Yarriambiack Shire came alive with volunteers from the local area and the Melbourne-based Adult Multicultural Education Services and Sudanese Australian Integrated Learning programs. The 2011 weekend was the 13th Yarrilinks event.

Contact: People wanting to find out more about Yarrilinks can phone Rae Talbot at Wimmera CMA on (03) 5382 1544 or email wca@wcma.vic.gov.au