Category Archives: Organisations

Operational planning and logistics – introducing fire into the landscape

Robert Strauch

Eastern Suburbs Banksia Scrub (ESBS) is an Endangered Ecological Community that only exists in the eastern part of the Greater Sydney area – between North Head and La Perouse. From an original estimated area of 5300 hectares there’s only 146 hectares of this community left. From the 3% that’s actually left only 18% of that ESBS is on managed lands. A lot of it is in areas like golf courses, people’s backyards along coastal parts in the Sydney eastern suburbs and small pockets on Council reserves, most locations of it are quite sparse in area, with the North Head community being the largest portion in total area remaining.

In 2004, the key stakeholders developed a recovery plan for ESBS, with National Parks working with other land management agencies to try and protect and manage this community. One of the recommendations from the plan was high intensity burn at an 8-15 year rotation.

Fire and Rescue New South Wales (NSW) are re-introducing fire as a tool to restore ESBS at three sites: broad area burning at North Head, some windrow burning at La Perouse on the site of the NSW Golf Course and pile burning at Centennial Park in the Moore Park area. This involved three types of burns: an area burn, windrows and burn piles.

Fig 1. Broad area burning at North Head

Fig 1. Broad area burning at North Head

1. North Head

A burn was conducted at North Head, Sydney Harbour in early September 2012. This was done in collaboration with National Parks and Wildlife Service, the Sydney Harbour Federation Trust and also the North Head Sanctuary Foundation. Interestingly, the location of the fire is very close to the location Dr Geoff Lambert has identified as the site European people in Australia first recorded their observations of fire being used by Indigenous people on the 28th May 1788.

Methods and risk management. At North Head, three relatively small burns were conducted: third quarantine cemetery (0.8 ha), North Fort (1.5 ha0 and Blue Fish Drive (1.8 ha). These involved very high levels of operational logistics and operational planning, prior to waiting for the appropriate burn conditions.

(a) Public safety. Because of a history of fires getting out of control at North Head, precautions involved restricting public access to the headland, which meant confining all three burns to 1 day to minimise disruption. There was an overall incident controller, Superintendent Kel McNamara for the North Head complex, plus divisional commanders in charge of each of the burns. The divisional commanders essentially were running their individual burns managing their operations officers and resources required. From this we ended up with 10 firefighting appliances (trucks) and (including the incident management and logistical appliance) we had a total of 36 resources contributed by three agencies: Fire and Rescue NSW, National Parks and Wildlife Service and Rural Fire Service Pittwater-Warringah. With all of that we had 121 fire fighters for our very small sites. State Emergency Service assisted us with closing down walking trails and making sure people weren’t actually coming onto the headland. We had a fire truck (Flying Pumper) sitting there as if it was in a fire station, so if any spot fires occurred they could go and deal with the fire and we could still carry on with our prescribed burning that we were undertaking.

(b) On the day of the burns there were 400 kids on the headland, which was worrying. I tried to encourage them to go into Manly for the day but they wanted to stay on the headland for their planned activities at the Quarantine Station. Because of that I then had to go through steps in the local emergency management plan and arrange with Sydney Ferries to make sure there was a ferry ready and available in case we needed to evacuate the headland as we could only evacuate by water. Also we had to speak with Harbour Control in case the fire got away and we had to shut down the shipping channels coming into Sydney Harbour.

(c) Heritage protection. We obtained mitigation funding through the NDRP National Disaster Resilience Funds to do some mitigation work around North Head’s historical stone walls criss-crossing the headland. This involved some clearing along those walls to protect the historical significance of them and this clearing doubled to create a strategic fire advantage zone over the headland.

(d) Miscellaneous risks. Among the other things I had to deal with was underground ventilation. There’s historical war tunnels through North Head with ventilation intakes that I had to make sure were covered and insulated so we weren’t dragging smoke into the underground tunnels, increasing the carbon monoxide load down there. This was so if people walked in there after the burns they weren’t going to asphyxiate themselves. The bonus carry over from Defence was possible unexploded ordinance out on the headland. Furthermore, the Sydney Water treatment plant opposite the blue fish drive burn involves an above-ground storage tank of highly explosive biogas.

(e) We could only burn in certain seasons. The breeding seasons of the Endangered population of Long-nosed Bandicoot (Perameles nasuta) and also the penguins had to be considered. This also involved working in with studies of these that were being done by the University of New South Wales, researching the bandicoot’s pre and post-fire introduction. Then we had to put in a notification strategy. The weather window, given all the other constraints, was very narrow. We put out an email notification system where we were literally going to give people anything from 24 hours notice up to 48 hours notice to actually go ahead with the burn.

This high level of risk meant that I had to win the confidence of senior management of Fire and Rescue NSW to support the burn. We did get that support as well as support from all the other land managers, which was fantastic.

Burns themselves. In terms of the burns themselves, once the fire got into the burn area it developed to very good intensity. It was a very high fuel load situation and one interesting challenge was to try and stop the fire fighters from putting the fires out. The buildings were quite close and they were very small parcels of burns.

Ecological context. The burns that we did on North Head involved a range of experimental treatments that included burning, controlled thinning and untreated controls; with some sites fenced from rabbits, a study conducted by Dr Judy Lambert.

We burnt on a small scale to start with to see what type of regeneration we were going to get from broad area burning out on the headland. The regeneration that we’re getting out at North Head is outstanding. But the biggest problem that we have is the newly sprouted post fire vegetation degradation from rabbits and the bandicoots. So we suggest for any burning in ESBS, the advice is that it needs to be fenced post-burn to encourage the regeneration to thrive.

Fig 2. High biomass vegetation before burn, North Head

Fig 2. High biomass vegetation before burn, North Head

Fig 3. During burn at North Head

Fig 3. During burn at North Head

Fig 4. Water deliver from air, North Head

Fig 4. Water deliver from air, North Head

Fig 5. Mopping up after burn at North Head

Fig 5. Mopping up after burn at North Head

2. La Perouse

At the New South Wales golf course at La Perouse the dominant species, Coastal Tea Tree (Leptospermum laevigatum) was cut and dropped on the ground. They let it cure and then they come in and burn it in isolated pockets.  Burning on the golf course is a lot easier than North Head because there are far fewer risks to plan for and manage, and the eastern boundary is the Pacific Ocean. With this type of environment and preparation we can get extremely high intensity burns which are required for the ESBS. Once again the land managers fence the area to stop exposure to rabbits. At the La Perouse golf course site, we had arson this fire season so we had an additional 21 hectares of wildfire. We’ve put measures in place to monitor what introduced fire has done compared with what wildfire has done in the same vegetative area along Henry Head.

3. Centennial Park

Centennial Park, in the middle of Sydney, has an area of ESBS which is not even a hectare. The Park’s owners, the Centennial Park Trust, have been manually clearing weed from the ESBS, piling it and then conducting pile burns on the area, spreading the ash from that. Once again some really good regeneration has occurred there and the burn area is also fenced off to stop rabbits.

That’s our story of how Fire and Rescue NSW has been involved in broad area burning, windrow burning and pile burning, working with land managers for the recovery of Eastern Suburbs Banksia Scrub.

Acknowledgements: Fire and Rescue NSW acknowledge this project could not have happed without the collaboration of National Parks and Wildlife Service, the Sydney Harbour Federation Trust, North Head Sanctuary Foundation, Rural Fire Service Pittwater Warringah, Road and Maritime Services, NSW Police, Manly Council, Sydney Water, Sydney Ports, Sydney Ferries, Harbor Control, Department of Defence and many others.

Contact: Robert Strauch, Bushfire Officer – Metro East Command, Fire and Rescue NSW (Operational Capability, Specialised Operations, Bushfire Section – Level 1, 55 Dickson Avenue, Artarmon, NSW 2064. Tel: +61 2 9901 2445, +61 448 597 547; Email: E Robert.Strauch@fire.nsw.gov.au)

[This project summary is a precis of a talk presented to the Nature Conservation Council of NSW’s 10th Biennial Bushfire Conference, ‘Fire and Restoration: Working with Fire for Healthy Lands’ 26-27 May 2015. For full paper see: http://www.nature.org.au/healthy-ecosystems/bushfire-program/conferences/%5D

Fig 6. Windrows before the burn, La Perouse

Fig 6. Windrows before the burn, La Perouse

Fig 7. Burn La Perouse

Fig 7. Burn La Perouse

Fig 8. Mopping up after burn, La Perouse

Fig 8. Mopping up after burn, La Perouse

From Rainforest to Oil Palms and back again: a Daintree Rainforest Rescue in far north Queensland

Robert Kooyman, Joe Reichl, Edie Beitzel, Grant Binns, Jennifer Croes, Erryn Stephens, and Madeleine Faught

The establishment of Oil Palm (Elaeis guineensis) plantations is responsible for massive rainforest clearing and destruction throughout the tropics of Southeast Asia and beyond, and has captured the attention of conservation organisations around the world. One such organisation is Rainforest Rescue (RR), a not for profit Australian based conservation NGO. Through local and international projects (including in the Daintree region of Australia and Sumatra in Indonesia) RR has undertaken conservation actions that include removal of Oil Palm plantations to re-establish rainforest close to National Park areas.

The rainforest of the Daintree region provides an active window into the evolution, biogeography, and ecology of the southern (Gondwanan) rainforests, and their interaction with Indo-Malesian floristic elements. It has many (ca. 120) federal- and state- listed Threatened, Vulnerable, Of Concern, and Rare plant and animal species and a range of rainforest types.

To achieve restoration of a small (27.6 ha) but important piece of the global distribution of lowland tropical rainforest, RR purchased Lot 46 Cape Tribulation Road in the Daintree area of far north Queensland, Australia in 2010 and, in 2012, secured funding to set the property on its long journey back to rainforest.

The property was partly cleared in the 1960s, first for cattle grazing and later for Oil Palm cultivation. It has a mix of cleared (ca. 11 ha) and early stage natural regeneration (ca. 10ha) areas, bounded on two sides by more intact and mature rainforest (ca. 7 ha). Soils are mostly free-draining sandy clay loams on flat terrain

The on-ground works.  The property was divided into five working Zones as part of the restoration planning process (Fig. 1). Because of a nearby large seed source forest a key objective of the project is to maximise and protect natural regeneration, as well as planting larger openings. Up to 30,000 trees representing 100 species are expected to be planted during the 2-year life of the project, with around 10 ha of natural regeneration interspersed.

Figure 1. Map showing property, work zones (ZONE 1-5), permanent photographic points (Photo point 1-9), location of planting trials (Zones 1 and 2), and primary weed control area (2013) in orange. (Courtesy Google Earth)

Figure 1. Map showing property, work zones (ZONE 1-5), permanent photographic points (Photo point 1-9), location of planting trials (Zones 1 and 2), and primary weed control area (2013) in orange. (Courtesy Google Earth)

Trial tree plantings were undertaken in early 2011 and 2012, and selective weed management (herbicide based grass and soft weed control) began at the same time to optimise natural regeneration prior to identifying and preparing suitable planting sites.

Plantings.  The planting trials were each one hectare in area and designed to test the efficacy of two different high diversity (60-90 species) planting designs. In Zone 1 tree spacing was 2.5m, and in Zone 2 the spacing was 1.5m. Seedlings for rainforest plantings were propagated and grown in the RR nursery in the Daintree lowlands. Seed collection was undertaken north of the Daintree River and included seed collected from the property. A low number of vines were included in the species mix for subsequent plantings.

A total of 90 species have been planted to date. The species mix included some early stage (pioneer type) tree species from genera such as Polyscias (Araliaceae), Alphitonia (Rhamnaceae), Macaranga (Euphorbiaceae) and Commersonia (Malvaceae); and tall fast growing species such as Elaeocarpus grandis (Elaeocarpaceae) and Aleurites moluccana (Euphorbiaceae). The remaining species represented mostly moderately fast growing species, and some slower growing mature phase rainforest species.

Weed control. Where possible, large Oil Palms were removed mechanically, but to protect existing rainforest regeneration many required stem injection with herbicide. Several methods are currently being trialled to determine the most time and cost effective approach to controlling this large and difficult weed.

Late in 2012 and early in 2013 extensive mechanical and chemical weed control was undertaken in Zones 3, 4 and 5 (Fig. 1). This included mechanical clearing of large areas dominated by Giant Bramble (Rubus alceifolius) and other weeds, and some mechanical removal of Oil Palm seedlings on the southern side of the creek that traverses the property (Zones 3 and 4). Follow up chemical control (systematic backpack spraying of glyphosate) was conducted immediately (as required) to complete the site preparation for planting. This was targeted at grasses, broad-leaf weeds, and regrowth of woody weeds.

Monitoring design. Monitoring plots (7 / 50 x 20m plots, each with 10 / 10 x 10m subplots) and permanent photographic points (12 in total, 7 in association with monitoring plots) were established in the five working Zones. Cover, number of species and density will be recorded in these plots at each stratum at 12 month intervals. One monitoring plot was established in each of Zones 1 and 2, three in Zone 3 (including directly adjacent to Zone 4), and two in Zone 5 (in the north of the property; yet to be measured). Zone 4 will be monitored visually and by photo point as it is mostly natural regeneration enhanced by weed control.

Preliminary Results. The first round of project monitoring (year 1 establishment) provided base-line information for future development of the plantings and natural regeneration through assessing canopy cover, leaf litter cover, and a range of other factors that will change over time (Table 1). Informal observations have shown that site dominance was achieved by the trees planted 12 and 18 months ago in Zones 1 and 2.  Substantial numbers of wildling seedlings (of up to 11 species in a plot; and 15 in total) were found in the sites monitored prior to more recent planting.

Mechanical weed control was reported to be extremely effective and the operator was able to minimise damage to existing regrowth of species such as Melicope elleryana (Rutaceae), Glochidion harveyanum var. harveyanum (Phyllanthaceae), Macaranga involucrata var. mallotoides (Euphorbiaceae), Polyscias australiana (Araliaceae), Rhodamnia sessiliflora (Myrtaceae), Alphitonia incana (Rhamnaceae) and Aidia racemosa (Rubiaceae). In combination with the early implementation of broad and targeted spraying this maximised the retention of substantial existing saplings and seedlings.

Project funding will cease in 2014, and control of all weeds and rainforest establishment is expected to be completed in 2015; with only minor weed control required thereafter once canopy cover is established. Monitoring will continue at 12 month intervals and inform future publications.

Acknowledgements: The project is dependent on the generous support of RR donors and the on-going efforts of RR staff in FNQld. Funding for the project was provided by a Federal Government Biodiversity Fund Grant.

Contact:  Robert Kooyman, National Herbarium of NSW, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney 2000 Australia.   Email: robert@ecodingo.com.au;

Figure 2 Mechanical weed control in Zone 3 (January 2013) prior to planting. Note remaining natural regeneration.

Figure 2 Mechanical weed control in Zone 3 (January 2013) prior to planting. Note remaining natural regeneration.

Figure 3. Newly planted trees in Zone 3 (March 2013). Note surrounding natural regeneration.

Figure 3. Newly planted trees in Zone 3 (March 2013). Note surrounding natural regeneration.

Figure 4. Zone 2 planting trial established in late 2011 at 18 months. Tree spacing at 2 - 2.5m.

Figure 4. Zone 2 planting trial established in late 2011 at 18 months. Tree spacing at 2 – 2.5m.

Table 1.  Synthesis of baseline data for natural regeneration, and progress (including planting) up to February 2013 measured on (50 x 20m) permanent monitoring plots (PP), in Zones (1,2,3), by Themes (1 – planting; 2 – natural regeneration). PD – total planted diversity on plot; PS(n) – number of seedling planted on plot; WS – wildling seedlings (0.5-1m in height); WD – wildling diversity; Av. CC(%) – Average Canopy Cover (%); Av. L(%) – Average Litter Cover (%); Av. LBC(%) – Average Log-Branch Cover (%); Av. PCHt – Average planted canopy height (m); dbh – diameter at breast height (1.3m); NR – Number of stems, natural regeneration >1cm DBH; NR-div – Diversity of natural regeneration >1cm DBH; Age (mths) – Age of planting in months. Zone 4 (not shown) has permanent photo points and visual monitoring.

PP Zone Theme PD PS(n) WS WD Av.CC(%) Av.L(%) Av.LBC(%) Av. PCHt NR NR-div Age(m)

1

3

1, 2

82

424

236

7

27.5

52

7

0.6 – 1

218

12

1

2

3

1, 2

0

0

587

11

41

61.5

6.7

NA

248

11

0

3

3

1, 2

0

0

133

5

18.5

48.8

4.6

NA

109

9

0

4

2

1

85

390

45

7

13

30.6

3

1-2m

45

5

12

5

1

1

85

207

95

5

45.5

58

5

2-3m

48

7

18

Appendix 1 List of main weed species located and treated on the property.

Common Name Species Family Life Form
Sanchezia Sanchezia parvibracteata Acanthaceae herb
Brillantaisia Brillantaisia lamium Acanthaceae herb
Goosefoot Syngonium podophyllum Araceae vine
Toothed Philodendron Philodendron lacerum Araceae climber
Oil Palm Elaeis guineensis Arecaceae palm
Dracaeana Dracaeana fragans Asparagaceae small tree
Sensitive Plant Mimosa pudica Fabaceae creeper
Calopo Calopogonium mucunoides Fabaceae creeper
 Green Summer Grass Urochloa decumbens Poaceae grass
Giant Bramble Rubus alceifolius Rosaceae scrambler
Snake Weed Stachytarpheta cayennensis Verbenaceae herb

Slopes2Summit Bushlinks Project

Keywords – landscape, connectivity, restoration, revegetation, NSW southwest slopes

The Slopes2Summit (S2S) Bushlinks project commenced in August 2012 and is in the first stage of implementing on-ground works to build landscape-scale connectivity across private lands in the southwest Slopes of NSW – from the wet and dry forest ecosystems of the upper catchment and reserves to the threatened Grassy Box Woodlands of the lower slopes and plains (Fig 1.).

Fig 1. Map of the S2S area and priority landscapes for Bushlinks

Fig 1. Map of the S2S area and priority landscapes for Bushlinks

The increasing isolation of plant and animal populations in “island” reserves scattered through an agricultural landscape is a recognised threat to the long term viability and resilience of ecosystems under potential impact of climate change. If we can increase the viable breeding habitat through off-reserve remnant conservation, and increase the habitat for dispersal by increasing connectivity, we may be able to influence the trajectory for some of our species – the Squirrel Glider (Petaurus norfolcensis)) and threatened woodland birds in particular.

The S2S Bushlinks Project is attempting to address connectivity issues through the following approaches:

1. Cross property planning. Foster and encourage cross property planning for habitat connectivity between neighbours, community, Landcare and/or subcatchment groups resulting in more integrated on-ground works projects, and raising awareness of the benefits of connectivity for wildlife.

2. On-ground investment in connectivity. The project is partnering with farmers and land managers to support and encourage fencing and revegetation in strategic places in the landscape with the objective of increasing habitat connectivity.  S2S Bushlinks applies scientific principles to the site assessments and evaluation, which then sets the level of investment in a site.  High scoring sites receive the highest rates of rebate, but the provision of low levels of public investment in sites that may not be of high priority is important for fostering participation in revegetation of any sort to encourage the culture of caring for the land.

Site assessment and scoring for funding level uses the following criteria:

  • Connectivity and landscape value – Does the site link to or create new patches of habitat according to principles of habitat connectivity? (Fig 2)  Is there existing vegetation in 1000ha radius around the site in an optimal range of 30-60%?
  • Area : perimeter ratio – Bigger blocks of revegetation are more cost-efficient and better habitat than linear strips of revegetation, and the project scoring encourages landholder to go bigger and wider in order to qualify for a higher level of funding.
  • Habitat Values – Does the site have existing values like old paddock trees, rocky outcrops or intact native ground layer, and therefore become a more valuable site? Is it in the more fertile, productive parts of the landscape and therefore of more productivity benefit for wildlife as well?
  • Carbon value – The scoring is based on the size of the revegetation and rainfall zone. The CFI Reforestation tool is being used to value the collective potential carbon sequestration of the Bushlinks project.

The emphasis on cross-property planning flows through to the implementation of on-ground works. Landholders are encouraged to work with neighbours and the site evaluation system is used to assess site value without the property boundaries – cooperation makes the site bigger and usually increases the connectivity value, and therefore scores higher.

3. Review and adaptive management process. The site assessment is to be reviewed in July 2013 against the objectives – did it work to prioritise sites well – did we invest wisely? The scientists and experts are then able to work closely with Holbrook Landcare to adjust the project eligibility, assessment and evaluation criteria to continually improve the outcomes in subsequent funding years.

4. Monitoring framework. As part of the in-kind contribution to the project, S2S partners Dr Dave Watson, CSU Albury and Dr. Veronica Doerr, CSIRO are working towards a framework for the long-term monitoring of landscape scale connectivity for continental-scale initiatives like Great Eastern Ranges (GER).  As part of a GER Environmental Trust Project in 2013, an expert panel workshop will be convened to begin this process in 2013.

The framework will then be used to pilot a project-scale design for Bushlinks, which will allow us to measure ecological outcomes.

Bushlinks will contribute to the Slope2Summit portal of the Atlas of Living Australia, supported by the Slopes2Summit facilitator. To develop community participation in monitoring and evaluation, participants and the wider community will be encouraged to contribute wildlife sightings and other data to the atlas.

The S2S partnership applied for funds through the Australian Governments Clean Energy Futures Biodiversity Fund in 2011 and was successful in the 2011/12 funding year for a six year project. Holbrook Landcare Network is managing the S2S Bushlinks Project on behalf of the Slopes2Summit and the Great Eastern Ranges Initiative, in partnership with Murray CMA.

Contact: Kylie Durant, Bushlinks Project Officer, Holbrook Landcare Network, PO Box 121 Holbrook, NSW 2644 Australia. Tel: +61 2 6036 3121

Fig 2. Summary of the connectivity model outlined in Doerr, V.A.J., Doerr, E. D and Davies, M.J. (2010) Does Structural Connectivity Facilitate Dispersal of Native Species in Australia’s Fragmented Terrestrial Landscapes? CEE Review 08-007 (SR44). Collaboration for Environmental Evidence: www.environmentalevidence.org/SR44.html

Fig 2. Summary of the connectivity model outlined in Doerr, V.A.J., Doerr, E. D and Davies, M.J. (2010) Does Structural Connectivity Facilitate Dispersal of Native Species in Australia’s Fragmented Terrestrial Landscapes? CEE Review 08-007 (SR44). Collaboration for Environmental Evidence: http://www.environmentalevidence.org/SR44.html

Fig 3. Revegetation in the farming landscape in the Southwest Slopes of NSW

Fig 3. Revegetation in the farming landscape in the Southwest Slopes of NSW

 

 

West Hume Landcare Group – Taking stock, 24 years on

Judy Frankenberg

Key words: agricultural landscape restoration, community involvement, salinity, threatened species

The West Hume Landcare Group was formed in 1989 as a community response to land degradation in the area. Funding to employ a coordinator for three years was obtained in 1990. This enabled a high level of project activity in addition to tree planting, including a roadside vegetation survey, farm planning workshops, demonstration sites for ground water recharge and discharge management, and perennial pasture establishment. In the first 5 years of its existence, the group organised nearly 250 different events, attracted funding of over $500,000 and managed 17 different projects.

The second 5 years saw a period of consolidation – then, from late 1997, the employment of a full time project officer enabled  the development of a Land and Water Management Plan.  By early 2000 the Group had attracted a total of $1,000,000 in project funding over 11 years.

“Taking Charge of Recharge” was the largest project undertaken by the West Hume Landcare Group, commencing in 2001. It involved 80 properties, with a total of 170,009 local trees and shrubs planted on 370 ha.  Some 93 ha of remnant vegetation were fenced over the two years of the project. This project was the climax of a very busy 12 years of the Landcare Group’s life, during which 400,000 trees and shrubs were planted in a wide variety of projects across the landcare area – in addition to direct seeding and natural regeneration.  This revegetation had a variety of purposes, including recharge and discharge management, corridor linkages between remnants, vegetation connections specifically designed to strengthen the local (threatened) Squirrel Glider (Petaurus norfolcensis) population, and livestock shelter.

Many of the planting projects initially involved only small numbers of trees, with a low proportion of shrubs.  They were important in giving landholders confidence that tree planting was a credible farm management activity and in their ability to succeed in species selection and establishment.  The Landcare group provided a lot of support in species selection, and, as the demand for shrubs grew, the nurseries responded by increasing their availability.

Nearly all revegetation in West Hume has used local species, and as far as possible these were grown from locally sourced seed.  The diversity of shrub species used increased over the years as knowledge and availability of the local flora improved.

Roadside survey. Local knowledge was greatly increased following the roadside survey carried out by 38 landholder volunteers.  They surveyed 460 km of road, recording floristics, conservation value and causes of degradation.  A total of 111 native species were recorded, including 28 shrubs, but very few road sections had greater than 50% shrub cover.  Many of the shrubs. grasses and forbs recorded are considered rare in the landcare area.  Knowledge of the whereabouts of these small remnants has allowed seed collection and propagation of some of them in seed production areas on local properties and at the Wirraminna Environmental Centre at Burrumbuttock.  The need for this local source of seed has been emphasised by the observation that in the case of a few acacia species, local forms are different from those growing in neighbouring areas.

Landcare survey. Landholder views about the importance of vegetation was shown in a landcare survey carried out in 1999. A majority of the 60% of respondents considered that dieback of trees and the lack of shrubs, understorey and wildflowers was of concern and there was a clear concern expressed about the decline of native birds in the area.

When the “Taking Charge of Recharge” project was funded in 2001, the response of landholders was enthusiastic.  The group members were eager to take advantage of the high level of incentives available in this project to increase the scale of planting beyond that generally undertaken previously.  While the prime purpose of the funding was for recharge management, members were keen to establish local species in ecologically appropriate sites.  Ecological and botanical skills within the group were able to support the species choices.

This confidence in the value and feasibility of large revegetation projects has been continued in subsequent years when the Murray CMA has offered good incentives for large area plantings.

Contact:  Judy Frankenberg, +61 2 6026 5326, Email: judy@frankenberg.com.au

Fig 1. School student volunteers planting in block AA on ‘Warrangee’ in 1995.

Fig 1. School student volunteers planting in block AA on ‘Warrangee’ in 1995.

Fig 2. Resulting tree and shrub habitats created from 1995 planting on block AA, 2013.

Fig 2. Resulting tree and shrub habitats created from 1995 planting on block AA, 2013.

Fig 3. ‘Corridors of green’ project, 2013, planted in 1994, “Warrangee” .

Fig 3. ‘Corridors of green’ project, 2013, planted in 1994, “Warrangee” .