Category Archives: New South Wales

Restoration of Wollongong’s Tom Thumb Lagoon 25 Years On: UPDATE of EMR feature.

 Nicholas Gill

[Update of EMR feature: Gill, Nicholas (2005) Slag, steel and swamp: Perceptions of restoration of an urban coastal saltmarsh. Ecological Management & Restoration, 6:2, 85-93 https://onlinelibrary.wiley.com/doi/10.1111/j.1442-8903.2005.00224.x]

Keywords. coastal wetlands, urban green space, pollution, mangroves, volunteers.

Figure 1. Tom Thumb Lagoon and Greenhouse Park (a) 2008 and (b) 2017. (Source Google Earth)Introduction. The 2005 feature was drawn from restoration work my students and I became involved in during the early 2000s at Tom Thumb Lagoon (TTL) – an estuarine wetland close to Wollongong’s CBD and adjacent to the Port Kembla industrial area and harbour. By that point Wollongong City Council (WCC), the Bushcare group Friends of Tom Thumb Lagoon (FTTL), industry, Conservation Volunteers Australia (CVA), and many volunteers had been variously working on the site since the early 1990s. After decades of impacts from industrial development, waste disposal, and neglect, this significant restoration effort encompassed removing landfill, reshaping the wetland with channels and shallow benches, revegetation, weeding, and the construction of access and viewing points. By the time we became involved and I wrote the 2005 paper, TTL and the adjacent Greenhouse Park (GHP; Fig 1), were substantially revegetated, aesthetically improved, and the saltmarsh wetlands were seen as ecologically valuable. Participants and stakeholders in the restoration project perceived that substantial progress and improvement had been made. They also perceived, however, that the project suffered from some issues common to such endeavours such as a lack strategic planning and monitoring of ecological outcomes.

Since this time, restoration and other work has continued at TTL and at GHP. The story of what has happened, however, is one of the dynamic and contextual nature of sites such as this. This is true in a biophysical sense of ongoing vegetation change, particularly the spread of Grey Mangrove (Avicenna marina), a native plant previously not occurring on the site but planted for perceived environmental benefits either in the 1990s, or around 2000. This spread (into what was previously saltmarsh and mudflats) arises from past decisions and, while providing benefits, is now potentially causing new problems as well as continuing debates about choices in restoration.  The social context has also been dynamic and influential, as priorities have shifted, as the funding environment has altered, and as the people and groups involved have changed. Finally, Tom Thumb Lagoon remains affected by the legacy of the industrial history of its location. Past waste disposal practices in the absence of regulation have led to pollution problems that have become of greater concern since the early 2000s.

Activities at Tom Thumb Lagoon and Greenhouse Park Today. The wetland area itself is adjacent to a capped waste disposal site that operated from the 1940s until the mid-1970s. This area is known now as Greenhouse Park and is being managed and developed as urban green space with more focus on fostering urban sustainability practices; any restoration work is nested within these foci. TTL and GHP were always associated through overlap between FTTL and GHP staff, and GHP facilities were a base for TTL activities. Today, however, personnel have changed, FTTL no longer exists and its key members are no longer associated with TTL, and TTL/GHP are managed as one site to a greater extent. The result of these factors, and of the achievements already made at TTL, have been a shift towards an emphasis on activities at GHP and a change in TTL activities from active restoration to maintenance. It is now GHP volunteers and associated WCC staff who undertake and oversee work at TTL. At GHP WCC has expended considerable resources in tree planting and expanding a permaculture garden. There is a shelter, outdoor kitchen, and pizza oven for volunteers, WCC and Wollongong firms compost green and food waste, and there are hopes for public, tourism, and event use. Around ten volunteers work at the site weekly. For the GHP staff and volunteers, activities at TTL itself today are largely limited to weeding, picking up litter, and feral animal control. Weeds and litter remain problems, partly due to TTL’s location at the bottom of an urban catchment. In addition, since 2005, frog ponds were installed at the eastern end of TTL for the endangered Green and Golden Bell frog (Litoria aurea), however, it is not clear if the ponds are effective. The non-native Giant Reed (Arundo donax) also remains well established at this end of TTL despite control attempts.

Shifts in support have meant that CVA bowed out of work at TTL/GHP in 2012. Previously their involvement had been via a wetlands program that relied on support from both industry (including Bluescope and NSW Ports, both operating adjacent to TTL) and government programs. Until 2012, in conjunction with WCC, CVA were revegetating the southern slopes of GHP (marked A in Fig. 1) and were removing weeds and litter from the saltmarsh. However, the funding that CVA relied on declined such that CVA was unable to continue at TTL/GHP.

Figure 2.  Eastern end of TTL looking south (a) 2002 and (b) 2019 (Photos Nick Gill)The Mangroves are Coming. Apart from further revegetation at GHP, the most significant vegetation change at TTL has been the spread of Grey Mangrove. While approval to thin this species has been obtained in the past and some thinning did occur, it has not mitigated their current spread and density. Grey Mangrove spread is clearly seen for the period from 2002 to 2019 in Fig 2 which shows the eastern end of TTL and the southern end of the channel known as Gurungaty Waterway. Aerial photos further reveal changes from 2008-2017 where the largely east-west spread of mangroves along channels in TTL can be seen (marked B in Fig 1). Significant spread can also be seen north-south spread along Gurungaty Waterway over this period (marked C in Fig 1). As the 2005 paper records, not long after Grey Mangrove was planted in the late 20th or early 21st Century, its expansion was  soon causing concern for its consequences for the site’s mudflats, saltmarsh and tidal habitats although it appears to have largely remained confined to the channels and has no doubt generated some environmental benefits. In terms of its consequences on bird habitat, the long observations of local birdwatchers suggest that the expansion of Grey Mangrove has reduced the incidence of waders and shorebirds, particularly Black Winged Stilts (Himantopus himantopus) and also waterfowl and herons. Nonetheless, observers report that Grey  Mangrove colonisation is providing habitat for other birds, such as the Sacred Kingfisher (Todiramphus sanctus), the Nankeen Night-Heron (Nycticorax caledonicus), and the Striated Heron (Butorides striata). Elsewhere across more upland areas of TTL and GHP, the expansion of tree planting across GHP and TTL has seen a shift to birds favouring woodland habitats.

The expansion of Grey Mangrove is also implicated in flood risk, especially for the catchment of Gurungaty Waterway. A 2019 review of the Wollongong City Flood Study, suggests that low elevations and channel infrastructure, combined with sedimentation and flow limitations associated with the now dense mangroves (Fig. 3), have increased the likelihood of flooding in the urban catchment.

Figure 3.  Southern Gurangaty Waterway in (a) 2002 and (b) 2019. Note the steel footbridge on left of each photo. (Photos Nick Gill)Industrial Legacies. The 2005 paper notes that saltmarsh restoration was an important part of the TTL work and that stakeholders saw the saltmarsh as a significant ecological element of TTL. Since 2004 coastal saltmarsh has been listed as an Endangered Ecological Community in NSW. From 2006, saltmarsh degradation prompted WCC to monitor the saltmarsh and analyse groundwater and soils.  This showed that the degradation was likely associated with ammonia leaching from the tip and causing nitrate pollution, and also with a hydrophilic layer of iron hydroxide in the soil causing waterlogging and contaminant absorption. The possible origins of this layer include past waste disposal practices from metal manufacturing.

These, however, are not the only legacies of past unregulated waste disposal and industrial activity. TTL is now a declared site of ‘significantly contaminated land’ by the NSW EPA. The 2018 declaration notes that site is contaminated by ‘polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons and other mixed contaminants from multiple sources including coal tar and lubricant oils’. At TTL elements of these can be visible as a film on the water surface and are among the substances leaching from GHP. Such substances are carcinogenic and exposure can cause a range of health problems. The presence of these materials in the groundwater has been known since the 1990s but from 2013 WCC began to monitor and map these materials. Monitoring points were installed along the wetlands at base of the old tip. Various remediation options for these contaminants, as well as for the nitrates and iron hydroxide layer, were proposed but action was not taken at this time for various reasons including disruption to the wetland, costs, and uncertainties regarding pollutant interception. As of 2019, the site is subject to a ‘Voluntary Management Proposal’ by WCC which includes the preparation of a remediation action plan by late 2019.

Future Directions. The last fifteen years have seen some aspects of restoration, such as tree planting, proceed and expand. By some measures this is continued progress of the original project. TTL/GHP is now a well-established urban green space with environmental and amenity value. However, concerns from the early 2000s about volunteer succession, the absence of a catchment approach to management, and the need to think more strategically about ecological trade-offs between management options have been realised to some extent. The spread of Grey Mangrove is the clearest example of this. In part, some of this is perhaps inevitable for a site with the history and setting of TTL/GHP; the management context has changed, participants and stakeholders have changed, and difficult legacy issues have assumed greater prominence and cost. Nonetheless, the challenge to manage the site with a clear strategy and goals remains.

Acknowledgements: For assistance with this update, I am indebted to several past and present WCC staff, particularly Mike McKeon. I was also helped by Adam Woods, formerly of CVA, and birdwatchers Penny Potter, Terrill Nordstrom, and David Winterbottom.

Contact. Nicholas Gill, School of Geography and Sustainable Communities Faculty of Social Sciences, University of Wollongong NSW 2522 Australia, Email: ngill@uow.edu.au

The biodiversity benefits of Greening Australia’s Saltshaker Project, Boorowa, NSW – UPDATE of EMR feature

[Update of EMR feature – Freudenberger, David, Judith Harvey and Alex Drew (2004) Predicting the biodiversity benefits of the Saltshaker Project, Boorowa, NSW. Ecological Management & Restoration, 5:1, 5-14. https://doi.org/10.1111/j.1442-8903.2004.00176.x]

David Freudenberger, Graeme Fifield, Nicki Taws, Angela Cailiss and Lori Gould

Key words: woodland restoration, monitoring, farmland rehabilitation, community engagement

Figure 1. Boorowa River Recovery project sites, south eastern NSW.

Introduction

The Boorowa catchment in central NSW, like most of the wheat-sheep belt of eastern Australia, has been extensively cleared for agriculture.  Remnant woodland cover is less than 10% and highly fragmented into small patches, often less than 20 ha. As described in the 2004 article, there has been a documented decline in biodiversity across this region linked to declines in landscape function including dryland salinity and eucalypt dieback. In response to these declines, farmers in this catchment have been involved in land rehabilitation projects for over 25 years.  Many of these projects have been facilitated by Greening Australia, a national non-governmental organisation focused on protecting and restoring native vegetation.  Pioneering projects in the 1990s were often small in scale and lacked landscape scale targets.  To address this, Greening Australia collaborated with CSIRO to develop guidelines for catchment scale “enhancement activities” for the $1.8 Million “Saltshaker Project” that carried out ground works as described in Box 1 of the 2004 article (reproduced below). The project was based on a $845,000 grant from the Australian Government’s Natural Heritage Trust program and $1 Million in in-kind support from farmers, the Boorowa Shire, Boorowa Landcare and Greening Australia. This project ran for just two years (2000-2002), but it was hoped that the project would provide strategic guidance for decades to come.  This appears to be the case.

 Box 1. Priority ‘enhancement activities
1. Protect existing remnant vegetation by fencing out domestic livestock with a priority to protect 10 ha or larger remnants in the best condition (complex understorey).
2. Establish native understorey plants in those protected remnants requiring enhancement of habitat complexity.
3. Enlarge existing remnants to at least 10 ha.
4. Create linkages between fenced remnants and other protected remnants. Linkages should be at least 25 m wide, or 10 ha stepping-stones, particularly in those areas more than 1.5 km from other patches 10 ha in size.
5. Fencing and revegetation of at least 50 m wide along creeks and flow lines.
6. In recharge areas, revegetate in 2-ha blocks, or greater than eight row strips to intercept deep soil water moving down-slope.
7. Revegetate areas mapped as having a high risk of dryland salinity.
8. Block plantings in discharge areas with links to other saline reclamation works.

(Box reproduced with permission from the original feature]

During the Saltshaker project, bird surveys were conducted within 54 discrete patches of remnant woodland.  Bird species were identified that were particularly sensitive to loss of habitat area, simplification of habitat structure, and increase in habitat isolation. The Eastern Yellow Robin was the focal species for this catchment. It generally occurred in woodland patches larger than 10 ha that were no more than 1.5 km from other patches at least 10 ha in size, and had at least a moderate structural complexity made up of a healthy overstorey of eucalypts with an understorey of regenerating trees, shrubs, tussock grasses and fallen timber. The Saltshaker project predicted that many other woodland birds would co-occur if the habitat requirements of the Eastern Yellow Robin were met by patch and landscape scale enhancement activities.

Further works. The Saltshaker project was followed by many others since 2002. The largest project was “Boorowa River Recovery” that began in 2005 as a partnership managed by Greening Australia with the Lachlan Catchment Management Authority and the Boorowa Landcare Group.  Through a total investment of almost $2.2 million (in-kind included), this project rehabilitated or protected 640 ha of riparian area along 80 km of river including a continuous 29 km stretch of the Boorowa River above the town water supply dam (Figs 1 and 2). It involved more than 60 land managers who implemented on-ground works described in individual ten year management contracts. On-farm project size averaged 11.6 ha.

Other projects funded by a diversity of sources, particularly the Australian Government, have protected an additional 88 ha of woodland remnant, enhanced 353 ha of remnants, and revegetated 425 ha of native vegetation within the catchment.  Projects included Whole of Paddock Rehabilitation (WOPR).  All project activities linked to funding have been recorded in a detailed project management database held by Greening Australia. These additional projects were consistent with the enhancement activities recommended by the Saltshaker Project and described in the EMR feature.

Figure 2 (a) Before and (b) after willow removal in the Boorowa River Catchment. After willow removal, all sites were planted to a diversity of trees and shrubs.

Outcomes. There has been no comprehensive follow-up to the 2001 bird surveys across the Boorowa Catchment.  However since then, there is now a large and comprehensive scientific literature demonstrating dramatic increases in woodland birds in the revegetation areas in this region of southeastern NSW (reviewed in 2018). Most all the conservation and restoration activities in this catchment have likely led to an increase in woodland birds over the past 20 years.

Of all the Boorowa projects, the Boorowa River Recovery projects had sufficient funding for monitoring outcomes six years after project activities commenced. A sub-sample of 20 sites out of a pool of 47 were monitored for improvements in vegetation cover and density, macroinvertebrate abundance and stream bank stability. Planted shrub cover generally doubled at all sites as expected. Macroinvertebrate scores did not differ between treated and control sites, though activities did appear to improve stream bank stability (an indirect measure of reduced erosion).  Subsequent monitoring 12 years on showed further improvements in ecosystem function.

Since the Saltshaker Project finished, there has been no systematic monitoring of the hundreds of woodland remnants protected and enhanced by this project and subsequent ones.  However, landholders and staff anecdotally report indicative improvements in vegetation cover and wildlife habitat on the sites, and we can infer from a 2008 study that included woodland sites in the Boorowa Catchment, that significant ecological improvements are likely from fencing out livestock from woodland patches. This study found improvements included greater native floristic richness, native groundcover and overstorey regeneration within fenced sites compared to unfenced sites. Similarly, a 2009 study found that woodland sites in south eastern Australia, with livestock grazing removed, had a greater abundance of beetles and the opportunist ant functional group, a faster rate of litter decomposition, greater native plant richness, greater length of logs, and a better vegetation condition score.

Lessons learned. Long-term action with short-term funding. Natural resource management projects have been ongoing in the Boorowa catchment for over 25 years. But no single project has been funded for more than five years. This is the reality of natural resource management (NRM) in much of Australia.  Government NRM programs come and go with election cycles, but fortunately the commitment of landholders and local organisations persists.

Partnership model. All the projects before and after the Saltshaker Project have involved landholders working collaboratively with local agencies administering the diversity of funding. Most projects had a steering committee that proved a good way for stakeholders to have input through all stages of project, which was particularly important during project planning. Idealism needed to be balanced with practicality so bureaucracy was minimised while maintaining accountability. Good communication that recognised that no single view was more valuable than another was important, although full consensus was not always possible. Trust was enabled when processes were developed collectively. Skilled coordinators needed a clear understanding of their roles and care taken to not get involved in local politics.

Assessing outcomes. Developing a highly predictive understanding of ecological outcomes from NRM activities in catchments like Boorowa is a scientifically complex, expensive and long-term process. The confidence we can now claim for an increase in abundance and diversity of woodland birds in the Boorowa catchment stems from two types of monitoring. First is project monitoring of outputs like the 425 ha of revegetation known to have been established in the catchment. We know this from Greening Australia’s project management database (unfortunately there is no national database for this kind of outputs),  although satellite imagery should be able to pick up this output once plantings have a dense enough canopy. It is essential to know when and where project outputs like revegetation have occurred in order to then design scientifically rigorous studies to research ecological outcomes like increases in flora and fauna diversity and abundance. We have confidence that wildlife is colonising revegetation because research groups have conducted sophisticated statistical analyses of wildlife data from woodland revegetation in nearly 200 sites across south eastern Australia for over 15 years (summarised in a 2018 study).

Gaps in understanding. We know a lot about the ecological and social outcomes of NRM activities, but much less about improving the cost effectiveness of outputs such as revegetation and understory enhancements(see 2016 review). There are no recent published benchmarks on how much revegetation should cost in the face of variable climatic conditions, soil types and terrain.  More revegetation case studies need to be documented, but they need to include an accounting of costs.  The Australian restoration challenge is vast, funding always limited, so practical research and transparent accounting is sorely needed to reduce the cost of ecologically effective restoration.

Continuous re-learning. The many and diverse projects in the Boorowa Catchment are typical of NRM activities in Australian woodlands over the past 25 years. Each project has involved different agencies, many no longer exist or have changed their names (e.g. Catchment Management Authorities have morphed into Local Land Services in NSW). Each agency, including NGOs like Greening Australia, have a natural turn-over of staff. For example, only one staff member of Greening Australia involved in Saltshaker remains with the organisation.  Landholders tend to remain longer, but they too retire, sell out, and move on. Like education, every new staff member and every new landholder needs to learn the complex processes of successful catchment repair. This learning needs to be hands-on, hence funding for NRM activities and extension is needed in perpetuity (just like education). But experiential learning needs to be complemented with a diversity of learning resources such as the EMR journal, easily assessable reports (too many have disappeared from Government websites) and new media such as YouTube videos. Most importantly, communities of practice need to be perennially nurtured by a diversity of practitioners, experienced and less so.  There is much still to be learned and shared.

Stakeholders and Funding bodies:   The primary funding bodies for projects in the Boorowa catchment were the Australian Government, TransGrid, Alcoa Australia, the NSW Environmental Trust, and the former Lachlan Catchment Management Authority. These external funds were complemented by a diversity of in-kind support provided by farmers, Boorowa Shire Council, and other community members of the catchment.

Contact details. David Freudenberger, Fenner School of Environment and Society (Australian National University, Canberra, 0200, Australia, Email: david.freudenberger@anu.edu.au). GF, NT and AC can be contacted at Greening Australia, Kubura Pl, Aranda ACT 2614, Australia; and LG at GrassRoots Environmental, Canberra (http://www.grassrootsenviro.com/)

 

 

Restoring the banks of the Namoi on Kilmarnock – UPDATE of EMR feature

Robyn R. Watson

[Update of EMR feature – Watson R. (2009) Restoring the banks of the Namoi on ‘Kilmarnock’: Success arising from persistence. Ecological Management & Restoration,  10: 1 pp 10-19 https://onlinelibrary.wiley.com/doi/10.1111/j.1442-8903.2009.00434.x]

Figure 1. Casuarina (Casuarina cunninghamiana), River Red Gum and a range of grasses established on river bank at Kilmarnock after restoration works. (Photo R. Watson)

Riverbank restoration began on Kilmarnock in early 1990 with fencing the river area and planting native trees, shrubs and grasses. A program of killing the weeping willows resulted in their elimination by 2000. Tree lines were planted to connect the river corridor to natural conservation areas around the farm and this has resulted in a gradual increase in native wildlife leading to great environmental benefits both for the farm and surrounding areas.

Prior to the works the riparian zones on Kilmarnock had degraded to the extent that the banks were slumping during floods, with loss of old trees. This had arisen from decades of clearing, grazing and weed invasion.  Since 2009 we can report that the fenced-off river corridor has continued to recover with native grasses  beneath the trees, particularly Phragmites (Phragmites australis)  and Vetiver Grass (Chrysopogon zizaniodes) which are growing well on the steep river banks (Fig 1).  As the trees in the riparian corridor grew, additional tree lines were planted throughout the farm to connect the riparian zone to retained native vegetation areas and other set-aside conservation areas. This has led to an increase in native birds, micro bats and beneficial insect numbers.

Wildlife have returned to the area, including Little Pied Cormorant (Microcarbo melanoleucos) and  Pied Cormorant (Phalacrocorax varius) nesting in the River Red Gum (Eucalyptus camaldulensis) trees one year. Flocks of Budgerigar (Melopsittacus undulatus) and Spotted Pardalote (Pardalotus punctatus)  have been observed in the trees along the riparian zones.  Pink Eared Duck (Malacorhynchus membranaceus), Musk Duck (Biziura lobata)(, Eurasian Coot (Fulica atra) and Brolga (Antigone rubicunda) visited wetland areas on the farm. There has been a noticeable increase in the small birds such as three different wrens including Superb Fairy-wren (Malurus cyaneus) and Variegated Fairy-wren (Malurus lamberti) and Australasian Pipit (Anthus novaeseelandiae).

The planted irrigated cotton crop was not sprayed with insecticide for 12 years after the increase in beneficial insect and bird numbers. Nest boxes have been installed in the conservation areas for the micro bats.  Fourteen species of insectivorous micro bats have been recorded on the farm since the rehabilitation work began. Stubble quail (Coturnix pectoralis) have been nesting in the conservation areas.

Figure 2. Log groins with planted native trees established on steep river bend near Boggabri through the Namoi Demonstration Reach Project (2007-14) coordinated by the NSW Dept of Primary Industries. (Photo R. Watson)

Further works undertaken nearby.  After seeing the improvement on our farm some adjoining landholders have begun fencing off their river areas and introducing rehabilitation measures on their farms. In one outstanding collective example, 120 kilometres of the Namoi Demonstration Reach Project was established by the NSW Dept of Primary Industries both upstream and downstream of Kilmarnock, from 2007 to 2014.  This This involved contractors, working with permission of a number of landholders, planting over eight thousand trees and shrubs along the river and constructing log groins at a badly eroding river bend near the Boggabri township.  These groins have worked well and have withstood a couple of small floods.  The trees planted on the steep banks have also established well (Fig. 2).


Figure 3. – Planted Phragmites saved the river bank from bush fire in 2017. (Photo R. Watson)

A major bushfire in 2017 spread across the river to the top of the banks on the Kilmarnock side of the river.  Because of the planted Phragmites on the river edge there was no damage done to the toe of the river bank (Fig 3) and we were able to bulldoze firebreaks to protect  the planted trees affected from the fire.)  However, a number of the old River Red Gums were badly burnt. Many of the very old hollow trees were killed by the fire but less hollow ones have begun to grow again, although this growth has been slowed by the present drought.

With the 2019 drought conditions the Namoi River has dried out, exposing the river bed.  This has given me a chance to observe the river bed.  I have been able to photograph and document the debris on the sand banks and the remaining water holes and show that there are now substantial amounts of hollow logs and debris (Fig. 4)  which can  provide good habitat for fish and water creatures when the stream is flowing.

Our family has purchased more land downstream on the Namoi River and we have implemented rehabilitation on the river banks, tree planting and conservation measures on those farms.

Contact.  Robyn Watson, Kilmarnock, Boggabri, NSW 2382, Australia; Tel: 02 67434576 Email: wjwatson@northnet.com.au

Figure 4. Hollow log and debris on riverbed provide fish habitat when river is flowing. (Photo R. Watson)

 

Developments in Big Scrub Rainforest Restoration: UPDATE of EMR feature

By Tony Parkes, Mark Dunphy, Georgina Jones and Shannon Greenfields

[Update of EMR feature article: Parkes, Tony, Mike Delaney, Mark Dunphy, Ralph Woodford, Hank Bower, Sue Bower, Darren Bailey, Rosemary Joseph, John Nagle, Tim Roberts, Stephanie Lymburner, Jen Ford and Tein McDonald (2012) Big Scrub: A cleared landscape in transition back to forest? Ecological Management & Restoration 12:3, 212-223. https://doi.org/10.1111/emr.12008]

Key words: Lowland Subtropical Rainforest, ecological restoration, seed production, landholder action, corridors

Figure 1a. Rainforest regenerators undertake camphor injection, leaving bare trees standing creating light and an opportunity for seed in the soil to naturally regenerate. (Photo © Envite Environment)

Figure 1b Aerial photo showing camphor conversion by injection
(Photo © Big Scrub Regeneration Pty. Ltd.)

Introduction. The Big Scrub, on the NSW north coast, was once the largest tract of Lowland Subtropical Rainforest (LSR) in Australia. It was reduced to less than 1% of its original extent by he end of hte 19th century after clearing for agriculture. Big Scrub Landcare (BSL) is a non-profit organisation dedicated to improving the long-term ecological functionality of what remains of this critically endangered ecosystem –  lowland subtropical rainforest.  Our 2012 EMR feature reported on remnant restoration and revegetation works overseen by BSL to 2012. At that time, 68 remnants were identified as significantly affected from the impacts of environmental degradation including weed invasion and cattle access. These remnants had been undergoing treatments, with 20 substantially recovered and on a ‘maintenance’ regime.  Approximately 900,000 trees had been planted to establish 250 ha of young diverse well-structured rainforest.  A comparatively small area of forest dominated by the highly invasive exotic, Camphor Laurel (Cinnamomum camphora) (Camphor), which  has colonised much of the Big Scrub landscape had been converted to early phase LSR by skilled removal of a range of weeds and facilitating natural regeneration. 

Progress since 2012. Substantial progress in restoring critically endangered lowland subtropical rainforest in the Big Scrub has been achieved over the past seven years in the following areas.

  • Assisted regeneration of remnants has continued and become more focused
  • Re-establishment of LSR through plantings has expanded
  • Camphor conversion has developed in scale and techniques
  • Greater security of funding has been achieved
  • Community engagement has greatly improved and expanded
  • Genome science is being applied to produce seed with optimal genetic diversity for rainforest restoration.

Assisted regeneration of remnants. This work continues to be the major focus of on-ground restoration work. About 2000 regenerator days (9 years Full Time Equivalent) of work has been undertaken in 45 remnants. BSL’s remnant restoration program has become more strategic, with more focus on Very High Conservation Value (VHCV) remnants, particularly those in the NSW National Parks Estate, including the VHCV sites in Nightcap National Park (NP) including Big Scrub Flora Reserve, Minyon Falls and Boomerang Falls; Andrew Johnston’s Scrub NR; Snow’s Gully Nature Reserve (NR); Boatharbour NR; Victoria Park NR and Davis Scrub NR, plus the Booyong Flora Reserve. Rehabilitation work at these sites is prioritised in the major new four-year Conservation Co-funding project funded jointly by BSL and the NSW government’s Saving our Species program. Big Scrub Foundation (BSF) funding has enabled BSL to continue maintenance work in remnants that have reached or are approaching the maintenance stage.

Monitoring outcomes has become more rigorous and has demonstrated ongoing improvements in vegetation structure, with decreasing levels of weed invasion and improvements in native species cover.

BSL’s partner Envite Environment, with some assistance from BSL, is creating an important linkage between Nightcap NP and Goonengerry NP by the restoration of rainforest through the progressive removal of weeds that had dominated the 80 ha Wompoo/Wanganui corridor between these two NPs.

 Re-establishment of rainforest by planting. The area of LSR is being re-established by planting on cleared land has also continued to expand.   In the last 7 years  more than 0.5 million rainforest trees have been planted in the Big Scrub region, contributing to the restoration of another 175 ha of LSR, expanding total area of re-established rainforest by another 13%. While landscape-scale landholder driven work is inevitably opportunistic rather than strategic, the establishment of new patches of LSR enhance valuable stepping-stone corridors across the Big Scrub. Since 2012 the number of regenerators working fulltime in the Big Scrub region has increased by approximately 50%.  Another trend that has strengthened in the last 7 years is that larger plantings are now being carried out by well-resourced landowners. This is accounting for about 40% of the annual plantings. Offsets for residential development account for another 40% of trees planted. The remaining 20% is made up by small landowners, cabinet timber plantations, large-scale landscaping, and other planting of Big Scrub species. This is a significant change from the more dominant grant-based small landowner/Landcare group plantings prior to 2012.

 Camphor conversion. Larger areas of Camphor forest are being converted to rainforest, with project areas increasing substantially from less than a hectare to ten and twenty hectares. BSL estimates that more than 150 ha of Camphor forest are currently under conversion. Some landowners underake camphor injection which leaves bare trees standing, creating light and an opportunity for existing native seedlings and seed in the soil (or seed dropped by perching birds) to naturally regenerate (Fig 1). Others are choosing the more expensive option of physically removing the Camphor trees and carefully leaving the rainforest regrowth (Fig 2).  Improved techniques and landholder capacity building continue to progress and camphor conversion is now a significant component of rainforest restoration.

BSL alone is facilitating the conversion of almost 40 ha of Camphor forest to LSR funded by two 3-year grants from the NSW Environmental Trust, together with contributions from the 19 landholders involved in these projects. The ecological outcomes being achieved are significant and less costly than revegetation via plantings.

Figure 2a. Camphor forest under conversion using heavy machinery leaving rainforest regrowth intact (Photo © Big Scrub Landcare)

Figure 2b. Aerial photo showing camphor conversion by removal
(Photo © Big Scrub Landcare)

Greater security of funding. Australian Government funding for biodiversity conservation is at a very low level. Competition for existing NSW state government funding is increasing. BSL therefore has continued to  develop new strategies for fund raising to ensure continuity of its long-term program for the ecological restoration of critically endangered LSR in the Big Scrub and elsewhere. Ongoing funding of at least $150,000 annually is needed to ensure the great progress made  over the past 20 years in rehabilitating remnants is  maintained and expanded to new areas of large remnants. These funds finance weed control and monitoring; weeds will always be a part of the landscape and an ongoing threat to our rainforest remnants.

Establishment of the Big Scrub Foundation in 2016 was a major development in BSL’s fund raising strategy. The Foundation received a donation of AUD $1M to establish a permanent endowment fund that is professionally invested to generate annual income that helps finance BSL’s remnant care program and its other activities. Generous donors are also enabling the Foundation to help finance the Science Saving Rainforest Program.

Figure 3a. Australian gardening celebrity Costa Gregoriou at a Big Scrub community tree planting (part of the 17th annual Big Scrub Rainforest Day) in 2015 (Photo © Big Scrub Landcare)

Figure 3b. Founder of the Australian Greens political party Bob Brown and Dr. Tony Parkes at the 18th annual Big Scrub Rainforest Day in 2016. (Photo © Big Scrub Landcare)

Community engagement. The  Big Scrub Rainforest Day continues to be BSL’s  major annual community engagement event, with the total number of attendees estimated to have exceeded 12,000 over the past 7 years; the 2016 day alone attracted more than 4000 people (Fig 3). Every second year the event is held at Rocky Creek Dam.  A new multi-event format involving many other organisations has been introduced on alternate years.

BSL’s Rainforest Restoration Manual has been updated in the recently published third edition and continues to inform and educate landowners, planners and practitioners.

BSL in partnership with Rous County Council produced a highly-commended book on the social and ecological values of the Big Scrub that has sold over 1000 copies. BSL’s website has had a major upgrade: its Facebook page is updated weekly; its e-newsletter is published every two months. BSL’s greatly improved use of social media is helping to raise its profile and contribute to generating donations from the community, local businesses and philanthropic organisations to fund its growing community education and engagement work and other activities.

Science saving rainforests program. BSL, the Royal Botanic Gardens Sydney, the BSF and their partners have commenced an internationally innovative program to apply the latest DNA sequencing and genome science to establish plantations to produce seed of key species with optimal genetic diversity for the ecological restoration of critically endangered lowland subtropical rainforest. This program will for the first time address the threat posed by fragmentation and isolation resulting from the extreme clearing of Australia’s LSR, which is estimated to have resulted in the destruction of 94% of this richly biodiverse Gondwana-descended rainforest.

Many  key  LSR species are trapped in small populations in  isolated remnants  that  lack the genetic diversity needed to adapt and survive in the long term, particularly faced with climate change Necessary  genetic diversity is also lacking in many key species in the 500 ha of planted and regrowth rainforest. The first stage of the program, already underway, involves collecting leaf samples from approximately 200 individual old growth trees in 35 remnant populations across the ranges of 19 key structural species of the ‘original’ forest. DNA will be extracted from the leaf samples of each species and sequenced. The  latest genome science will be applied to select the 20 individual trees of each species that will be cloned to provide planting stock with optimal genetic diversity for the establishment of a living seed bank in the form of a plantation that will produce seed  for use in restoration plantings. As the individual trees in the restoration plantings reproduce, seed with appropriate genetic diversity and fitness will be distributed across the landscape. The project focuses on key structural species and thus helping the survival of Australia’s critically endangered Lowland Subtropical Rainforest in the long term.

Lessons learned and current and future directions. A key lesson learned some five years ago was that BSL had grown to the point where volunteers could no longer manage the organisation effectively. BSL took a major step forward in 2015 by engaging a part-time Manager, contributing to BSL’s continuing success by expanding the scope, scale and effectiveness of its community engagement activities and improving its day to day management.

The principal lesson learned from BSL’s on-ground restoration program is to focus on rehabilitation of remnants and not to take on large planting projects, but rather support numerous partnered community tree planting events. Large grant-funded multi-site tree planting projects are too difficult to manage and to ensure landholders carry out the necessary maintenance in the medium to long term.

Acknowledgements.  BSL acknowledges our institutional Partners and receipt of funding from the NSW government’s Saving our Species program, NSW Environmental Trust and Big Scrub Foundation.

Contact:  Shannon Greenfields, Manager, Big Scrub Landcare (PO Box 106,  Bangalow NSW 2479 Australia; . Tel: +61 422 204 294; Email: info@bigscrubrainforest.org.au Web: www.bigscrubrainforest.org.au)

The continuing battle with Ox-eye Daisy in Kosciuszko National Park – UPDATE of EMR feature

[Update of EMR feature article – McDougall, Keith, Genevieve Wright, Elouise Peach (2018)  Coming to terms with Ox-eye Daisy (Leucanthemum vulgare) in Kosciuszko National Park, New South Wales.  Ecological Management & Restoration, 19:1, 4-13.  doi: 10.1111/emr.12296]

Key words: Biocontrol, adaptive and integrated management

Introduction. In less than a decade, Ox-eye Daisy (Leucanthemum vulgare) went from being an obscure garden escape in Kosciuszko National Park (KNP), New South Wales (NSW) to one of its most pernicious invasive plant threats. By early 2019 it was abundant and, in places, dominant in over 3000 ha of subalpine communities and recorded at elevations up to 1700 m asl. The rate of spread took managers by surprise, rapidly increasing after the wildfire that burnt through the core area of infestation. Keeping up with it has necessitated learning on the run, the essence of adaptive management – expectations and goals are continually changing as we learn more about the species and as it responds to changing conditions. The program has some urgency because the main infestation occurs in a hotspot of threatened plant species.

Between 2011 and 2013, the NSW Office of Environment and Heritage set up a range of experiments to 1) evaluate available herbicides, 2) determine the impact of Ox-eye Daisy on natural vegetation and 3) develop rehabilitation techniques to repair a bulldozer line heavily invaded by Ox-eye Daisy. The third of these was soon abandoned after the surrounding vegetation was over-run by Ox-eye daisy. Metsulfuron methyl proved to be the most effective of the herbicide treatments. Using glyphosate was worse than doing nothing because it killed native plants, creating new opportunities for Ox-eye Daisy colonisation. The impact of Ox-eye Daisy was assessed by comparing paired plots and continues to be assessed in manipulative experiments. The diversity of native plants was found to be lower in heavily invaded areas than in adjoining areas, with Ox-eye Daisy having a tendency to grow in monoculture. The attainment of dominance is slower where there is little disturbance and a thorough cover of native species, but natural disturbances such as fire and grass death caused by native moth larvae can favour Ox-eye Daisy. In order to keep up with the spread of the species, managers are resorting to a combination of broadscale herbicide application by helicopter and regular monitoring of human dispersal pathways. Sadly, dispersal of seed by animals (both native and introduced) is far harder to track.

The experimental program coupled with adaptive management continues but staff have become aware that it may not be enough to prevent spread and further damage. Biological control, community engagement and new monitoring technology are becoming important tools in the fight. Here we describe current efforts to broaden the battle against Ox-eye Daisy.

Fig. 1. Candidate insects for biological control of Ox-eye Daisy. (Photos: CABI Switzerland.)

Further works undertaken. It is easy when tackling a major environmental issue to focus on the geographic core of the problem and forget that it is connected to the rest of the world. Ox-eye Daisy is mainly a risk to conservation values in KNP but there is no reason it won’t become a risk elsewhere. Accordingly, we have been liaising with the parks’ neighbours, other management bodies within the park, and land managers elsewhere. We have run three field workshops where we have shared our experience with these stakeholders, some of whom have Ox-eye Daisy amongst their invasive plant issues; the exchange of ideas has been valuable and we now have extra eyes in the park for outlying populations of Ox-eye Daisy.

Herbicides are very effective against Ox-eye Daisy but it is a resilient species with a large seed bank and long-lived seed; other weapons are required to effectively control it in the long-term. Since 2008, CABI Switzerland have been exploring the native range of the species for potential biocontrol solutions, work funded by agencies in Canada and the USA where Ox-eye Daisy is a serious invader of pastures, rangelands and wildlands. In 2016, the NSW Department of Primary Industries secured funding to launch a biocontrol project against Ox-eye Daisy in Australia, piggy-backing off the established body of work already happening in Switzerland

Several insect species have been identified by CABI as having potential as biocontrol agents (Fig. 1). These include two root feeders (a moth and a weevil) and a flowerhead-feeding fly. The root-feeding moth, Dichrorampha aeratana (Lepidoptera: Tortricidae), was short-listed as a favourable first candidate due to it having been tested extensively for host specificity (what it feeds on) and impact (on Ox-eye Daisy). It was imported into Australian quarantine in 2016 and has since undergone host-specificity testing on closely related Australian native daisies in both Australia and Switzerland. While this work is being completed, field monitoring plots have been established in NSW and Victoria to investigate plant population dynamics and soil seed banks prior to biocontrol being introduced. In addition to the root-feeding moth, CABI have also been sub-contracted to conduct host-specificity testing on the root-feeding weevil, Cyphocleonus trisulcatus (Coleoptera: Curculionidae), which will be considered as an alternative biocontrol option should the moth be unsuitable. The weevil is very damaging and long-lived, and appears to have a suitably narrow host range.

Testing of the potential biocontrol agents (listed above) will continue for the foreseeable future until enough data are gathered to assess whether they are safe for release in Australia. This process involves a risk assessment conducted by the Department of Agriculture and the Department of Energy and Environment.

Fig. 2. Launching a drone for monitoring the success of aerial herbicide application. An Ox-eye Daisy flower is in the foreground. (Photo: Elouise Peach, NPWS).

Lessons learned and future directions. Our greatest regret is not commencing control until Ox-eye Daisy was a problem. If the species had been treated when it was known only from small patches close to Nungar Creek in the 1990s, it would not have expanded to its current extent. The clear message from this is: remove non-native plant species when they are rare because, although most might never amount to much, some will and the consequences and cost of management are then huge.

Adaptive management is often recommended as the best way to tackle environmental problems and it has definitely been pivotal to the successes we have seen. Programs were abandoned when they weren’t working and we have been willing to trial new approaches before they are fully tested. The close relationship between managers and researchers has enabled the rapid progression from enquiry to practice to further enquiry, with monitoring being integral to decision making. Drones are now being employed to assist in monitoring (Fig. 2).

The Ox-eye Daisy fight in KNP has demonstrated the importance of integrated pest management, which includes research, herbicide application, biocontrol, management partnerships and community engagement. To date we have resisted a broad communication campaign that invites people to report sightings of Ox-eye Daisy because the species is so easily confused with native daisies. Targeted education (e.g. for walking and naturalist groups), however, will be explored in coming years. The battle against Ox-eye Daisy will be fought with many tools and its spread monitored by many eyes.

Stakeholders and Funding bodies. The on-ground project in KNP has been supported by the Saving Our Species program, the National Parks and Wildlife Service Find It and Fix It and Centenary Funding, the NSW Drought Relief Funding, and Essential Energy. The biocontrol programme has been funded through the Australian Government Department of Agriculture and Water Resources as part of its Rural Research and Development (R&D) for Profit programme.

Contact information. Keith McDougall, Department of Planning, Industry and Environment, PO Box 733, Queanbeyan NSW 2620; phone: +61 2 6229 7111; email: keith.mcdougall@environment.nsw.gov.au [for on-ground research and management]. Dr Andrew McConnachie, Senior Research Scientist (Weed Biocontrol), Department of Planning, Industry and Environment, Orange Agricultural Research Institute, 1447 Forest Road, Orange NSW 2800; phone: +61 2 6391 3917; email: andrew.mcconnachie@dpi.nsw.gov.au [for biocontrol]

Recovering Murray-Darling Basin fishes by revitalizing a Native Fish Strategy – UPDATE of EMR feature

John Koehn, Mark Lintermans and Craig Copeland

[Update of EMR Feature: Koehn JD, Lintermans M, Copeland C (2014) Laying the foundations for fish recovery: The first 10 years of the Native Fish Strategy for the Murray‐Darling Basin, Australia. Ecological Management & Restoration, 15:S1, 3-12. https://onlinelibrary.wiley.com/toc/14428903/2014/15/s1]

Key words restoration, native fish populations, threatened species, Australia, Murray-Darling Basin

Figure 1. The construction of fishways can help restore river connectivity by allowing fish movements past instream barriers. (Photo: ARI.)

 Introduction. Fish populations in the Murray-Darling Basin (MDB), Australia, have suffered substantial declines due to a wide range of threats and there is considerable concern for their future. Given these declines and the high ecological, economic, social and cultural values of fish to the Australian community, there is a need to recover these populations. In 2003, a Native Fish Strategy (NFS) was developed to address key threats; taking a coordinated, long-term, multi-jurisdictional approach, focussed on recovering all native fish (not just angling species) and managing alien species. The strategy objective was to improve populations from their estimated 10% of pre-European settlement levels, to 60% after 50 years of implementation.

To achieve this the NFS was intended to be managed as a series of 10-year plans to assist management actions in four key areas; the generation of new knowledge, demonstration that multiple actions could achieve improvements to native fish populations, building of a collaborative approach, and the communication of existing as well as newly-acquired science. The NFS successfully delivered more than 100 research projects across six ‘Driving Actions’ in its first 10 years, with highlights including the implementation of the ‘Sea to Hume’ fishway program (restoring fish passage to >2 200 km of the Murray River, Fig 1), improved knowledge of fish responses to environmental water allocations, development of new technologies for controlling alien fish, methods to distinguish hatchery from wild-bred fish, creating a community partnership approach to ‘ownership’ of the NFS, and rehabilitating fish habitats using multiple interventions at selected river (demonstrations) reaches.  The NFS partnership involving researchers, managers, policy makers and the community delivered an applied research program that was rapidly incorporated into on-the-ground management activities (e.g. design of fishways; alien fish control, environmental watering; emergency drought interventions). The NFS largely coincided with the Millennium Drought (1997-2010) followed by extensive flooding and blackwater events, and its activities contributed significantly to persistence of native fish populations during this time.

Funding for the NFS program ceased in 2012-13, after only the first decade of implementation but the relationships among fishers, indigenous people and government agencies have continued along with a legacy of knowledge, development of new projects and collaborative networks with key lessons for improved management of native fishes (see http://www.finterest.com.au/).

Figure 2. Recreational fishers are a key stakeholder in the Murray-Darling Basin, with a keen desire to have sustainable fishing for future generations. (Photo: Josh Waddell.)

Further works undertaken. Whilst the NFS is no longer funded as an official project, many activities have continued though a range of subsequent projects; some are highlighted below:

  • Environmental water: development of fish objectives and implementation of the Basin Plan, northern MDB complementary measures, further investigation of mitigation measures for fish extraction via pumps and water diversions.
  • Fishways: Completion of sea to Lake Hume fishway program and other fishways such as Brewarrina
  • Community engagement: Continuation of many Demonstration (recovery) reaches and intermittent NFS Forums (Fig 2).
  • Recreational fishery management: engagement of anglers through the creation of the Murray Cod (Maccullochella peelii) fishery management group and OzFish Unlimited.
  • Threatened species recovery: success with Trout Cod (Maccullochella macquariensis)  (Fig 3) and Macquarie Perch (Macquaria australasica) populations, development of population models for nine MDB native fish species.
  • Knowledge improvement: research has continued, as has the publication of previous NFS research-related work.
  • Indigenous and community connection to fishes: development of the concept of Cultural flows, involvement in Basin watering discussions.

Figure 3. Trout Cod are a success story in the recovery of Australian threatened species. (Photo: ARI.)

Further results to date. The continued poor state of native fishes means there is a clear need for the continuation of successful elements of the NFS. There is need, however, for revision to provide a contemporary context, as some major changes have occurred over the past decade. The most dramatic of these, at least publicly, has been the occurrence of repeated, large fish kills (Fig 4). This was most evident in the lower Darling River in early 2019 when millions of fish died. The media coverage and public outcry followed the South Australian Royal Commission and two ABC 4Corners investigations into water management, highlighted that all was not well in the Murray-Darling Basin. Indeed, following two inquiries, political recommendations were made to develop a Native Fish Recovery Management Strategy (NFMRS), and a business case is currently being developed. The drought, water extraction and insufficient management efforts to support native fish populations, especially within a broader sphere of a ‘new’ climate cycle of more droughts and climatic extremes, have contributed to these fish kill events. For example, one of the necessary restoration efforts intended from the Basin Plan was to provide more water for environmental purposes to improve river condition and fish populations. Recent research, however, appears to indicate that flow volumes down the Darling River have generally decreased. There is also a continuing decline of species with examples such as Yarra Pygmy Perch (Nannoperca obscura), now being extinct in MDB, and the closely related Southern Pygmy Perch (Nannoperca australis) which is still declining. Monitoring of fish populations has indicated that they remain in poor health and the need for recovery may be even greater than in 2003. We need to act now.

While some of the legacy of the NFS has continued, there has been a loss of integrated and coordinated recovery actions that were a key feature of the NFS. This loss of a Basin-wide approach has resulted in some areas (e.g. small streams and upland reaches) being neglected, with a concentration on lowland, regulated river reaches. There has also been a shift from a multi-threat, multi-solution approach to recovery, to a narrower, flow-focussed approach under the Basin Plan. In addition, there has been the installation of infrastructure (known as Sustainable Diversion Measures) to ‘save’ water which may have deleterious impacts on fish populations (e.g. the impoundment of water on floodplains by regulators or the changed operations of Menindee Lakes on the Darling River).

A clear success of the NFS was improvements in community understanding of native fishes and their engagement in restoration activities. These community voices- indigenous, conservation, anglers, etc. have been somewhat neglected in the delivery of the Basin Plan. There has been ongoing fish researcher and stakeholder engagement, but this has been largely driven by enormous goodwill and commitment from individuals involved in the collaborative networks established through the NFS. While these efforts have been supported by many funding bodies and partners such as the Murray-Darlin Basin Authority, state and Commonwealth water holders and agencies and catchment management authorities, without true cross-basin agreement and collaboration the effectiveness of these efforts will be significantly reduced.

Figure 4. Fish kills have created great public concern and are an indication of the need for improved management of native fish populations. (Photo:Graeme McRabb.)

Lessons learned and future directions.  Native fish populations in the MDB remain in a poor state and improvements will not be achieved without continued and concerted recovery efforts. Moreover, a 5-year review of the NFS indicated that while the actions undertaken to that time had been positive, they needed to be a scaling up considerably to achieve the established goals.  Recovery actions must be supported by knowledge and the lessons learnt from previous experience.  Some fish management and research activities have continued under the auspices of the Basin Plan, but these have largely focussed on the delivery of environmental water, either through water buy-backs or improved efficiency of water delivery. A key requirement is therefore transparent and accurate measurement and reporting of how much flow has been returned to the environment, and how this may have improved fish populations. This remains problematic as evidenced by the recent inquiries into fish kills in the lower Darling River (and elsewhere) and the lack of available water accounting. Fish kills are likely to continue to reoccur and the lingering dry conditions across much of the Northern Basin in 2018-19 and climate forecasts have highlighted the need for further, urgent actions through an updated NFS.

The NFS governance frameworks at the project level were excellent and while some relationships have endured informally, there is a need for an overarching strategy and coordination of efforts across jurisdictions to achieve the improved fish outcomes that are required. The absence of the formal NFS thematic taskforces (fish passage, alien fishes, community stakeholder, demonstration reaches etc) and the absence of any overarching NFS structures means that coordination and communication is lacking, with a focus only on water, limiting the previously holistic, cross jurisdiction, whole-of-Basin approach. The priority actions developed and agreed to for the NFS remain largely relevant, just need revitalized and given the dire status of native fish, scaled up significantly.

Stakeholders and funding. The continuation of quality research and increased understanding of fish ecology, however, not have kept pace with the needs of managers in the highly dynamic area of environmental watering. The transfer of knowledge to managers and the community needs to be reinvigorated. Efforts to engage recreational fishers and communities to become stakeholders in river health are improving (e.g. OzFish Unlimited: https://ozfish.org.au; Finterest website: http://www.finterest.com.au/) but with dedicated, increased support, a much greater level of engagement would be expected.  Previously, the community stakeholder taskforce and Native Fish coordinators in each state provided assistance and direction, including coordination of the annual Native Fish Awareness week. Some other key interventions such as the Basin Pest Fish Plan have not been completed and recovery of threatened fishes have received little attention (e.g. no priority fish identified in the national threatened species strategy).  Funding for fish recovery is now piecemeal, inadequate and uncoordinated, despite the growing need. The $13 B being spent on implementation of the Basin Plan should be complemented by an appropriate amount spent on other measures to ensure the recovery of MDB fishes.

Contact information. John Koehn is a Principal Research Scientist at the Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, was an author the Murray-Darling Basin Native Fish Strategy and a member of various Native Fish Strategy panels and projects (Email:  John.Koehn@delwp.vic.gov.au). Mark Lintermans is an Associate Professor at Institute for Applied Ecology, University of Canberra, and was a member of various Native Fish Strategy panels and projects; (Email: Mark.Lintermans@canberra.edu.au). Craig Copeland is the CEO of OzFish Unlimited and a leading contributor to the development of the next stage of the Native Fish Strategy, the Northern Basin Complementary Measures Program and the 2017 MDB Native Fish Forum (Email: craigcopeland@ozfish.org.au).

 

Long-term restoration in the Box Gum Woodlands of south-eastern Australia – UPDATE of EMR feature

David Lindenmayer, Mason Crane, Daniel Florance, David Smith, and Clare Crane

Update to article published in EMR – Murray Catchment habitat restoration: Lessons from landscape level research and monitoring doi: 10.1111/emr.12051

Keywords: Revegetation, biodiversity recovery, monitoring, birds

Figure 1. Revegetated woodland near Wagga Wagga in the South West Slopes of New South Wales. (Photo courtesy of the Sustainable Farms project at The Australian National University. Australia).

Introduction

This project encompasses a major set of large-scale, long-term integrated studies quantifying the response of various groups of biota to replanted woodlands in the Box Gum Grassy Woodlands of south-eastern Australia. The work has been underway since 2002 and contrasts revegetated areas with regrowth woodlands and old growth woodlands on multiple farms nested within landscapes with varying amounts of native vegetation cover (Fig 1.). The responses of birds, arboreal marsupials, terrestrial mammal, reptiles, frogs and native plants to these different kinds of broad vegetation types (and within-site and landscape-level attributes) have been documented over the past 17 years.

Further works undertaken

Since the inception of the original project and associated monitoring, an array of additional studies have been completed (https://www.anu.edu.au/about/strategic-planning/sustainable-farms). These include investigations of the impacts on birds and reptiles of livestock grazing in plantings, the benefits for birds of understorey plantings within old growth woodlands, the impacts of a control program for the Noisy Miner (Manorina melanocephala) on other woodland bird species, and interaction effects between long-term climate, short-term weather and revegetation programs on birds (Figs 2 and 3). Further work aims to quantify the biodiversity and livestock production benefits of enhancing the ecological condition (and associated water quality) of farm dams.

Figure 2. Flame Robin and Rufous Whistler – two bird species of conservation concern that respond positively to revegetated woodland. (Photos by Robin Patrick Kavanagh.)Further results to date

Research and monitoring in the past six years have resulted in a number of key new insights of considerable importance for restoration programs. A small subset of these findings includes:

  • The conservation benefits of replanted areas for bird and reptile biodiversity are undermined by intensive livestock grazing in these revegetated areas.
  • The bird biodiversity values of old growth temperate woodlands can be enhanced by underplantings of shrubs and other non-overstorey plants, although it can take many years for such benefits to manifest. Importantly, the occurrence of hyper-aggressive species such as the Noisy Miner is diminished in woodlands where underplantings have been established.
  • Experimental efforts to reduce populations of the Noisy Miner were largely unsuccessful; sites where this species was culled twice were rapidly recolonized by the Noisy Miner.
  • Replanted woodlands provide critical refugia for woodland birds, especially during prolonged drought periods.

Collectively, these findings indicate that restored woodlands have important conservation values (especially for birds but also reptiles), with restoration being valuable to conduct not only in existing old growth woodland (through establishing underplantings) but also in previously cleared sites. The conservation value of woodlands can be particularly critical during climate extremes such as droughts. Efforts to control the Noisy Miner will likely be most effective through targeted revegetation efforts rather than direct culling of birds. Finally, there is a need to limit grazing pressure in revegetated woodlands and this can require the repair or replacement of fences around replantings, especially when such key infrastructure begins to deteriorate.

Figure 3. Noisy Miner – a reverse keystone species for which experimental culling programs have proven to be ineffective. (Photo by Pete Richman.)

Lessons learned and future directions

The ongoing work has clearly demonstrated the important new insights that are derived from long-term ecological research and monitoring. Indeed, long-term changes in patterns of occupancy of restored areas could not have been quantified without rigorous monitoring of a wide range of sites of different sizes, ages and other attributes. Key manager-researcher partnerships have been fundamental to the ongoing success of the array of projects in this restoration initiative. Indeed, some research and monitoring studies were prompted by  questions posed by natural resource managers (such as if there were vegetation cover thresholds for birds in temperate woodlands). Close working relationships with farmers have also been critical to the persistence of the various projects. Field staff in the project, who are based permanently in rural Australia, are key points of outreach and communication with farmers and other natural resource managers. Their presence has accelerated the rate of knowledge transfer and adoption of new practices (such as widening shelterbelts so that they have multiple production and conservation values).

Stakeholders and funding bodies

Ongoing work has been supported by many funding bodies and partners. These include the owners of more than 250 private properties (whom have allowed access to their land and undertaken major restoration works). Funding for the work has been provided by The National Environmental Science Program (Threatened Species Recovery Hub), the Australian Research Council, Murray Local Land Services, Riverina Local Land Services, Central Tablelands Local Land Services, the Ian Potter Foundation, the Vincent Fairfax Family Foundation, The Australian National University, and the Calvert-Jones Foundation.

Contact information

David Lindenmayer, Sustainable Farms Project, Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, david.lindenmayer@anu.edu.au

Lord Howe Island biodiversity restoration and protection programs, NSW, Australia

Hank Bower

Key words: Pest species management, weed control, community engagement.

Figure 1. Weeding teams apply search effort across near 80% of island terrain, their effort monitored through record of GPS track logs across designated weed management blocks. Target weeds on LHI are mostly bird dispersed requiring landscape scale for sustainable and long-term protection from weeds. The remaining 20% of island is subject to surveillance and with investigation of new technical approaches in weed detection using drones.

Introduction: Lord Howe Island (LHI) is located in the Tasman Sea 760 km northeast of Sydney and 570 km east of Port Macquarie. In 1982 the island was inscribed on the World Heritage (WH) List under the United Nations’ World Heritage Convention in recognition of its superlative natural phenomena and its rich terrestrial and marine biodiversity as an outstanding example of an island ecosystem developed from submarine volcanic activity.

The island supports at least 80% cover of native vegetation, broadly described as Oceanic Rainforest with Oceanic Cloud Forest on the mountain summits.  LHI vegetation comprises 239 native vascular plant species with 47% being endemic. Forest ecosystems on LHI are largely intact, but at threat from invasive species and climate change. About 75% of the terrestrial part of the WH property is recognised as a Permanent Park Preserve (PPP) managed on behalf of the New South Wales government by the Lord Howe Island Board on the basis of a holistic conservation and restoration plan (Lord Howe Island Biodiversity Management Plan LHI BMP 2007).

Since settlement of the island in 1834, introduced and invasive plant and animal species have been affecting the Lord Howe Island environment, causing declines in biodiversity and ecosystem health. There have been 11 known extinctions and severe declines in numbers of fauna species including the flightless Lord Howe Woodhen (Hypotaenidia sylvestris), once regarded as one of the rarest birds in the world.  The Lord Howe Island Phasmid (Dryococelus australis), the world’s largest stick insect was feared extinct until the rediscovery of live specimens on Balls Pyramid in 2001. Some 29 species of introduced vertebrates and about 271 species of introduced plant species have naturalised on the island. At least 68 species are the focus for eradication (Fig 1), with 10 main invasive species having colonised extensive areas of the settlement and the PPP, posing a serious threat to island habitats. One of the most serious weeds, Ground Asparagus (Asparagus aethiopicus), for example, was so prolific in the forest understory it completely overwhelmed native vegetation and bird breeding grounds. Weeds are prioritised for eradication following a Weed Risk Assessment and are typically species that are at low density, are localised and/or are limited to gardens, and species with known weed characteristics (e.g. wind or bird dispersed seeds) that have yet to express their weed potential. Identifying species for early intervention is important to prevent their establishment and expansion, particularly post rodent eradication. For example, the removal of 25 individual Cats Claw Creeper in 2006 (which have not been detected since) supports the case for proactive weed management.

The islands limited size and isolation provides great opportunities to achieve complete removal and eradication of key invasive species.  Therefore particular strategies identified in the LHI BMP to effect ecosystem recovery include the management and eradication of invasive weeds, rodents, tramp ants and protection from plant diseases and pathogens.  All projects are delivered at an island wide scale, which incorporates a permanent population of 350 residents and a tourist bed limit of 400.

Works undertaken   Progressive programs to eradicate feral animals commenced in 1979 with the eradication of pig Sus scrofa, cat Felus catus in 1982, goat Capra hircus in 1999 and African Big-headed Ant Pheidole megacephala in 2018. Threatened fauna recovery programs include the captive breeding of Lord Howe Woodhen following the eradication of cats, establishing a captive breeding and management program for the Lord Howe Island Phasmid and the planning and gaining of approvals to implement the eradication program for Black Rat Rattus rattus, House Mouse Mus musculus and introduced Masked Owl Tyto novehollandiae commencing in 2019.

The island wide strategic Weed Eradication Program commenced in 2004, building on earlier years of ad-hoc control effort.  Over 2.4 million weeds have been removed through more than 170,000 hours of grid search method.  Now, near mid-way point of a 30-year LHI Weed Eradication Project (LHIWEP), teams have reduced weed infestations (of all life stages) by 80%.  Ten year program results of the LHIWEP are summarised (LHIB 2016 – Breaking Bad) http://www.cabi.org/isc/abstract/20163360302, which clearly shows the significance of multi-invasive species management to achieve ecosystem recovery.

With the spread of Myrtle Rust Austropuccinia psidii to the Australian mainland in 2010 the LHI Board has been on high alert.  With five endemic plants at risk to this pathogen the LHIB provided training and information to the community on the threats to the island and food plants. The LHIB prepared a Rapid Response Plan and a Rapid Response Kit (fungicides and Personal Protective Equipment). In October 2016 Myrtle Rust was detected on exotic Myrtaceae species, from three leases and subsequently treated in November 2016. This also resulted in the eradication of three highly susceptible exotic myrtaceous plant species from the island.

The root fungus Phytophthora cinnamomi is known from one lease and has been quarantined and treated with granular fungicide quarterly. Periodic monitoring has shown the infestation to be reducing with the eventual aim of eradication. Boot sanitization stations located at all track heads applies effort to prevent introduction of root rot fungus and other soil borne pathogens from users of the walking track system in the PPP.

The LHI Board has carried out a range of local community engagement and visitor education programs to raise awareness of the risks and threats to the island environment and of the LHIB environmental restoration and protection programs. These include a LHI User Guide for visitors to the island and a citizen science program with the LHI Museum, establishing the LHI Conservation Volunteer program to help improve awareness of the importance of LHI conservation programs to both tourists and tourism business. Since 2005, over 150 volunteers supported by the LHIB and external grants have been engaged through the weed eradication project. Increasingly, LHI residents are volunteering to gain experience and to improve employment opportunities in restoring their island. Another long-term partner, Friends of Lord Howe Island, provide invaluable volunteer assistance with their Weeding Ecotours, contributing more than 24,000 hours of weeding building valuable networks.

Biosecurity awareness is critical to protect the investment in conservation programs and the environment to future threats. The LHI Board provide information regarding biosecurity risks to the community, stevedores and restaurateurs. The LHIB now hold two biosecurity detection dogs and handlers on island (Figure 3) whom work with Qantas and freight flights and shipping staff to ensure they are aware of biosecurity risks and plan for appropriate responses.

Results to date.  Achievements include the successful eradication of over 10 weed species, cat, pig, goat, African Big-headed Ant and Myrtle Rust. A further 20+ weeds are considered on the verge of being able to be declared eradicated in coming years with an 80% reduction in weed density island wide and a 90% reduction in the presence of mature weeds. Weed Risk Assessments will be applied to determine the impact or new and emerging weeds and appropriate management actions.

As a result of the eradication of feral pigs and cats and an on-island captive breeding program, the endangered Lord Howe Island Woodhen has recovered to an average of 250 birds. The other eradications, along with the significant reduction in dense and widespread weed invasions, has aided the recovery and protection of numerous endemic and threatened species and their habitats. The program’s significant outcomes have been recognised through the IUCN Conservation Outlook which in 2017 scored the Lord Howe Island Group’s outlook as good, primarily due to the success of projects that have, are being and are planned to be implemented to restore and protect the islands unique World Heritage values. In late 2018 the program received awards for excellence from the Society for Ecological Restoration Australasia (SERA), Green Globe and Banksia Foundations, acknowledging the sustained effort from the Board and Island community in working to restore and protect the island.

Lessons learned and future directions:  The main keys to success has been obtaining expert scientific and management input and actively working with, educating and involving the community (lease holders and local businesses) to help achieve the solution to mitigate and remove invasive species.

The Rodent Eradication Program scheduled for winter 2019 will result in less browsing pressure on both native and invasive plants species, as well as the removal of two domestic pests. Prior to the program the LHIB has targeted the control of introduced plants, currently in low numbers, that may spread after rodent eradication. Monitoring programs are in place to measure ecosystem response with a particular focus on the Endangered Ecological Community Gnarled Mossy Cloud Forest on the summit of Mt Gower. Should the project be successful, consideration can be given to the reintroduction of captive bred individuals of the Lord Howe Island Phasmid as well as other species confined to offshore islands (e.g. Lord Howe Wood Feeding Roach Panesthia lata) or ecological equivalent species on other islands (Norfolk Boobook Owl Ninox novaeseelandiae, Norfolk Parakeet Cyanoramphus cookii, Norfolk Island Grey Fantail Rhipidura albiscapa and Island Warbler Gerygone igata).

Stakeholders and Funding bodies:  The Program is managed by the Lord Howe Island Board and the NSW Department of Environment and Heritage, in collaboration with the local LHI community.

The LHI Board acknowledge the generations of islander stewardship, teams on ground, researchers, the funding and support agencies, all who made it happen. These include but are not limited to NSW Environmental Trust, Caring for Our Country, National Landcare Program, North Coast Local Land Services, Zoos Victoria, Taronga Zoo, Australian Museum, CSIRO, Friends of LHI, the Norman Wettenhall Foundation and Churchill Trust.

Contact: Hank Bower, Manager Environment/World Heritage, Lord Howe Island Board, PO Box 5, LORD HOWE ISLAND, NSW 2898, Tel: +61 2 65632066 (ext 23), Fax: 02 65632127, hank.bower@lhib.nsw.gov.au

Video conference presentation: https://www.aabr.org.au/portfolio-items/protecting-paradise-restoring-the-flora-and-fauna-of-world-heritage-listed-lord-howe-island-hank-bower-and-sue-bower-lhi-board-aabr-forum-2016/

A framework and toolbox for assessing and monitoring swamp condition and ecosystem health

Key words: Upland swamp, stygofauna, sedimentology, ecosystem processes, biological indicators, geomorphology

Introduction. Upland swamps are under increasing pressure from anthropogenic activities, including catchment urbanization, longwall mining, and recreational activities, all under the omnipresent influence of global climate change. The effective management of upland swamps, and the prioritisation of swamps for conservation and restoration requires a robust means of assessing ecosystem health. In this project we are developing a range of ecological and geomorphic indicators and benchmarks of condition specifically for THPSS. Based on a multi-metric approach to ecosystem health assessment, these multiple indicators and benchmarks will be integrated into an ultimate index that reflects the health of the swamp.

In this project we have adopted (and modified) the definition of ecosystem health applied to groundwater ecosystems by Korbel & Hose (2011). We define ecosystem health of a swamp as, i.e., “an expression of a swamp’s ability to sustain its ecological functioning (vigour and resilience) in accordance with its organisation while maintaining the provision of ecosystem goods and services”.

Design. Our approach to develop indicators of swamp health followed those used to develop multimetric indices of river and groundwater ecosystem health (e.g. Korbel & Hose 2011). We used the ‘reference condition’ approach in which a number of un- or minimally disturbed swamps were sampled and the variation in the metric or index then represents the range of acceptable conditions (Bailey et al. 1998; Brierley & Fryirs 2005).

We focused initially on swamps in the Blue Mountains area. Reference (nominally unimpacted) and test sites with various degrees and types of impacts were identified using the database developed by the concurrent THPSS mapping project (Fryirs and Hose, this volume).

Following our definition of ecosystem health, we selected a broad suite of indicators that reflect the ecosystem structure (biotic composition and geomorphic structure) and function, including those relating to ecosystem services such as microbially-mediated biogeochemical functions, geomorphic processes and hydrological function, as well as the presence of stressors, such as catchment changes. Piezometers and dataloggers have been installed in a number of swamps to provide continuous data on groundwater level fluctuations and sediment cores taken at the time of piezometer installation have provided detailed information on the sedimentary structure, function and condition of the swamps.

Results. Intact and channelised swamps represent two geomorphic condition states for THPSS. Not surprisingly, variables reflecting the degree of catchment disturbance (such as urbanization) were strongly correlated with degraded swamp condition. Variables related to the intrinsic properties of swamps had little relationship to their geomorphic condition (Fryirs et al. 2016). Intact and channelized swamps present with typically different sediment structures. There were significant differences in the texture and thickness of sedimentary layers, C: N ratios and gravimetric moisture content between intact swamps and channelised swamps (Friedman & Fryirs 2015). The presence and thickness of a layer of contemporary sand in almost all channelised swamps and its absence in almost all intact swamps is a distinctive structural difference.

Disturbed swamps have poorer water quality at their downstream end, and associated with this, lower rates of organic matter processing occurring within the streams (Hardwick unpublished PhD Data). Similarly, the richness and abundance of aquatic invertebrates living within swamp sediments (stygofauna) is poorer in heavily disturbed swamps than in undisturbed or minimally disturbed areas (Hose unpublished data).

Within the swamp sediments, important biogeochemical processes, such as denitrification and methanogenesis, are undertaken by bacteria. In this study we are measuring the abundance of the functional genes such as a surrogate for functional activity within the swamp sediments. There is large spatial variation in the abundance of functional genes even within a swamp, which complicates comparisons between swamps. Within our focus swamp, the location closest to large stormwater outlets had different functional gene abundances, in particular more methanogens, than in less disturbed areas of the swamp. There were greater abundances of denitrification genes, nirS and nosZ, in shallower depths despite denitrification being an anoxic process, which may reflect changes in the surficial sediments due to disturbance. Overall however, the abundance of functional genes seem to vary more with depth than with location, which means that comparisons between swamps must ensure consistency of depth when sampling sediments (Christiansen, unpublished PhD data).

The list of indicators currently being tested in this project and by others in this program (Table 1) will be refined and incorporated into the final assessment framework. Thresholds for these indicators will be determined based on the range of conditions observed at the reference sites. The overall site health metric will reflect the proportion of indicators which pass with respect to the defined threshold criteria. At this stage, the final metrics will be treated equally, but appropriate weightings of specific metrics within the final assessment will be explored through further stakeholder consultation.

Stakeholders and Funding bodies. This research has been undertaken as PhD research projects of Kirsten Cowley, Lorraine Hardwick and Nicole Christiansen at Macquarie University. The research was funded through the Temperate Highland Peat Swamps on Sandstone Research Program (THPSS Research Program). This Program was funded through an enforceable undertaking as per section 486A of the Environment Protection and Biodiversity Conservation Act 1999 between the Minister for the Environment, Springvale Coal Pty Ltd and Centennial Angus Place Pty Ltd.  Further information on the enforceable undertaking and the terms of the THPSS Research Program can be found at www.environment.gov.au/news/2011/10/21/centennial-coal-fund-145-million-research-program. This project was also partly funded by an ARC Linkage Grant (LP130100120) and a Macquarie University Research and Development Grant (MQRDG) awarded to A/Prof. Kirstie Fryirs and A/Prof. Grant Hose at Macquarie University. We also thank David Keith, Alan Lane, Michael Hensen, Marcus Schnell, Trevor Delves and Tim Green.

Contact information. A/Prof. Grant Hose, Department of Biological Sciences, Macquarie University (North Ryde, NSW 2109; +61298508367; grant.hose@mq.edu.au); and A/Prof. Kirstie Fryirs, Department of Environmental Sciences, Macquarie University (North Ryde, NSW 2109; +61298508367; kirstie.fryirs@mq.edu.au).

Table 1. List of indicators of swamp condition that are being trialled for inclusion in the swamp health assesment toolbox.

Functional indicators table

Testate amoebae: a new indicator of the history of moisture in the swamps of eastern Australia

Key words: Temperate Highland Peat Swamps Sandstone

Introduction. Swamps are an ideal natural archive of climatic, environmental and anthropogenic change. Microbes and plants that once inhabited the swamps are transformed and accumulate in undisturbed anoxic sediments as (sub)fossils and become useful proxies of the past environment. Since these systems are intrinsically related to hydrology, the reconstruction of past moisture availability in swamps allows examination of many influences, including climate variability such as El Nino-induced drought. It can also provide baseline information: long (palaeoenvironmental) records can reveal natural variability, allow consideration of how these ecosystems have responded to past events and provide targets for their restoration after anthropogenic disturbance.

Testate amoebae are a group of unicellular protists that are ubiquitous in aquatic and moist environments. The ‘tests’ (shells) of testate amoebae preserve well and are relatively abundant in organic-rich detritus. Testate amoebae are also sensitive to, and respond quickly to, environmental changes as the reproduction rate is as short as 3-4 days. Modern calibration sets have demonstrated that the community composition of testate ameobae is strongly correlated to moisture (e.g. depth to water table and soil moisture) and this allows statistical relationships to be derived. These relationships have been used extensively in European research for the derivation of quantitative estimates of past depth to water table and hence moisture availability.

Although a suite of different proxies have used to reconstruct aspects of past moisture availability in Australia (e.g. pollen, diatoms, phytoliths) very little work on testate amoebae has occurred to date. This project aims to address this deficiency by examining testate amoebae in several ecologically important mires in eastern Australia including Temperate Highland Peat Swamps on Sandstone (THPSS), an Endangered Ecological Community listed under the Environment Protection and Biodiversity Conservation Act 1999 and as a Vulnerable Ecological Community under the NSW Threatened Species Conservation Act 1995.

The project specifically aims to develop a transfer function linking modern samples to depth to water table in THPSS and to then apply this to reconstruct palaeohydrology over the last several thousand years. Our ultimate aims are to use this research to consider the nature and drivers of past climate change and variability and to also address issues associated with recent human impacts. The analysis of testate amoebae will allow us to consider changes in THPSS state, accumulation and stability over centuries-to-millennia, and this will provide context for recent changes, recommendations for the management of peaty swamps on sandstone and analytic tools for assessing whether remediation is resulting in significant improvement on eroding or drying swamps.

Work Undertaken and Results to Date. Research linking testate amoebae and depth to water table in Europe and North America has mostly been undertaken in ombrotrophic (rain-fed) mires. These are distinctly different to THPSS and related communities of the Sydney Basin, which are often controlled by topography (topogeneous mires). In these environments various sediments are known to build up sequentially through time and the minerogenic-rich sediments of the THPSS have resulted in several challenges in our preliminary work. As an example, standard laboratory protocols do not remove mineral particles and these can obscure and make testate amoebae identification difficult. We have since developed a new laboratory protocol and results are promising. We have also been struck by the distinct Northern Hemisphere bias to testate amoebae research: as an example, the Southern Hemisphere endemic species Apodera (Nebela) vas that has been common in our THPSS samples is not included in the most popular guideline book (https://www.qra.org.uk/media/uploads/qra2000_testate.pdf).

Despite the new laboratory protocols we have found that testate amoebae are relatively scarce in THPSS environments. Table 1 outlines the species we are encountering in modern (surface) samples of THPSS and in the high altitude Sphagnum bogs of the Australian Capital Territory: we are finding greater abundance and species richness in the bogs of the ACT.

This project commenced in 2015 and will run until 2017.

Stakeholders and Funding. This research was funded through the Temperate Highland Peat Swamps on Sandstone Research Program (THPSS Research Program). This Program was funded through an enforceable undertaking as per section 486A of the Environment Protection and Biodiversity Conservation Act 1999 between the Minister for the Environment, Springvale Coal Pty Ltd and Centennial Angus Place Pty Ltd.  Further information on the enforceable undertaking and the terms of the THPSS Research Program can be found at www.environment.gov.au/news/2011/10/21/centennial-coal-fund-145-million-research-program.

Contact information. The project testate amoebae as indicators of peatland hydrological state’ is jointly being undertaken by: A/Prof Scott Mooney (School of Biological, Earth and Environmental Science, UNSW +61 2 9385 8063, s.mooney@unsw.edu.au), Mr Xianglin Zheng (School of Biological, Earth and Environmental Science, UNSW, +61 2 9385 8063, xianglin.zheng@unsw.edu.au) and Professor Emeritus Geoffrey Hope (Department of Archaeology and Natural History, School of Culture, History, and Language, College of Asia and Pacific, The Australian National University, +61 2 6125 0389 Geoffrey.Hope@anu.edu.au).

Table 1. A list of the testate amoebae species found in THPSS environments of the Sydney region and in the high altitude bogs of the ACT. (Those with a ++ are more common.)

Mooney table1