Category Archives: New South Wales

Post-fire assisted regeneration at Rutidosis Ridge, Scottsdale Reserve, Bredbo NSW

 

Figure 1. Undamaged grassy woodland reference site occurring at high elevation at Scottsdale (Photo: Brett Howland)

Introduction. Scottsdale Reserve is a 1,328-hectare private conservation reserve, near Bredbo NSW, owned and managed by Bush Heritage Australia. For over 100 years prior to purchase in 2006 the property was utilised for grazing and cropping. While most of the higher elevation areas of the property remained intact and offered the basis for improving landscape connectivity for wildlife, the agricultural land use had resulted in conversion of the flats and lower slopes of the property to largely exotic pasture species and accompanying weed.

This case study focuses on one approx 10 ha Apple Box (Eucalyptus bridgesiana) / Snow Gum, (Eucalyptus pauciflora) grassy woodland ridge within the property – named ‘Rutidosis Ridge’ because it is the location of a small population of the Endangered plant species Button Wrinklewort (Rutidosis leptorhynchoides). Set-grazing by sheep as well as some cropping had left the site nearly wholly dominated by the landscape-transforming exotic pasture grasses African Love Grass (Eragrostis curvula) and Serrated Tussock (Nasella tricotoma). Some scattered copses of eucalypts and some herbaceous natives remained, however, suggesting that the site might have some native regeneration potential, but the number and abundance of natives on the site appeared very low and the site was very dissimilar to a nearby healthy reference site (Fig. 1).

Works undertaken. Around a decade after land purchase and the discontinuation of grazing and cropping, Rutidosis Ridge was aerially sprayed during winter with flupropinate herbicide at a low dilution (1L / ha) known to be effective on some strains of African Love Grass and Serrated Tussock without killing native grasses and forbs. While the African Love Grass and Serrated Tussock had died by the following spring as a result of this soil-active herbicide, no substantial native regeneration was observed due to the persistence of the thick thatch of dead African Love Grass (Fig 2).

  • Figure 2.  Typical site showing sprayed African Love Grass thatch even many years after aerial spraying. (Photo T. McDonald )
  • Figure 3.  Intense wildfire that passed through Bredbo, NSW in early February. (Photo” New York Times)

An intense wildfire passed through the property on 2nd February 2020 (Fig. 3). This largely consumed the thatch, exposing stony topsoils and providing opportunities for regeneration of both natives and weeds that were stored in the soil seed bank.  Anticipating the need for post-fire spot-spray follow-up after the fire to avoid any native regeneration being overwhelmed by weed, Bush Heritage Australia (BHA) collaborated on a program of regular selective treatment of weed with the restoration organisation the Australian Association of Bush Regenerators (AABR). Personnel involved both contractors and volunteers skilled in recognising natives and weeds at seedling stage capable of spot-spraying with negligible off-target damage (Fig 4).  

Because the fire had removed African Love Grass thatch and cued germination of natives and weeds, the aim was to treat all weed prior to its seeding.  This allowed the managers to (a) take advantage of the fire’s flushing out the weed soil seed bank and avoid its further recharge and (b) retain maximum open spaces for further natives to emerge and colonise. 

During the year after the fire (March 2020-April 2021), the ~10ha site had been subjected to approx. 600 person hours of spot spraying, mainly undertaken by experienced bush regenerators. This commenced in March 2000 and continued at least fortnightly during the growing season.

Figure 4. Location of comprehensively spot-sprayed areas and target-weeded areas at Rutidosis Ridge. An opportunity exists to compare differences in richness and cover of natives and weed between the two treatments, ensuring comparisons are confined to within-comparable condition classes.

What we found by 1 year of treatments.  Post-fire observations in  March 2020 revealed Snow Gum resprouting from lignotubers and roots and Apple Box and Candlebark (Eucalyptus rubida) resprouting epicormically.  A wide suite of native grasses and forbs were starting to resprout or germinate alongside diverse herbaceous weeds. Within the first 12 months of regular spot-spraying, the cover and seed production of approx. 30 weed species was very substantially reduced.  Combined with fairly evenly distributed rainfall in the follow 12 months this reduction in weed allowed ongoing increases in native species cover and diversity per unit area, with seed production likely by most native species.  There was negligible off-target damage from the spray treatments. In December 2020 over 50 native herbaceous and sub-shrub species (including at least 11 Asteraceae, 9 Poaceae, 4 Fabaceae and 2 Liliaceae) were recorded within the work zones, with cover of natives very high in the higher condition zones, but plentiful bare ground remaining in the lower condition zones (Fig. 5).  

Figure 5.  Top:  Directly after wildfire showing black stubs of African Love Grass; Middle: Volunteers spot-spraying during the growing season, and Bottom: same site after 12 months but when native grasses were curing off after seeding. (Photos T. McDonald)

Predominant weed species included recovery African Love Grass, Viper’s Bugloss (Echium vulgare), St John’s Wort (Hypericum perforatum), Yellow Catsear (Hypochoeris radicata), Common Plantain (Plantago major), a range of thistles and around 20 other weed species.

Predominant natives included speargrasses (Austrostipa spp.), Redleg Grass (Bothriochloa macrantha), Kangaroo Grass (Themeda triandra), Native Panic (Panicum effusum), Common Raspwort (Gonocarpus teucrioides), Bindweed (Convolvulus erubescens), bluebells (Wahlenbergia spp.), Common Everlasting (Chrysocephalum apiculatum), fuzzweeds (Vitadennia spp.), Bear’s Ear (Cymbonotus lawsonianus), Creamy Candles (Stackhousia monogyna), Yellow Pimelea (Pimelea curviflora subsp. fusiformis) and Native St John’s Wort (Hypericum gramineum).  Species of higher conservation interest that regenerated included Blue Devil (Eryngium ovinum) and Threatened species that regenerated included Silky Swainson’s Pea (Swainsona sericea) and Button Wrinklewort. (Some of these species are pictured in Fig. 6).

Figure 6. Some of the forbs that flowered on Rutidosis Ridge during the growing season – including the Endangered Button Wrinklework (centre) and Vulnerable Silky Swainson’s Pea.(bottom left). (Photos various.)

Gradient of condition improving over time. As expected, the sites showed a gradient of condition (Fig. 7), with highest natural regeneration capacity retained in the tree clusters and stony crest, perhaps due to these less likely to be less favoured by sheep. (The tree clusters appear not to have been used as sheep camps). By March 2020, 1 year after work commenced, all sites were on a trajectory to move to the next higher condition class, assuming successful Winter 2021 aerial spray re-treatment of African Love Grass.  (Note that, while the pre-fire flupropinate treatment would normally have a residual effect for a few years and thus preventing germnation of this species, massive germination did occur of African Love Grass in many areas, which we speculate was either due to suitable post-fire germination conditions being delayed by the presence of dead grass thatch or to a possible denaturing of the chemical by the fire.)  

Figure 7. Condition classes in the Rutidosis Zones A-E revealed during the first few months of treatment. By the end of the growing season and after regular follow up spot-spraying it was clear that all zones comprehensively treated were improving in their native: weed cover ratio except for an increasing cover of African Love Grass, the treatment of which was deferred until a second aerial spray scheduled for winter 2021. (Map: T. McDonald)

Acknowledgements: This project would not have been possible without the help of BHA and AABR volunteers.

Contact: Tein McDonald and Phil Palmer, Scottsdale Tel: +61 (0) 447 860 613; Email: <teinm@ozemail.com.au and phil.palmer@bushheritage.org.au

 

Crowdy Bay National Park, NSW – Assisted regeneration of a littoral rainforest patch post 2019-20 summer wildfire

Figure 1. Volunteers at the initial working bee in the burnt littoral rainforest.

Introduction. Crowdy Bay National Park is located on the NSW Mid-north coast and comprises coastal landscapes, some of which have were sand mined prior to the area’s acquisition for conservation in the 1970s. Littoral rainforest remnant and regrowth patches occur within the Park and are listed at State level and as Endangered Ecological Community and at national level as a Threatened Ecological Community. The rainforest community type forms in the dune swales, protected by Coast Banksia (Banksia integrifolia) and is dominated over time by Tuckeroo ( Cupaniopsis anacardioides) and Beach Alectryon (Alectryon coriaceus), with other rainforest co-dominants and associated shrubs, vines and groundcovers.

For over four decades,  a regeneration program has been carried out in the park by volunteers working through the National Parks Association (NPA), Mid North Coast Branch. This short summary refers to the condition of one floristically diverse littoral rainforest patch at Kylie’s Beach, half of which was burnt in a spot-wildfire in late 2019 and in which weed managment works commenced 2 years prior to the wildfire due to pre-existing weed issues (Fig 1).

The wildfire and early recovery. The wildfire burnt all the banksias on the foredune crest that were providing wind protection for the littoral rainforest, as well as 1ha of the littoral rainforest. It left the ground layer beneath both areas largely bare. In the areas burnt, all trees appeared dead. With rainfall occurring soon after the fire, post-fire coppicing of rainforest trees and Banksia commenced; with germination of native seedlings occurring with the arrival of heavy rains in December 2020 -January 2021. By mid-autumn 2020 the northern foredune section was thickly covered with colonising Blady Grass (Imperata cylindrica) that provided cover for other successional natives (Fig 2) .

Weed recovery, however, was very rapid. As early as May 2020, the site was a sea of annuals, with abundant Lantana (Lantana camara), Coastal Morning Glory (Ipomoea cairica), Cape Gooseberry (Physalis peruviana), Crofton Weed (Ageratina adenophora) and scatterings of Cape Ivy (Senecio mikanioides) and Tobacco Bush (Solanum mauritianum). Volunteers were at a loss to see how the site could be helped to regenerate. Not having previously worked in a burnt rainforest, the first though was to take out all the weeds. Under the guidance of retired regenerator Tom Clarke from the Australian Association of Bush Regenerators (AABR) however, a different approach was taken.

Figure 2. Blady Grass has covered much of the floor.

Works undertaken. Commencing in May 2020 Sue Baker from NPA and Tom Clarke from AABR conducted monthly working bees to strategically remove weeds. The approach was to  regard the weeds as the new canopy cover and primary colonisers, providing invaluable shade and moisture retention for the regenerating rainforest species. It was agreed that the main initial objective was to see the re-establishment of a canopy, however low, to protect the ground moisture levels and any recovering herb layer. At this point any woody weeds were considered allies in that they were resprouting along with many native pioneer species. Treatment of woody weeds was selective and dependent upon direct competition with native plants. Instead, treatment of weed vines and creepers was targeted, with removal of Morning Glory and Cape Ivy a priority, at least to the edge of the burnt zone.

Subsequently, apart from preventing the spread of Cape Ivy and removing dense infestations of fruiting Cape Gooseberry, the method was to remove weeds only where they were competing with native seedlings with as much removal of their fruits and seeds as possible, followed by thinning out later where helpful. By January 2021, native ground cover had recovered sufficiently to remove the annuals, some of which were 2m high. Over time, the selective treatment of woody weeds has continued as more and more native regen appeared. By taking this approach we have left nature largely to do its own thing with minimal detrimental impact from weeding.

In addition, we have taken the view that the wildfire was not soley a negative; it has also provided an opportunity to address some of the long-standing weed issues in the broader area of Kylie’s Beach including that of Glory Lily (Gloriosa superba) and Golden Wreath Wattle (Acacia saligna) which the fire stimulated to germinate from the soil seed bank in their thousands.

As well as the weed management work, over a kilogram of native seed was broadcast in mid-summer 2020 in the hope it might improve recovery of the ecosystem.

Volunteer visits. After a site inspection tour on 14th May 2020 there have been at least 17 visits to Crowdy Bay National Park where regeneration works has been carried out, not only in the littoral rainforest, but also in the broader Kylie’s beach area. These occurred in May (1 visit), July (3 visits), August (4 visits involving 12 volunteers), September (2 visits), October (4 visits), November (1 visit) and lately in January 2021 (2 visits).

Figure 3. Tuckeroo coppicing from the burnt stump.

Figure 4. Lillypilly coppicing.

Results to date.  The site has demonstrated itself to have high levels of native resilience, having been in relatively healthy condition apart from per-existing weed infestations. High levels of rain in the 2020-21 summer has promoted extensive and vigorous growth. At February 2021, the forest floor was a carpet of native vegetation and some areas knee-high in dense native grasses. Less care in selecting woody weeds for treatment is now required.

Much of the regeneration is from germinating seeds but some has been from re-sprouting rootstocks, resprouting stems or coppicing from the bases of trees, including rainforest trees (Figs 3 and 4) although some large trees are dead  (See Table 1). With the assisted regeneration work (i.e. strategic weed removal post-fire) the site is quickly shifting from a predominantly weed-dominated post-fire succession to one dominated by native plants.

There is no evidence that the sown seed has yet contributed to the regeneration at this stage.  Native regeneration was occurring across the area prior to the date when germination of sown seed would be expected and it is now clear that additional seed was not required.

Plans for ongoing management.  The continued wet and humid conditions in summer 2021 have provided highly favorable conditions for regeneration. During 2021 the volunteers will try to keep up with the work at Kylie’s Beach through regular bush regeneration camp outs (as organised for many years, except 2020 which was cancelled due to COVID-19 restrictions). Work plans for the next camp-out have been scheduled to include the Kylie’s Beach littoral rainforest site and will include follow-up treatment of vines and Crofton Weed. Full recovery is likely to take years as the recovery process moves at its own pace.

Two major issues remain – dense ground and canopy cover of coastal morning glory in the area will need meticulous treatment. Also an entire drainage line on the steep, rocky cliff face behind the dune is densely infested with Crofton Weed that must be left in place to stabilize the slope until sufficient native cover takes hold. Volunteers were able to remove flowers from the Crofton Weed for a certain distance up the slope. Contractors will be needed in 2021 to deal with the upper slope.

Acknowledgements: We thank the organisation and leadership of NPA group.  The fact that this was already in place prior to the fire, was a key to the success of the work to date. This group has an outstanding history and connection with many sites in the Park over many years. The linking of AABR to the project provided additional support in project design and facilitating additional volunteer from the ABBR network for the post-fire restoration side of the program.

Contacts:  Tom Clarke AABR 0418411785 and Sue Baker (NPA MNC branch)

Table 1. Kylie’s Beach Littoral Rainforest Post Fire Restoration  – responses of native and exotic species (Exotics marked with an asterisk)

Scientific name Common name Response of the species at this site Notes
Grasses
Imperata cylindrica Blady Grass Resprouted Dominating burnt floor devoid of canopy
Oplismenus aemulus Basket Grass Resprouted and germinated Near edge of existing canopy
Ehrharta erecta* Panic Veldtgrass Germinated Hillside on open ground near crofton weed
Eriochloa procera Spring Grass Germinated Near edge of existing canopy
Scramblers and Climbers
Marsdenia flavescens Hairy Milk Vine Resprouted and germinated At edge of existing canopy
Senecio mikanioides* Cape Ivy Resprouted Remnants creeping through grasses, has been heavily targeted.
Ipomoea cairica* Mile-a-minute Resprouted and germinated Existing condition taking advantage, targeted for weeding
Desmodium sp. (varians?) Desmodium Germinated Carpeting over slope to dune swale
Glycine sp. (tabacina?) Love Creeper Germinated Carpeting over slope to dune swale
Sarcopetalum harveyanum Pearl Vine Resprouted and germinated Near edge of existing canopy.
Stephania japonica Snake Vine Resprouted and germinated Near edge of existing canopy or large remnant structures
Dioscorea transversa Native Yam Resprouted Near edge of existing canopy or large remnant structures
Passiflora edulis* Blue Passion Flower Resprouted and germinated Single isolated plant. Previously overlooked?
Rubus parvifolius Native Raspberry Resprouted and germinated Creeping through rank grasses
Cayratia clematidea Slender Grape Resprouted and germinated Creeping through rank grasses
Cissus antarctica Kangaroo Grape Resprouted Mostly at edge of existing canopy.
Tetrastigma nitens Three-leaved Water Vine Resprouted Near edge of existing canopy
Flagellaria indica Whip Vine Resprouted Isolated individuals searching for structure
Geitonoplesium cymosum Scrambling Lily Resprouted Creeping through rank grasses
Smilax australis Austral Sarspariila Resprouted Moving into grass floor plus climbing burnt structures.
Ground Covers and Herbs
Hydrocotle bonariensis* Pennywort Resprouted Associated with commelina in low swale
Commelina cyanea Scurvy Weed Resprouted Feature of low swale within open floor area; also underneath grasses.
Melanthera biflora Melanthera Resprouted Carpeting top of rise from dune swale
Tufted Plants
Crinum pedunculatum Swamp Lily Resprouted Seaward edge to dune swale
Dianella congesta Coastal Flax Lily
Lomandra longifolia Mat Rush Resprouted and germinated Isolated individuals, seedlings and survivors
Ficinia nodosa Knobby Club-sedge Resprouted Seaward side pushing up from dune swale below
Cyperus sp. (sanguinolentus?) Sedge Resprouted Associated with commelina etc in swale near False Bracken
Alocasia brisbanensis Cunjevoi Resprouted Scattered near edge of existing canopy or structures.
Ferns
Doodia aspera Rasp Fern Resprouted Mostly near edges of existing canopy
Pellaea falcata Sickle Fern Resprouted Mostly with grass at edge of existing canopy
Calochlaena dubia False Bracken Fern Resprouted Dense patches on floor adjacent to Blady Grass
Dicksonia antarctica Treefern Resprouted Unaffected individuals near edges
Shrubs
Acacia longifolia (var. sophorae?) Golden Wattle Germinated Seedling growth mostly seaward edge of floor.
Breynia oblongifolia Coffee Bush Germinated Isolated individuals from seedlings
Banksia integrifolia Coastal Banksia Resprouted and germinated Coppicing from burnt stumps plus seedlings
Physalis peruviana* Cape Gooseberry Rampant pioneer exotic targeted for weeding
Solanum nigrum* Blackberry Nightshade Germinated Rampant pioneer exotic targeted for weeding
Lantana camara* Lantana Resprouted Rampant pioneer exotic targeted for weeding
Poyscias elegans Celerywood Germinated Scattered seedlings
Trema tomentosa var. viridis Native Peach Germinated Pioneer from seedlings; competing well
Conyza sumatrensis* Tall Fleabane Germinated Rampant pioneer exotic targeted for weeding
Notelea venosa? Mock Olive Resprouted Coppicing from burnt stump.
Bidens Pilosa* Cobbler’s Pegs Germinated Rampant pioneer exotic targeted for weeding
Phytolacca octandra* Inkweed Germinated Isolated patches
Ageratina Adenophora* Crofton Weed Resprouted and germinated?? Isolated patches on floor plus large, dense infestation covering hillside soak
Chrysanthemoides monilifera* Bitou Bush Resprouted and germinated Isolated individual plants
Trees
Cupaniopsis anacardioides Tuckeroo Resprouted and germinated Coppicing from burnt stumps plus seedlings
Wilkiea huegeliana Wilkiea Resprouted Coppicing from burnt stumps
Homalanthus populifolius Bleeding Heart Germinated Pioneer from seedlings; competing well
Alectryon coriaceus Beach Tamarind Resprouted Coppicing from burnt stumps.
Solanum mauritianum* Tree Tobacco Germinated Pioneer exotic targeted for weeding
Ficus rubiginosa Port Jackson Fig Resprouted Coppicing from burnt stumps
Laurel type Coppicing from burnt stumps
Synoum glandulosum Scentless Rosewood Resprouted Coppicing from burnt stumps

Post-wildfire recovery at a wet sclerophyll/rainforest ecotone close to housing at Wanganui NSW

Joanne Green

Introduction. The Mt Nardi fire, on Wed 13th Nov 2019, provided an opportunity to observe the effects of a relatively low intensity burn at a wet sclerophyll/rainforest ecotone on an 18 acre rural residential property at Wanganui, NSW.

Prior to the fire the vegetation had not been burned for 50 years and was dominated by Brush Box (Lophostemon confertus), Red Bloodwood (Corymbia gummifera) and Forest Oak (Allocasuarina torulosa) –  with a mesic understory of rainforest species including Red Bopple Nut (Hicksbeachia pinnatifolia ), Jackwood (Cryptocarya glaucescens), Bangalow Palm (Archontophoenix cunninghamiana)  and  Tree Heath (Trochocarpa laurina).  The forest was on a trajectory from wet sclerophyll towards a palm-dominated forest.

Since the fire,  the recovery has reset the ecosystem to a wet sclerophyll community with a diversity of heathy species in the understorey, although there is also massive germination and resprouting of rainforest species that indicates that the rainforest understorey will return over time. Table 1 at the end of this summary shows the recovery of both sclerophyll and rainforest species, and their presence or absence above ground prior to the fire.

Figure 1. Dead Bangalow Palm amid a sea of Brown Kurraong seedlings post fire. (Photo: J. Green)

 

Figure 2. Resprouting saplings of (a) Bolwarra and (b) Creek Fig (Photo J. Green)

Mortality and recovery.

Resprouting:  The fire varied in intensity as it burned downslope. The highest intensity was at the edge of the National Park at the highest elevation above a rocky face. Turpentine (Syncarpa glomulifera), Lomandra (Lomandra longifolia), heath species and younger trees appeared to be killed by fire. While Turpentine has not yet resprouted, Lomandra has resprouted and heath species such as Acacia and Zieria have regrown from seedlings.  Bangalow Palms (Archontophoenix cunninghamiana) are completely dead wherever the fire burned to their tops (growing points) and perhaps many more are dying, indicated by the presence of a fungus on their trunks. One tall Brushbox (Lophostemon confertus) is completely dead.

A community with old growth Forest Oak (Allocasuarina torulosa) is further downslope closer to the rainforest lined creek. The roots system of these trees, burned under the ground and the fire could only be doused by digging out the peat-like root system. Some of the Forest Oaks died but most have recovered.  Taller canopy trees of rainforest and sclerophyll species died back but are resprouting. Midstorey trees, less than 8m, are largely dead, dying or resprouting from the base (coppicing).  The trunks are completely dead but there are many root suckers of species such as Jackwood (Cryptocaryia glaucescens), Bolwarra (Eupomatia laurina), Grey Possumwood (Quintinia verdonii) and the rare Red Bopple Nut (Hickbeachia pinnalifolia).

Treeferns such as Cyathea australis, C. cooperi and C. leichhardtiana were the first resprounters and ground ferns such as Soft Bracken (Hypolepis muelleri) are proliferating following the  rain since the fire event.

Figure 3. Proliferation of rainforest pioneers germinating after fire including Poison Peach (Trema aspera), Pencil Cedar (Polyscias murrayi) and Bleeding Heart (Homolanthus populifolius). (Photo J. Green)

 

Figure 4. Heath species such as Zieria (Zieria smithii) pictured at the right. germinated alongside rainforest species despite not being in the previous above-ground flora. (Photo: J. Green)

Seed germination: Rainforest species germinating included: Red Cedar (Toona ciliata) , Pencil Cedar (Polyscias murrayi), Brown Kurrajong (Commersonia bartramia), Red Ash (Alphitonia excelsa) and Corkwood (Duboisia myoporoides).  Heath species recruiting included: a large amount of Tree Pea (Daviesia arborea), Zieria (Zieria smithii), Prickly Acacia (Acacia ulicifolia), and Hibbertia spp. Herbaceous species included: Forest Lobelia (Lobelia trigonocaulis),  Kreysigia (Tripladenia cunninghamii), Hairy Tree Foil Desmodium rhytidophllum and other vines of the pea family are covering large areas of the ground.

Weed regeneration

Alongside the natives,  diverse weeds are proliferating after fire, representing all growth forms. Some weed species may be playing a facilitation role for rainforest recovery, while others should be  targeted to reduce their inhibiting effect on native regeneration. Given the level of regeneration across functional groups, this community is likely to benefit from assisted natural regeneration focusing on removal of weed that is competing with native regeneration.  Where possible it is desirable to use the opportunity of the wildfire to deplete populations of weed at the site to increase the community’s resilience to future fire. No reintroductions or seed input is needed at the site.

Future directions.  Consideration needs to be made as to which ecosystem will be the target for future management.  Retaining a sclerophyll overstorey is desirable for habitat values and hence allowing replacement of those individuals that died will be important for future forest dominants.  The use of fire as a control method to control the massive germination of rainforest seedlings and Bangalow Palm dominants is under consideration. For the healthy understorey elements to remain in the soil seed bank for future regeneration would at least require their retention until they have flowered, fruited and recharged the soil seed bank.  But consideration will be given to retaining more fire-resistant rainforest vegetation on the side of the forest closer to the house to act as a fire buffer to supplement the existing 50m fuel free zone.

Contact: Joanne Green, Email jogreen909@gmail.com

Table 1.

SPECIES HABITAT TYPE PRESENCE /ABSENCE BEFORE FIRE RECOVERY MODE
Botanical Name Subtropical Rainforest = STRF, Wet Sclerophyll = WS, Dry Sclerophyll = DS P /A Seed = S, Epicormic growth = EP, Coppice = COP, R = Resprout
TREES AND SHRUBS      
Acacia ulicifolia DS P S
Acacia melanoxylon STRF P S
Acmena smithii STRF P COP
Allocasuarina torulosa WS P EP
Alphitonia excelsa STRF P S/COP
Alphitonia petrei STRF P S
Archirhodomyrtus beckleri STRF P COP
Archontophoenix cunninghamiana STRF P S/Dead
Breynia oblongifolia STRF P S
Commersonia bartramia STRF P S
Cordyline rubra STRF P COP
Corymbia intermedia WS/DS P EP
Cryptocarya erythroxylon STRF P COP
Cryptocarya glaucescens STRF P COP
Daviesia arborea WS/DS A S
Diospyros pentamera STRF P COP
Diploglottis australis STRF P COP/Dead
Duboisia myoporoides STRF P S/COP
Elaeocarpus reticulatus STRF P COP
Eucalyptus microcorys DS P EP
Eucalyptus pilularis DS P EP
Eupomatia laurina STRF P COP
Flindersia bennettii STRF P COP
Ficus coronata STRF P S/COP
Glochidion ferdinandi STRF P COP
Hickbeachia pinnalifolia STRF P COP
Homalanthus populifolius STRF A S
Jagera pseudorhus STRF P COP
Leptospermum petersonii DS P COP/S
Lophostemon confertus WS P S/COP
Macaranga tanarius STRF A S
Melicope elleryana STRF P S
Myrsine variabilis STRF/WS P S
Nematolepis squamea DS A S
Neolitsia dealbata STRF P COP
Ozothamnus diosmifolius WS/DS P S
Persoonia media WS P S
Pilidiostigma glabrum STRF P COP
Polyscias  murrayii STRF A S
Polyscias sambucifolia STRF A S
Quintinia verdonii STRF P COP
Schizomeria ovata STRF P COP
Solanum mauritanium Non – Native A S
Syncarpia glomulifera WS P COP/Dead
Synoum glandulosum STRF P COP
Trema tomentosa STRF P S
Trochocarpa laurina WS P COP
Wilkea huegeliana STRF P S
Zieria smithii  WS A S
       
VINES AND CLIMBERS      
Billardiera scandens WS A S
Geitonoplesium cymosum STRF P S
Desmodium rhytidophllum WS/DS A S
Hibbertia dentata STRF P S
Hibbertia scandens STRF/WS P S
Kennedia rubicunda STRF A S
Morinda jasminoides STRF/WS P S
Rubus moluccanus STRF/WS P S
Smilax australis STRF/WS P S
Stephania japonica var. discolor STRF P S
       
FORBES AND GROUNDCOVERS      
Alpinia caerulea STRF/WS P R
Dianella caerulea STRF/WS P R
Entolasia stricta WS P S
Gahnia appressa WS P S
Lepidosperma laterale WS P R
Lobelia trigonocaulis STRF/WS P S/R
Lomandra longifolia WS P R
Oplismenus aemulus STRF/WS P S
Oplismenus imbecillis STRF/WS P S
Oplismenus undulatifolius STRF/WS P S
Pimelea ligustrina subsp. ligustrina STRF/WS A S
Tripladenia cunninghamii STRF/WS P S/R
Viola banksii STRF/WS A S
       
FERNS      
Adiantum hispidulum STRF/WS P R
Blechnum cartilagineum WS P R
Blechnum nudum STRF P R
Cyathea australis STRF/WS P R
Cyathea cooperi STRF P R
Cyathea leichhardtiana WS P R
Doodia aspera STRF/WS P R
Hypolepis muelleri STRF P R
Pteridium esculentum STRF/WS p R
Sticherus lobatus STRF p R
       

 

Regenerating and planting of rainforest buffers to protect homes and rainforest from future fires

Joanne Green, Rainer Hartlieb and Zia Flook

Introduction. The wildfires of November and December, 2019, burnt over 5,500 hectares of Nightcap National Park and the surrounding areas, including the rural communities of Huonbrook and Wanganui inland from Byron Bay in NSW, Australia. The fires occurred during a period of extreme fire risk after 2 years with below average rainfall. They mainly burnt the sclerophyll forest along the ridgetops, but the extreme conditions also saw fire burn the edge of the rainforest where it was eventually extinguished.

This summary reports on actions on one multiple occupancy property in Huonbrook, NSW after an ember attack from the Mt Nardi fire entered the property in the early hours of the 9th November 2019. During the fire, residents evacuated.  Their homes were saved but they returned to find that the fire burnt an area of eucalypts  – mainly Flooded Gum (Eucalyptus grandis) and several bamboo species that had been planted during the late 20th century to reforest an area where subtropical rainforest had been-long cleared for dairy farming. The plantings had also become infested with weed including Camphor Laurel (Cinnamomum camphora) and Lantana (Lantana camara), the latter increasing their combustibility under dry conditions. After the fires, the landholders sought solutions that could provide a more fire-resistant barrier to reduce potential fire threat to homes and the nearby remnant rainforest. As a result they opted to restore the buffer zone with the more fire-retardant subtropical rainforest that had been the original native vegetation of the area.

Figure 1. Multiple native and weed species germinated after fire. (Photo Rainforest 4)

Figure 2. Prolific germination of the wind-dispersed Red Cedar (Toona ciliaris), among many rainforest species germinating and resprouting on site. (Photo Joanne Green)

Works undertaken. Starting in March 2020, with support from Madhima Gulgan’s Indigenous bush regeneration team, Huonbrook residents and landowners commenced work on the site. The first task in any zone to be treated was to clear the debris sufficiently to allow access for weeding and planting. The second task was to identify any subtropical rainforest species (germinating after the fire) that were to be retained and to note areas that were bare and would be suited to plantings. (No planting was done where there was any natural regeneration.)  The third task was to remove prolific exotic weeds, while protecting the natives, with the final task involving planting, staking and tree guarding.

The main weed species on site were Lantana, Running Bamboo (Phyllostachys spp.), Kahill Ginger (Hedychium gardnerianum), Winter Senna (Senna x pendula), and Inkweed (Phytolacca octandra). A total of 12 rainforest tree species germinating included the secondary species Red Cedar (Toona ciliaris) and Celerywood (Polyscias elegana) and the pioneers Red Ash (Alphitonia excelsa), Macaranga (Maccaranga tanarius) and Bleeding Heart (Homolanthus populifolius). A total of seven native rainforest understorey species  resprouted including Dianella (Dianella caerulea), Native Ginger (Alpinia caerulea.) and Cordyline (Cordyline petiolaris).

Figure 3. Madhima Gulgan’s Indigenous bush regeneration team assisting  landholders with post-fire weeding.  This work revealed where understorey natives were regenerating and where gaps required planting. (Photo Rainforest 4)

Some  300 rainforest trees (around 30 species) and another 300 understorey plants have been planted at the site to date from May-Sept 2020, with a total of 3600 plants proposed to be planted on additional fire affected sites as part of this project. Locally occurring tree species planted to date include Lillipilly (Acmena smithii), Native Tamarind (Diploglottis australis), Firewheel Tree (Stenocarpus snuatus), and Long-leaved Tuckeroo (Cupaniopsis newmanii) Understorey species planted included Dianella, Lomandra, Native Ginger and Cordyline.  All required tree guards to protect them from browsing by the native Red-necked Pademelon (Thyogale thetis).

After the planting, more natural regeneration of weed and natives occurred, particularly of the ground ferns; Harsh Ground Fern (Hypolepis muelleri), Binung Fern (Christella dentata), and Soft Treefern (Cyathea cooperi). Since the rain in autumn 2020 and the above average rainfall year that has followed, the landholders are managing weed in the regeneration and plantings together and work is now extending into the unburnt buffer zone.

Figure 4. A total of 300 containerised plants were installed to reinstate lowland subtropical rainforest on the site and provide a less fire prone vegetation buffer to protect residential dwellings. (Photo Joanne Green)

Figure 5. Diagram of location of the buffer plantation in relation to dwellings. (Diagram. Joanne Green)

Results to date: Nearly 12 months after planting has seen a nearly 100% survival rate and many of the planted trees have grown to an average height 1-2m. The number of native rainforest species on site now is approximately 25 tree and 23 understorey species and vines.  Ferns cover 40% of the site. The difference between the number planted and the number on site (18 species) can be attributed to natural regeneration.

Further colonisation of rainforest species is expected over time. Whilst, in hindsight, we see that much of the site could have been captured by natives as a result of  weed management alone, the planting has added a broader diversity of species, and will accelerate the process of succession to a more mature rainforest stand.

Acknowledgements: The Madhima Gulgan Indigenous bush regeneration team was funded by the inGrained Foundation and the Rainforest 4 Foundation. See https://www.rainforest4.org/. Technical advice was provided by Joanne Green.

Contact: Rainer Hartlieb, Huonbrook landholder, rainerhart@aapt.net.au and Zia Flook, Rainforest 4 Foundation Conservation Program Manager, zia@rainforestrangers.org

The Role of Swamps in Drought: Popes Glen Creek, Blackheath

Alan Lane

Introduction

The important role of swamps in water storage and as regulators of stream flow has been well documented (10.1016/j.geomorph.2018.03.004). Previous EMR project summary reports on Popes Glen Creek, Blackheath, have described the establishment of a swamp on the former highly degraded and weed-infested silt plug at the headwaters of the creek.  (See links at end of this summary.)  That 18-year long project has been documented in “The Full Story”, https://dl.bookfunnel.com/ebgais2pxn and an 8-minute summary video can be viewed at https://www.youtube.com/watch?v=610sas330EQ

The recent severe drought in New South Wales provided the opportunity to monitor the water table in this swamp in the absence of rain and compare the impact on the swamp vegetation with that on more elevated and drier slopes nearby.

How we measured the water table. Six piezometers were installed at the start of this rehabilitation project, located about 50 m apart and midway between the edges of the long, rectangular silt plug. These went down to the bedrock, at depths of between 113 and 152 cm and were used to monitor water table depth and also for sampling water quality and stygofauna.

What we found. During periods of normal or above average rainfall (e.g. September 2019), the water table at each of these bore holes was typically at the depth below soil surface shown in Table 1.

Levels fell almost to bedrock during the drought (Oct 2019 – Dec 2019), before recovering after rains in January and February 2020 (Tables 1, 2). 

Table 1. Water table depths during normal and below-average rainfall periods.

Bore hole number
Depth below surface (cm) 1 2 3 4 5 6
Normal rainfall period (Sept 2019) 31 2 7 11 23 9
After drought period (Dec 2019) 103 106 121 103 123
After recovering rainfall (Feb 2020) 29 0 12 21 13

Table 2.  Rainfall, October 2019 – February 2020.

Month Rainfall (mm)1 5-year average (mm)2 % of average
September 2019 81.4 53.6 151.6
October 2019 23.8 76.7 31.0
November 2019 26.4 82.2 32.1
December 2019 0.4 69.5 0.6
January 2020 99.2 127.9 77.6
February 2020 560.4 183.6 305
  1. From Bureau of Meteorology, Mount Boyce, NSW
  2. From willyweather.com.au, Mount Boyce, NSW

During this period of extreme drought, the vegetation on the slopes above the Popes Glen swamp manifested extreme water stress in a way never before seen (Figs. 1, 2). Many of these extensive expanses of Coral Fern (Glycaenia dicarpa), stands of Fishbone Water Fern (Blechnum nudum) and individual Black Tree Fern (Cyathea australis) plants have not recovered and now appear unlikely to do so.

Figure 1. Expanses of severely water-stressed Glycaenia dicarpa on slopes above the Popes Glen swamp.

Figure 2. Many of the Blechnum nudum and Cyathea australis on slopes above the swamp have failed to recover.

In marked contrast, the vegetation in the swamp area (Fen Sedge (Carex gaudichaudiana), Tassel Sedge (Carex fascicularis), Tall Spikerush (Eleocharis sphacelata) and Juncus sp.) remained lush and vigorous (Fig. 3), suggesting it was sustained by the supply of water retained in the substrate.

This supply was progressively depleted during the drought and the water table had fallen almost to bedrock before the rains in January (Tables 1, 2).

Figure 3. Vegetation in the Popes Glen swamp remained lush throughout the drought.

Implications. It seems inevitable that this water supply would have been completely exhausted had the 2019-2020 drought lasted longer. Temperate Highland Peat Swamps on Sandstone (THPSS), including the Popes Glen swamp, appear threatened by the even more prolonged droughts anticipated as climate disruptions due to global heating become more marked.

Acknowledgements. This work was supported by Blue Mountains City Council and funding from the Environmental Trust of NSW.

Contact. Alan Lane alanlane388@gmail.com

See also EMR Project Summaries:

 

Beyond the 1990s, beyond Iluka – koalas and citizen science – UPDATE of EMR summary

Daniel Lunney, Lisa O’Neill, Alison Matthews, Dionne Coburn and Chris Moon

[Update of EMR summary – Lunney, Daniel, Lisa O’Neill, Alison Matthews and Dionne Coburn ( 2000) “Contribution of community knowledge of vertebrate fauna to management and planning. Ecological Management & Restoration, 1:3, . 175-184. https://onlinelibrary.wiley.com/doi/10.1046/j.1442-8903.2000.00036.x]

Key words: national parks, SEPP 44, adaptive management, social criteria, extinction, wildlife survey, coastal forests.

Figure 1. Interest in local wildlife among residents and visitors to the north coast village of Iluka was growing in the 1990s, providing an opportunity for community involvement in our wildlife survey designed not only to gain information but to raise awareness. (Photo Dan Lunney 1991.)

Introduction. Our EMR feature published in 2000 reported on research that commenced in 1997 when we set out to identify the species and locations of the vertebrate fauna of Iluka peninsula, at the mouth of the Clarence River NSW, Australia. Much of the peninsula had been damaged by post war sand mining and creeping urban growth. We had recognised that there was a growing interest by local communities in conserving biodiversity (Fig 1), as Iluka had residential areas not far from a magnificent Nature Reserve (Iluka NR) and a National Park (Bundjalung NP). We conducted a community-based survey, sent to every household, which used a large, coloured map of the peninsula and a questionnaire asking respondents to mark the locations of the fauna they had seen. As a result of the survey, we concluded that vertebrate fauna does live on private land, that local knowledge is valuable, and that there is both community concern over declining fauna and support for planning, management and long-term fauna research.

Figure 2. Two junior volunteers learning radio-tracking to locate koalas, Iluka Peninsula. (Photo Dan Lunney 1992)

The rise of citizen science. We were not the first to use a community-based survey for wildlife in NSW. A team (Philip Reed and Dan Lunney) in 1986-87 greatly expanded on some skilled, but tentative, efforts to survey Koala (Phascolarctos cinereus) in NSW by the small but effective Fauna Protection Panel. We produced a small questionnaire, which was distributed in 1986, and when we came to analysing the data in 1987, we joined up with CSIRO scientist Paul Walker who had a new tool, GIS, still in its infancy, but which showed great promise. By the time of the Iluka study, GIS was central to our methods.

Over the last 20 years there has been a revolution in the acquisition and application of community knowledge (Figs 2 and 3), a better appreciation of its extent, and limitations, and how to better integrate a greater diversity of disciplines for a more effective planning and management outcome. A Google Scholar search for ‘citizen science’ in July 2019 returned over 2 million results, establishing this phrase in the scientific literature to describe projects that enlist the community for collecting or analyzing scientific data. The rise and success of citizen science undoubtedly stems from the power of the internet and web-based tools that members of the public can use to record species’ locations, providing answers to such questions as: is a species increasing, decreasing or stable? – answers to which increase the capacity for managers and planners to be better targeted in their decisions. Such web-based technology also helps to overcome resource limitations where scale is an important factor. For example, for our 2006 state-wide koala and other wildlife survey we put a major effort into the distribution of the survey, a paper form with a large map. Now, the current 2019 survey is web-based, a procedure we explored in north-west NSW in 2014 where we selected the study area to be 200 by 300 km.

Figure 3. A skilled team climbing a tree to capture a koala for a health check and radio-tracking in a study of the koala population of the Iluka peninsula. (Photo Dan Lunney 1991.)

A further innovation comes from linking sociology to ecology and expanding the term from citizen science to ‘crowd-sourced information’. An example is a study in the four local government areas just north of Iluka, namely Lismore, Byron, Ballina and Tweed. The sociological side, led by Greg Brown, used the threatened koala as a case in point. The study demonstrated a novel, socio-ecological approach for identifying conservation opportunity that spatially connected landscapes with community preferences to prioritize koala recovery strategies at a regional scale. When multiple criteria (ecological, social, and economic) were included in the conservation assessment, we found the social acceptability criterion exerted the greatest influence on spatial conservation priorities. While this is a long way from our 1997 Iluka study, it is in the same lineage and represents two decades of development of what has become a widely accepted approach to regional planning.

Lessons learned and future directions. Looking back at the Iluka story, in one sense, it is a sorry one. When we first started our research on the Iluka peninsula in 1990, there was a visible population of koalas. It dwindled to extinction over the next decade so the locations of koalas in our EMR paper were of recent but fading memories. By defining our study area to a small location, it was possible to identify the cumulative impact of mining, housing, disease, roadkill, dog kill and fire. There have been reports of koalas being back on the peninsula as early as 2002 (Kay Jeffrey, local resident) and there have been subsequent sightings (John Turbill DPIE pers comm August 2019), we presume moving down from such locations as the northern part of Bundjalung National Park

Looking back on our EMR paper, we also see that the Emu (Dromaius novaehollandiae) was one of the most common species recorded by the community on the Iluka peninsula. It has now gone (John Turbill DPIE, pers. comm., August 2019). The coastal Emu population in northern New South Wales is now recognized as being under threat and a citizen science project called ‘Caring for our Coastal Emus’ has been established to collect recent emu sightings from the public using a web-based emu register to pin-point locations on a map. This register is administered by Clarence Valley Council and reflects the shift from the 1990s where the tools and expertise for collecting scientific data for management and planning were beyond the scope of local government. Today, local councils are considerably more engaged in conservation and community education projects.  Indeed, the Clarence Valley Council (2015) has prepared a Comprehensive Koala Plan of Management (CKPoM) for the lower Clarence, which includes Iluka, although it was not adopted beyond council level. The plan recognizes the importance of reducing further clearing and protecting and rehabilitating those areas that remain, and identifies that further studies and monitoring are required to establish the current status of the Iluka koala population.

In the early 1990s, we had prepared a possible plan of management for the koalas of Iluka peninsula but there was no legal incentive to adopt it. Thus, in late 1994, when one of us (DL) was asked by the then NSW Department of Planning and Urban Affairs to help write a SEPP (State Environmental Planning Policy) for koala habitat protection, the potential value of doing so was clear to us. SEPP 44 was written in three days, with a promise to revise it in 1995. SEPP 44 has proved to be valuable, although in recent years, the process of preparing and submitting CKoPMs from councils to the NSW state government seems to have stalled.

In conclusion, our EMR feature was written at the time of an upward inflection in the study of koalas, of fauna survey using crowd-sourced information.  We are now better equipped to use the new techniques from over three decades of what might be described as adaptive management of the ideas in our original EMR paper. We also press the point that research, exploring new ideas, incorporating new techniques and publishing our findings and thoughts make a crucial contribution to conserving not only koalas, but all our wildlife and natural areas, both in and out of reserves.  Such research is therefore vital to the survival of our wildlife.

Stakeholders and Funding bodies: In addition to the funding bodies in our EMR paper of 2000, support for the research supporting the above comments has been extensive, as reflected in the acknowledgements section of each report.

Contact. Daniel Lunney, Department of Planning, Industry and Environment NSW, (PO Box 1967, Hurstville NSW 2220 and the University of Sydney, NSW 2006. dan.lunney@environment.nsw.gov.au).

Koala conservation and the role of private land – UPDATE of EMR feature

Daniel Lunney, Alison Matthews, Chris Moon and John Turbill

[Update of EMR feature – Lunney, Daniel, Alison Matthews, Chris Moon and John Turbill (2002) Achieving fauna conservation on private land: Reflections on a 10-year project. Ecological Management & Restoration, 3:2, 90-96. https://onlinelibrary.wiley.com/doi/10.1046/j.1442-8903.2002.00100.x]

Key words: SEPP 44, Coffs Harbour, logging, urban development, New South Wales, ecological history, koala plan of management.

Introduction. Our 2002 paper in EMR focused on the local government area (LGA) of Coffs Harbour and reflected on our approach to meeting the challenge of finding a means of protecting populations of  Koala (Phascolarctos cinereus) on private land before habitat removal brought about their local extinction. This was prompted by our 1986–1987 state-wide koala survey that found that koala  populations had declined across New South Wales, largely as a result of habitat loss. The remaining koala stronghold, we identified at the time, was on the north coast, in areas such as in the rapidly expanding city of Coffs Harbour. Koalas in Coffs Harbour were found mostly on privately-owned land outside National Parks and Nature Reserves and State Forests.

It took 10 years (1990-2000) of struggle with politics, bureaucracy and vested interests to achieve a plan of management across one local government area (Coffs Harbour) to save koala habitat from the relentless clearing of private land. The reward for our efforts was a Comprehensive Koala Plan of Management (CKPoM), prepared under State Environmental Planning Policy 44 – koala habitat protection (SEPP 44), and adopted by Coffs Harbour City Council in 1999. SEPPs apply only to land over which local government has authority, not Crown Land, i.e. National Parks, Nature Reserves and State Forests. The Plan identified and ranked Koala habitat and set out criteria for minimizing local threats. It is a statutory instrument, gazetted in 2000 along with council’s Local Environmental Plan (LEP), which controls land-use planning. It was the first CKPoM in NSW and a demonstrated formula for undertaking such plans. Now in 2019, 20 years after the plan was formally adopted by Coffs Harbour City Council, and in the NSW parliament in 2000 as part of the Coffs Harbour LEP, the plan is still in place. We count that as a success. While revisions to both the SEPP and the Coffs Harbour CKPoM are in the wind, the 1999 plan still stands, as of October 2019.

Further, after five years of operation, Coffs Harbour council commissioned a strategic review of its CKPoM from the consultants, EcoLogical, which found that there was a 1.1% reduction in the area of primary koala habitat. In our view, such a small change over 5 years is an indication of the CKPoM’s impact in halting habitat loss on private land.

Figure 1. Historian, and co-worker, Antares Wells examining a document with items from the history of the Bellinger, the LGA immediately to the south of Coffs Harbour, as part of our study of the ecological history of the region. (Photo Dan Lunney 2013/)

Further studies. To add context to our work in Coffs Harbour, we undertook a range of further studies. These included an historical study, looking at the koala records from European settlement to 2000 through an ecological lens (Fig 1). The first wave of European settlers arrived in the early 1880s, and much of the initial development arose from logging. Collectively, the evidence identifies that the koala population of Coffs Harbour was widespread but never abundant, and that habitat loss has been relentless since European settlement. The transformation of a rural-forest mosaic to an urban landscape over the past four decades is the most recent stage in the incremental loss of habitat.

Also, in 2011, we undertook a repeat study of the koala population within Coffs Harbour LGA from our initial survey in 1990. Analyses showed that the koala population has endured between 1990 and 2011 and showed no evidence of a precipitous decline during this period. Rather, the population change was best characterised as stable to slowly declining.

The extensive koala datasets gathered since 1990 on the Coffs Harbour koala population are attractive for researchers and managers. They provide the basis for revisiting the LGA to look for change (Fig 2.) . Work in June 2019, for example, included the following: Department of Planning, Industry and Environment at Coffs Harbour is finalising a review of the Coffs Harbour LGA koala habitat study from funding by council; surveys completed in April 2019 revisited 68 of the original 119 sites we had selected in 1996, and 89 of those sites we had re-surveyed in 2011, and the total number of sites visited in the current survey was 176 in a report to Coffs Harbour council in September 2019.

Figure 2. Koala team standing in koala habitat near Bonville, Coffs Harbour LGA. From left to right, John Turbill, Martin Smith, Indrie Sonawane, Chris Moon and Martin Predavec. (Photo Dan Lunney 2013).

Mixed results. Rereading our original paper is unsettling. There is an enduring sense that the entire exercise, while locally worthwhile, has not translated into wider successes with respect to policy and implementation. Although our assessment of the success of the Coffs Harbour CKPoM is upbeat, the uptake of the concept by other councils has been modest. Some have opted for a koala plan of management, but not within the SEPP 44 framework, and others have contracted the preparation of the plans, but only using field survey data for koalas, not the citizen science component.

Among our reflections on our work is that the languages of planning, conservation and ecology need to be calibrated. Confusion has occurred because SEPP 44 refers to potential and core koala habitat when a Development Application (DA) is being assessed, but in the CKPoM in 1999 we used the terms primary, secondary and tertiary koala habitat. Adoption by local government of a CKPoM replaces the requirement to assess each individual DA for core habitat, because the CKPoM has mapped and ranked this habitat. In fact, the ease of seeing koala habitat on a map, ranked so that you know what development is possible, or not, within the particular ranking, expedites the DA process for all parties. This was a major selling point for Coffs Harbour council, along with our economic study which demonstrated that the value of having a koala population in the LGA exceeded the cost of implementing such a plan (Fig 3). While habitat ranking is appropriate for a CKPoM – a land-use planning and management instrument – one interpretation, a misguided one in our view, has been that primary habitat equals core habitat, and deems primary habitat in a CKPoM to be the only level of habitat to conserve. Such a view not only disregards the value of rankings for the purpose of planning, but also ignores the multiple ways that koalas need to use the landscape. We note that more recent plans have divided secondary habitat into secondary A and secondary B, but that does not change the principle of ranking. We also note that a recent choice is to use ‘core’ habitat in a CKPoM, although with a different approach to defining ‘core’, but this has yet to be consolidated in the proposed revised SEPP 44. On reflection, ‘core’ has become a problematic word because it implies that anything other than core can be ignored.

There have been considerable recent efforts to catch up on survey methods for koalas in State Forests. However, pressure remains on State Forests concerning their koala populations, such as the campaign by the National Parks Association of NSW for ‘The Great Koala National Park’ to add 175,000 ha of State Forests to existing protected areas to form a 315,000 ha reserve in the Coffs Harbour hinterland. National Parks and Nature Reserves are a central element in our efforts to conserve our fauna, but a transfer of State Forests to National Parks does not come to grips with the issue of the loss of habitat on private lands, including in situ habitat and linkages across the landscape.

SEPP 44 was promulgated in 1995, and while we recognise that it needs to be updated, our point remains that it has demonstrated potential to conserve koala habitat on private land, with an explicit role, indeed a key role, for local government. Strategies to conserve and restore koala habitat on private land—particularly on the more fertile lands, which are also the prime lands for farms and towns—will continue to be central to conserving the koala populations in NSW.

Figure 3. Economist Clive Hamilton explaining the economic advantages of conserving koalas in Coffs Harbour LGA. This presentation was given in Coffs Harbour at a national meeting for Ecological Economics. (Photo Dan Lunney 1996.)

Lessons learned and future directions. In 2019, our reflections on our 10-year study (1990-2000) allow us to conclude that identifying koala habitat on private land is possible, that plans to conserve it are acceptable, that the economic aspect is an important factor in the negotiations, and that local government has a role to play in this process. Since 2002 we have expanded our research horizon, crossing other disciplinary boundaries to encompass ecological history, using more sophisticated approaches to citizen science, stretching our geographical horizon to the north-west of NSW, incorporating the pervasive impact of climate change, and teasing out the contribution of koala care and rehabilitation and the value of detailed population studies such as by radio-tracking. We also conclude that local studies, especially repeated studies, e.g. at the LGA or Local Land Services (LLS) scale, are crucial, along with broad scale, periodic, state-wide surveys to keep track of the considerable individual differences across the geographic range of the koala.

Contact.  Daniel Lunney, Department of Planning, Industry and Environment NSW (PO Box 1967, Hurstville NSW 2220 and the University of Sydney, NSW 2006. dan.lunney@environment.nsw.gov.au

Waterponding the Marra Creek, NSW rangelands – UPDATE of EMR feature

Ray Thompson and Central West Local Land Services

[Update of EMR feature – Thompson, Ray F (2008) Waterponding: Reclamation technique for scalded duplex soils in western New South Wales rangelands. Ecological Management & Restoration 9:3, 170-181. https://onlinelibrary.wiley.com/doi/10.1111/j.1442-8903.2008.00415.x]

Figure 1.  Scalded country with 30cm of sandy loam topsoil swept away by wind after extensive overgrazing. (Photos NSW SCS)

Introduction. Overgrazing of native pastures in the second half of the 19th Century stripped vegetation and led to the wind erosion of sandy topsoil during inevitable dry periods.  By the 1960s, tens of thousands of square kilometres of rangeland sites in western NSW had a legacy of moderate or severely bare or ‘scalded’ lands. This left bare and relatively impermeable clay subsoil which prevents water penetration and is very difficult for plants to colonize (Fig 1.)

Waterponding is the holding of water on the scald in surveyed horseshoe-shaped banks, each covering 0.4 ha. The ponds retain up to 10 cm of water after rain which leaches the soluble salts from the scalded surface. This improves the remaining soil structure, inducing surface cracking, better water penetration and entrapment of wind-blown seed. Consequently, niches are formed for the germination of this seed and recovery of a range of (typically around 15 out of a total of about 30) locally native chenopod (saltbush) grassland species on the sites.

The original 2008 EMR feature described how barren scalds at a range of properties in Marra Creek, near Nyngan in semi-arid NSW were transformed during the 1980s and 1990s into biodiverse native pastures through a technique called ‘waterponding’ developed after five decades of work by consecutive soil conservation officers exploring a range of prototype treatments.  Over time, a wide range of machines have been used to construct waterponding banks including standard road graders (ridged frame and articulated) or similar. Pre-1985 road graders were generally too small to construct banks of sufficient size, which resulted in too many breached banks. Over a 4-year period, the Marra Creek Waterponding Demonstration Program, backed by committed landowners, researched different horsepower road graders, constructing different size banks, winning the dirt from different locations, and evaluating the economics of construction methods. The results showed that the higher-powered articulated road graders exceeding 200 HP proved to be the most economical and efficient for waterpond construction. This type of machine has the power to  form the bank with one pass on the inside of the bank and two passes on the outside, achieving a bank with well over 2 m base width and over 60 cm in height (Fig. 2).

Figure 2. The process of of waterponding including (a) ute-mounted laser levelling to design the waterpond for a particular site, (b) bulldozing the pond walls to the designed levels, (c) rainfall filling the pond to allow deep watering and cracking of the clay subsoil and (d) resulting revegetation within the walls of the pond. (Photos NSW SCS)

Update and the broader program.  Photos and pasture measurements undertaken on ‘Billabong’ Marra Creek NSW, till 2014 show that the waterponding site had increased ground cover (predominantly native species) from 1% in 2005 to 84 % in 2014. After five to seven rainfall years a typical treatment can result in recovery of up to 15 native species from a range of up to 31 species (Table 1). The method in the last 20 years has also included broadcasting seed of some of the more important perennial species of healthy native chenopod grasslands including  Oldman  Saltbush  (Atriplex nummularia), Bladder Saltbush (Atriplex vesicaria) and Mitchell Grass (Astrebla   lappacea) (Fig 3).  Landholders in the Marra Creek district observe a range of fauna frequently on and between the ponds, including Western Grey Kangaroo (Macropus fuliginosus), Red Kangaroo (Macropus rufus), Emu (Dromaius novaehollandiae), Brolga (Grus rubicunda) and the Eastern Bluetongue Lizard (Tiliqua scincoides). A species of Monitor (Varanus sp.) also sometimes traverses the waterponds. Formal monitoring of smaller reptile and invertebrate use of waterponded sites is yet to occur.

Figure 3. Curly Mitchell Grass (Astrebla lappacea) sown on pond banks. (Photo NSW SCS)

Marra Creek was not the first series of waterponding programs in the Nyngan area – nor the last. The outputs of the entire program by 2019 included over 80,000 waterponds laid out and constructed, resulting in 40,000 hectares returned to local native vegetation. A total of 164 properties in the rangelands area are now using waterponding, the majority of landholders in the Marra Creek district and representing an increase from 17 landholders back in 1984 when we first ran the waterponding.

Figure 4. Landholders themselves are teaching the Waterponding technique to other landholders. (Photos NSW SCS)

Economic model of waterponding. The primary driver for land reclamation was not biodiversity conservation but returning the natural capital of rangelands. As such the program has returned a clear profit to the landholders in terms of increased native pastures that can be grazed, improving ecologically sustainable income sources for farming families.

With the reinstatement of vegetation, there have be increases in total stock feed, resulting in an increase in lambing percentages and wool cuts, as well as the ability to carry stock further into prolonged dry periods with overhead cost per head remaining static. Once rehabilitation has been completed, stocking  rates have been raised from zero to one sheep to 1.5 ha. This iseffectively the long-term grazing average for  saltbush pastures in the Nyngan district.

A treatment involving the full design and survey, pond construction and revegetation cost the landholder about $144.00 per hectare. (This includes approximately $25 a hectare for seed.) If the landholder does all the work the cost is reduced to $72/ha. The type of land involved was calculated in 2008 to normally  have  a  resale  value  of  about $365.00 per hectare In its unproductive state.  Scalded land does not contribute to the farm income yet still incurs rates. Investment in rehabilitation, in contrast, improves carrying capacity thus reducing hand-feeding costs, improving lambing percentages and avoiding forced stock sales. This allows landholders to pass the property to the next generation in a far better condition than it has been previously.

Research has found that the scalds store approximately 18.7 t/h of soil organic carbon to a depth of 30 cm. Once the landscape has been restored by waterponding and revegetation, we have found there is a rapid increase in soil organic carbon up to 25 t/ha within five years. The results are indicating that land in the rangelands that has been rehabilitated using waterponds does sequester carbon. This could lead on to waterponding being eligible for a carbon abatement activity and hopefully lead to Carbon Farming Initiative activity for carbon credits.

Figure 5. Australian National University students attending ‘21 years of participation in Rangelands Waterponding’. (Photos NSW SCS)

Potential for further application. After decades of field days and uptake of the methodologies by local graziers (Fig. 4), waterponding now forms part of standard district farming methodologies and landholders are now passing on knowledge to new generations, including through universities (Fig. 5). The methodologies have also been applied at one national park and one Trust For Nature site in Victoria, and are being applied in the Kimberley, with potential for far greater application in desert conservation reserves throughout Australia and the rest of the world (See Fig. 6 and https://justdiggit.org/approach-2/#).

Contact. Kyra Roach, Central West Local Land Services, Nyngan, 2825 Australia. Email: kyra.roach@lls.nsw.gov.au

Figure 6. A total of 79 trainees from 26 Africa countries (including Ghana, Tunisia, Rwanda, Burundi and Djibouti) over a three year period were sponsored by AusAid to study waterponding in Nyngan. Resullting work in African countries is making a big difference to degraded lands particularly in North Sudan and Kenya (Photo NSW SCS)

Table 1. Species found in waterponds after standard revegetation treatments and five to seven rainfall years. The species found by Rhodes (1987b) are still commonly found, with additional species (marked with a diamond +) observed by Ray Thompson. (Plant names are consistent with the New South Wales Herbarium database PlantNet, http://plantnet.rbgsyd.nsw.gov.au/ and  growth forms are consistent with Cunningham et al. (1981) (Exotics are marked with an asterisk)

Scientific name Common name Growth form
Alternanthera denticulata Lesser Joyweed Annual forb
Astrebla lappacea+ Curly Mitchell Grass Perennial grass
Atriplex leptocarpa Slender-fruited Saltbush Perennial subshrub
Atriplex lindleyi+ Eastern Flat Top Saltbush Annual subshrub
Atriplex nummularia+ Oldman Saltbush Perennial shrub
Atriplex pseudocampanulata Mealy Saltbush Annual subshrub
Atriplex semibaccata+ Creeping Saltbush Perennial subshrub
Atriplex spongiosa Pop Saltbush Annual forb
Atriplex vesicaria Bladder Saltbush Perennial subshrub
Centipeda thespidioides Desert Sneezeweed Perennial forb
Chamaesyce drummondii Caustic Weed Annual or short-lived perennial forb
Chloris truncata Windmill Grass Annual or perennial grass
Diplachne fusca Brown Beetle Grass Perennial grass
Eragrostis parviflora Weeping Lovegrass Annual or short-lived perennial grass
Eragrostis setifolia Neverfail Perennial grass
Hordeum leporinum* Barley Grass Annual grass
Hordeum marinum* Sea Barley Annual grass
Maireana pentagona Hairy Bluebush Perennial subshrub
Malacocera tricornis Soft Horns Perennial subshrub
Marsilea drummondii Common Nardoo Perennial forb
Medicago minima* Woolly Bur Medic Annual forb
Medicago polymorpha* Burr Medic Annual forb
Osteocarpum acropterum+ Water Weed Perennial subshrub
Phalaris paradoxa* Paradoxa Grass Annual grass
Pimelea simplex Desert Rice-flower Annual forb
Portulaca oleracea Common Pigweed Annual forb
Salsola kali var. kali Buckbush Annual or biennial forb
Sclerolaena brachyptera Short-winged Copperburr Short-lived perennia
Sclerolaena calcarata+ Red Copperburr Perennial subshrub
Sclerolaena divaricata+ Pale Poverty Bush Perennial subshrub
Sclerolaena muricata Black Roly-poly Short-lived perennial
Sclerolaena trycuspis Streaked Poverty Bush Perennial subshrub
Sporobolus actinocladus Katoora Grass Perennial grass
Sporobolus caroli Fairy Grass Perennial grass
Tragus australianus Small Burr Grass Annual grass
Tripogon loliiformis+ Five Minute Grass Perennial grass

 

 

 

 

 

 

 

 

 

 

 

 

 

Rehabilitation of former Snowy Scheme Sites in Kosciuszko National Park – UPDATE of EMR feature 2019.

Gabriel Wilks

Update of EMR feature – MacPhee, Elizabeth and Gabriel Wilks (2013) Rehabilitation of former Snowy Scheme Sites in Kosciuszko National Park.  Ecological Management & Restoration, 14:3, 159-171. Doi https://onlinelibrary.wiley.com/doi/10.1111/emr.12067

Key words.  Habitat construction, steep slopes, rock spoil.

Figure 1. Shaped rock spoil ready for planting more than 50 years after being dumped.

Introduction. Our original EMR feature article described the origins of this large, long-term rehabilitation program and the challenges faced in the first 10 years. The program’s aim was to address a range of impacts upon montane and sub-alpine vegetation and river corridors in Kosciuszko National Park from the Snowy Hydro Scheme, constructed from 1949 to 1974. Impacts included dumping of large volumes of rock spoil, loss of topsoil and native vegetation, introduction and spread of weeds and asbestos fragments in the landscape.  The article outlined the development of methodologies for restoration, particularly planting trials on steep rock spoils, and how obstacles such as slope instability, plant material availability and lack of soil were being overcome. The process of program implementation was given, including environmental and cultural heritage assessments undertaken as part of site works.  In 2013 a number of positive outcomes were already evident at the 200 sites that had been subjected to at least some treatment, including 18 sites where major rehabilitation works were undertaken. Outcomes included reduction in waterway impacts and invasive weeds, expansion of the Kosciuszko fauna database, regional community benefits, and production of an Australian Alps Rehabilitation Field Guide.

Further work. The Former Snowy Scheme Rehabilitation Program continues to reduce the long term environmental and safety risks of old degraded construction sites to Kosciuszko National Park, as well as improve their visual and ecological function. Some sites treated by 2013 have blended in with the surrounding landscape and are difficult to identify. Many sites are continuing to improve in condition over time, with distinct vegetation layers, natural plant recruitment and evidence of native fauna habitat. Construction history, rock spoil and loss of soil and plant species remain evident at highly altered sites, despite a high standard of rehabilitation work.

An additional 12 Major rehabilitation works have been undertaken since 2013, with selected signature projects and rehabilitation techniques described below.  Note that the former Snowy Scheme rehabilitation program does not address the impact of current Snowy Hydro Limited or proposed infrastructure and support networks such as powerlines, easements, river regulation or roads.

1. Rehabilitation of the Tooma–Tumut Access Tunnel Adit Spoil Dump. This spoil dump (Fig. 1) is located on the highly incised upper reaches of the Tumut River.  The spoil originates from construction in 1958-1961 of the Eucumbene–Tumut Tunnel, which transfers the headwaters of the Tooma River to Tumut Pond. Following earthworks in 2017, the planting crew successfully planted, watered, fertilised and mulched approximately 12,000 plants on rock spoil, with monitoring being undertaken by Greening Australia Capital Region staff (Fig 2.)

Figure 2. Year 1 Revegetation monitoring at Tooma-Tumut SD by Greening Australia Capital Region staff, 2018

2. Construction of contained habitat for the Southern Corroboree Frog. A series of remote enclosures (Fig 3) have been constructed in both rehabilitation areas and former habitat locations to enable re-introduction of this Critically Endangered species (Fig 4), following the devastating impacts of chytrid disease. These enclosures are developing essential stepping stones for frogs from captive breeding programs to move back into the wild. Design of enclosures requires ensuring self-sustaining food and water, shallow ponds for breeding, ability for Threatened Species staff to monitor and control disease and exclusion of other frogs. These works have been done in partnership with NSW Threatened Species staff and zoo institutions.

Figure 3. Constructing Southern Corroboree Frog enclosures in remote locations

Figure 4. Southern Corroboree Frogs living successfully back in Kosciuszko

3. First live record of Smoky Mouse in Kosciuszko National Park. The Smoky Mouse (Pseudomys fumeus Fig. 5) was found alive and well for the first time in Kosciuszko National Park, at a Happy Jacks rehabilitation site. Up until the discovery, the only currently known population of the small, smoky grey coloured mouse still surviving in NSW was in the Nullica area, NSW South Coast.  Three individuals, 2 males and 1 female were a significant find for survival and database records of this Critically Endangered Species, and a technical short note was published in EMR in 2017 by fauna surveyor Martin Schulz who found the animals.

Figure 5. A Happy Jacks Smoky Mouse.

4. Making people and places safer with rehabilitation. Sites that housed construction depots and townships during Snowy scheme construction still contained fragments of asbestos which were rapidly degrading due to weather exposure. As total removal was not feasible, the rehabilitation team worked with asbestos experts to develop practical measures to reduce public safety risks. At the remote Junction Shaft Contractors Camp (at Happy Jacks, Figs 6 and 7) and a former township and current camping ground at Island Bend a range of techniques were developed, delineation of zones for suitable uses, creating natural vegetation buffers and capping with rock spoil and plants.

Figure 6. The Junction Shaft Camp in 1955.

Figure 7. The same site 62 years later (and one year after works) with a range of capping and planting zones, including a heli-pad, Mountain Pygmy Possum habitat, and new plantings to improve safety and environment.

5.  Applying techniques beyond Kosci. Project team members took some winter time out of Kosciuszko to ‘grow’ a protection zone for a known population of Endangered Green and Golden Bell Frog (Litoria aurea) and constructed a series of ponds for future breeding in an old sand quarry at Worrigee Nature Reserve, Nowra (Fig 8). Given former quarries are a feature of a large infrastructure project such as the Snowy Scheme, the team had the technical knowledge for how to restore ecological function despite a radical departure from usual flora and fauna species. A range of techniques including neighborhood consultation, barrier logs and blocks, berms and vegetation were used to reduce the impact of recreational and unauthorised motorbikes and rubbish dumping.

Figure 8. Creating Bell Frog habitat in degraded borrow pits.

6. Growing rehabilitation resources and protecting karst ecosystems. The use of treated waste at the Yarrangobilly Caves visitor precinct to grow snow grasses (Poa spp.) for use in rehabilitation projects across Kosciuszko and been continued and developed (Fig. 9). A renewed emphasis on site production has enabled Poa seed to be available for other projects within the Park. This provides an ecologically preferable option for soil stabilisation and ground cover establishment, reducing the risk of weed invasion and dependence on sterile rye corn as the only available option.

Figure 9. Inspecting plants for seed harvest, which yielded 52 kgs of Poa seed in 2017.

Lessons Learned. It is clear that this is a unique rehabilitation project due to the large number of sites, the natural and heritage values of Kosciuszko National Park and the longevity and continuity of the commitment (approx. 20 years).  Understandably, however, at this point in time challenges in rehabilitation remain. ‘Off the shelf’ rehabilitation products are limited due to remoteness of locations, plant species required, Park management policies and required hygiene protocols. It is important that additional threats are not accidentally introduced, such as foreign pathogens and flora and fauna. As much as possible, resources such as coarse woody debris, woodchip, plant material and compost are sourced from within the Park. A flexible and dynamic approach to the very definition of rehabilitation and techniques and materials is required.  Specific lessons include the following.

Adding organic material on degraded sites is always beneficial. Rehabilitation success has been most obvious where logs, litter, woodchip and straw have been added to the site, to provide mico-niche climate, habitat, and improve soil. While this may increase short term management requirements such as weed control, the commitment is worth it due to the improved results.

Creating compost from old sawmill sawdust has worked well for this rehabilitation project. The most recent development however is in the use of organics waste and treated effluent from visitation facilities as a compost, and there is opportunity for this on-Park recycling to develop.

Other resources such as rice straw have become limited during periods of sustained drought and less rice production. This will remain a challenge into the future. The value of minimising ground cover loss, retaining natural soil characteristics and organic matter in situ and ensuring rapid rehabilitation after disturbance in future developments will become increasingly important for rehabilitation success.

Be creative with team skills and capacity. Problems such asbestos contaminant presence must be addressed for safety, but doesn’t mean walking away from the challenge. A degraded site may be the perfect place to develop species targeted habitat.  Seek expertise advice and consider a range of current and new solutions.

ContactGabriel Wilks, Senior Project Officer, NPWS Southern Ranges Services. PO Box 472, Tumut NSW 2720.  Email: Gabriel.Wilks@environment.nsw.gov.au

Eastern Suburbs Banksia Scrub: is fire the key to restoration? – UPDATE to EMR FEATURE

Geoff Lambert, and Judy Lambert

[Update to EMR Feature – Geoff Lambert and Judy Lambert (2015) Progress with restoration and management of Eastern Suburbs Banksia Scrub on North Head, Sydney.  Ecological Management & Restoration, 16:2, 95-199. https://onlinelibrary.wiley.com/doi/10.1111/emr.12160]

Key Words. Banksia Scrub, North Head, Critically Endangered Ecological Community, Diversity.

Fig 1. Images of the same location over time, taken from “walk-through” photographic surveys (top to bottom) pre-fire, immediate post-fire and 5-years post-fire. (Photos Geoff Lambert)

Introduction. In the original feature, we reported on a number of projects related to the fire ecology of Eastern Suburbs Banksia Scrub (ESBS), also known as Coastal Sand Mantle Heath (S_HL03), located in conserved areas on North Head, Sydney Australia. Following a Hazard Reduction burn in September 2012, we examined changes in species numbers and diversity and compared these measures with control areas which had been thinned. We fenced one-third of the survey quadrats to test the effects of rabbit herbivory. There had been no fire in this area since 1951.

Twelve months after treatment, burned ESBS had more native plants, greater plant cover, more native species, greater species diversity and fewer weeds than did thinned ESBS (Fig 1). Areas that had been fenced after fire had “superior” attributes to unfenced areas. The results suggested that fire could be used to rejuvenate this heath and that this method produced superior results to thinning, but with a different species mix. Results of either method would be inferior were attempts not made to control predation by rabbits (See 2015 report).

Further works undertaken. In 2015 and 2017 we repeated the surveys, including photographic surveys on the same quadrats. Further Hazard Reduction burns were conducted, which provided an opportunity to repeat the studies reported in the 2015 feature. The study design of the burns was broadly similar to the earlier study, but rabbits were excluded by fencing four large “exclosures” over half the burn site. The pre-fire botanical survey was carried out in 2014, with logistical difficulties delaying the burn until late May 2018. Drought and other factors saw a post-fire survey delayed until October 2019. Photographic surveys of the quadrats have been completed.

Seven cm-resolution, six-weekly, aerial photography of North Head is regularly flown by Nearmap© (Fig 2). We use this photography to monitor the whole of the headland and, in particular, the various burn areas. In order to extrapolate from our quadrat-based sampling (usually 1% of a burn area), the University of Sydney flew 5mm-resolution UAV-based surveys on our behalf, on one of the 2012 burn areas and on the 2018 burn area in November 2017 (Fig 3) .

Apart from the fire studies, the general program of vegetation propagation and management has been continued by the Sydney Harbour Federation Trust and the North Head Sanctuary Foundation. The Australian Wildlife Conservancy has also undertaken a “whole of headland”, quadrat-based vegetation survey as the first stage of its “Ecological Health” rolling program for its sites.

Fig 2. Nearmap© site images (top to bottom) pre-fire, immediate post-fire and 7-years post-fire. (Photos Nearmap)

Further results. The original results suggested that fire could be used advantageously to rejuvenate ESBS and produced superior results to thinning. While subsequent photographic monitoring shows distinct vegetation change (Figs 1 and 2), on-ground monitoring showed that by five years after the fire we could no longer say this with any optimism. In summary:

  • In the immediate fire aftermath, there was vigorous growth of many species
  • Over the ensuing 5 years, plants began to compete for space, with many dropping out
  • Species diversity was high following the fire but then dropped below pre-fire levels
  • Some plants (e.g. Lepidosperma and Persoonia spp.) came to dominate via vegetative spread
  • The reed, Chordifex dimorphus has almost disappeared
  • Tea-trees (Leptospermum spp.) are gradually making a comeback
  • Between 2015 and 2017, ESBS species numbers were outpaced by non-ESBS species, but held their own in terms of ground cover.

The total disappearance of Chordifex (formerly an abundant species on North Head and prominent in the landscape) from fully-burned quadrats was not something that we could have predicted. This species is not in the Fire Response database, although some Restio spp. are known to be killed by fire. This contributes greatly to the visual changes in the landscape. The great proliferation of Lance Leaf Geebung (Persoonia lanceolata) has also changed the landscape amenity (Fig 1, bottom).

To summarise, the 2012 burn has not yet restored ESBS, but has produced a species mix which may or may not recover to a more typical ESBS assemblage with ongoing management over time. Given that the area had not been burned for 60 years, it may be decades before complete restoration.

Our further studies on the use of clearing and thinning on North Head as an alternative to fire (“Asset Protection Zone Programme”), indicates that thinning and planting can produce a vegetation community acceptable for asset protection fire management and potentially nearly as rich as unmanaged post-fire communities (Fig 4). It is necessary to actively manage these sites by removing fire-prone species every two years. In addition, a trial has been started to test whether total trimming of all except protected species to nearly ground level in an APZ, is an option for longer-term management.

Fig 3. “Thinning Experiment” fenced quadrat #3 in July 2019. The quadrat was created in 2013 by removing Coastal Teatree (Leptospermum laevigatum) and Tree Broom Heath (Monotoca elliptica). The experimental design is a test of raking and seeding, with each treatment in the longer rows. All non-endangered species plants were trimmed to 0.25 metres height in mid-2017. (Photo Geoff Lambert)

Lessons learned and future directions. It is too early to say whether we can maintain and/or restore North Head’s ESBS with a single fire. Further fires may be required. A similar conclusion has been drawn by the Centennial Parklands Trust, with its small-scale fire experiments on the York Road site. We need new and better spot- and broad-scale surveys and further burns in other areas on North Head over a longer period. The spring 2019 survey, just completed, offers an opportunity to better assess the notion that fire is beneficial and necessary.

It will be necessary to monitor the effects of future fires on ESBS diversity closely and for much longer than five years. More active management of the post-fire vegetation may be needed, as we have previously discussed in the feature, and as happens at Golf Club sites (also see video) .

The 2012 burn was relatively “cool”. There is some evidence that “hot” burns (such as have been carried out by NSW Fire and Rescue at some Eastern Suburbs golf courses) may produce improved restoration of ESBS. The 2018 burn on North Head was planned as a “hot” burn. This was not completely achieved, but we may be able to compare “hot” and “cool” burn patches within it.

Fig 4. A 2017 UAV image of quadrat 23 five years after the 2012 burn. The image has been rotated to show the quadrat aligned on the UTM grid. The red square shows the rabbit-proof fences; the black square shows the survey quadrat and the blue squares show the four 1×1 metre vegetation plots. The resolution is approximately 5 mm. (Photo University of Sydney Centre for Field Robotics)

Stakeholders. Sydney Harbour Federation Trust, North Head Sanctuary Foundation. Australian Wildlife Conservancy, NSW National Parks and Wildlife Service, Fire & Rescue NSW.

Funding Bodies. Foundation for National Parks & Wildlife [Grant No. 11.47], Sydney Harbour Federation Trust, Australian Wildlife Conservancy.

Contact Information. Dr G.A.Lambert, Secretary, North Head Sanctuary Foundation, (P.O.Box 896, BALGOWLAH 2093, Tel: +61 02 9949 3521, +61 0437 854 025, Email: G.Lambert@iinet.net.au. Web: https://www.northheadsanctuaryfoundation.org.au/