Category Archives: Ecosystem services

Long-term restoration in the Box Gum Woodlands of south-eastern Australia – UPDATE of EMR feature

David Lindenmayer, Mason Crane, Daniel Florance, David Smith, and Clare Crane

Update to article published in EMR – Murray Catchment habitat restoration: Lessons from landscape level research and monitoring doi: 10.1111/emr.12051

Keywords: Revegetation, biodiversity recovery, monitoring, birds

Figure 1. Revegetated woodland near Wagga Wagga in the South West Slopes of New South Wales. (Photo courtesy of the Sustainable Farms project at The Australian National University. Australia).


This project encompasses a major set of large-scale, long-term integrated studies quantifying the response of various groups of biota to replanted woodlands in the Box Gum Grassy Woodlands of south-eastern Australia. The work has been underway since 2002 and contrasts revegetated areas with regrowth woodlands and old growth woodlands on multiple farms nested within landscapes with varying amounts of native vegetation cover (Fig 1.). The responses of birds, arboreal marsupials, terrestrial mammal, reptiles, frogs and native plants to these different kinds of broad vegetation types (and within-site and landscape-level attributes) have been documented over the past 17 years.

Further works undertaken

Since the inception of the original project and associated monitoring, an array of additional studies have been completed ( These include investigations of the impacts on birds and reptiles of livestock grazing in plantings, the benefits for birds of understorey plantings within old growth woodlands, the impacts of a control program for the Noisy Miner (Manorina melanocephala) on other woodland bird species, and interaction effects between long-term climate, short-term weather and revegetation programs on birds (Figs 2 and 3). Further work aims to quantify the biodiversity and livestock production benefits of enhancing the ecological condition (and associated water quality) of farm dams.

Figure 2. Flame Robin and Rufous Whistler – two bird species of conservation concern that respond positively to revegetated woodland. (Photos by Robin Patrick Kavanagh.)Further results to date

Research and monitoring in the past six years have resulted in a number of key new insights of considerable importance for restoration programs. A small subset of these findings includes:

  • The conservation benefits of replanted areas for bird and reptile biodiversity are undermined by intensive livestock grazing in these revegetated areas.
  • The bird biodiversity values of old growth temperate woodlands can be enhanced by underplantings of shrubs and other non-overstorey plants, although it can take many years for such benefits to manifest. Importantly, the occurrence of hyper-aggressive species such as the Noisy Miner is diminished in woodlands where underplantings have been established.
  • Experimental efforts to reduce populations of the Noisy Miner were largely unsuccessful; sites where this species was culled twice were rapidly recolonized by the Noisy Miner.
  • Replanted woodlands provide critical refugia for woodland birds, especially during prolonged drought periods.

Collectively, these findings indicate that restored woodlands have important conservation values (especially for birds but also reptiles), with restoration being valuable to conduct not only in existing old growth woodland (through establishing underplantings) but also in previously cleared sites. The conservation value of woodlands can be particularly critical during climate extremes such as droughts. Efforts to control the Noisy Miner will likely be most effective through targeted revegetation efforts rather than direct culling of birds. Finally, there is a need to limit grazing pressure in revegetated woodlands and this can require the repair or replacement of fences around replantings, especially when such key infrastructure begins to deteriorate.

Figure 3. Noisy Miner – a reverse keystone species for which experimental culling programs have proven to be ineffective. (Photo by Pete Richman.)

Lessons learned and future directions

The ongoing work has clearly demonstrated the important new insights that are derived from long-term ecological research and monitoring. Indeed, long-term changes in patterns of occupancy of restored areas could not have been quantified without rigorous monitoring of a wide range of sites of different sizes, ages and other attributes. Key manager-researcher partnerships have been fundamental to the ongoing success of the array of projects in this restoration initiative. Indeed, some research and monitoring studies were prompted by  questions posed by natural resource managers (such as if there were vegetation cover thresholds for birds in temperate woodlands). Close working relationships with farmers have also been critical to the persistence of the various projects. Field staff in the project, who are based permanently in rural Australia, are key points of outreach and communication with farmers and other natural resource managers. Their presence has accelerated the rate of knowledge transfer and adoption of new practices (such as widening shelterbelts so that they have multiple production and conservation values).

Stakeholders and funding bodies

Ongoing work has been supported by many funding bodies and partners. These include the owners of more than 250 private properties (whom have allowed access to their land and undertaken major restoration works). Funding for the work has been provided by The National Environmental Science Program (Threatened Species Recovery Hub), the Australian Research Council, Murray Local Land Services, Riverina Local Land Services, Central Tablelands Local Land Services, the Ian Potter Foundation, the Vincent Fairfax Family Foundation, The Australian National University, and the Calvert-Jones Foundation.

Contact information

David Lindenmayer, Sustainable Farms Project, Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601,

Testate amoebae: a new indicator of the history of moisture in the swamps of eastern Australia

Key words: Temperate Highland Peat Swamps Sandstone

Introduction. Swamps are an ideal natural archive of climatic, environmental and anthropogenic change. Microbes and plants that once inhabited the swamps are transformed and accumulate in undisturbed anoxic sediments as (sub)fossils and become useful proxies of the past environment. Since these systems are intrinsically related to hydrology, the reconstruction of past moisture availability in swamps allows examination of many influences, including climate variability such as El Nino-induced drought. It can also provide baseline information: long (palaeoenvironmental) records can reveal natural variability, allow consideration of how these ecosystems have responded to past events and provide targets for their restoration after anthropogenic disturbance.

Testate amoebae are a group of unicellular protists that are ubiquitous in aquatic and moist environments. The ‘tests’ (shells) of testate amoebae preserve well and are relatively abundant in organic-rich detritus. Testate amoebae are also sensitive to, and respond quickly to, environmental changes as the reproduction rate is as short as 3-4 days. Modern calibration sets have demonstrated that the community composition of testate ameobae is strongly correlated to moisture (e.g. depth to water table and soil moisture) and this allows statistical relationships to be derived. These relationships have been used extensively in European research for the derivation of quantitative estimates of past depth to water table and hence moisture availability.

Although a suite of different proxies have used to reconstruct aspects of past moisture availability in Australia (e.g. pollen, diatoms, phytoliths) very little work on testate amoebae has occurred to date. This project aims to address this deficiency by examining testate amoebae in several ecologically important mires in eastern Australia including Temperate Highland Peat Swamps on Sandstone (THPSS), an Endangered Ecological Community listed under the Environment Protection and Biodiversity Conservation Act 1999 and as a Vulnerable Ecological Community under the NSW Threatened Species Conservation Act 1995.

The project specifically aims to develop a transfer function linking modern samples to depth to water table in THPSS and to then apply this to reconstruct palaeohydrology over the last several thousand years. Our ultimate aims are to use this research to consider the nature and drivers of past climate change and variability and to also address issues associated with recent human impacts. The analysis of testate amoebae will allow us to consider changes in THPSS state, accumulation and stability over centuries-to-millennia, and this will provide context for recent changes, recommendations for the management of peaty swamps on sandstone and analytic tools for assessing whether remediation is resulting in significant improvement on eroding or drying swamps.

Work Undertaken and Results to Date. Research linking testate amoebae and depth to water table in Europe and North America has mostly been undertaken in ombrotrophic (rain-fed) mires. These are distinctly different to THPSS and related communities of the Sydney Basin, which are often controlled by topography (topogeneous mires). In these environments various sediments are known to build up sequentially through time and the minerogenic-rich sediments of the THPSS have resulted in several challenges in our preliminary work. As an example, standard laboratory protocols do not remove mineral particles and these can obscure and make testate amoebae identification difficult. We have since developed a new laboratory protocol and results are promising. We have also been struck by the distinct Northern Hemisphere bias to testate amoebae research: as an example, the Southern Hemisphere endemic species Apodera (Nebela) vas that has been common in our THPSS samples is not included in the most popular guideline book (

Despite the new laboratory protocols we have found that testate amoebae are relatively scarce in THPSS environments. Table 1 outlines the species we are encountering in modern (surface) samples of THPSS and in the high altitude Sphagnum bogs of the Australian Capital Territory: we are finding greater abundance and species richness in the bogs of the ACT.

This project commenced in 2015 and will run until 2017.

Stakeholders and Funding. This research was funded through the Temperate Highland Peat Swamps on Sandstone Research Program (THPSS Research Program). This Program was funded through an enforceable undertaking as per section 486A of the Environment Protection and Biodiversity Conservation Act 1999 between the Minister for the Environment, Springvale Coal Pty Ltd and Centennial Angus Place Pty Ltd.  Further information on the enforceable undertaking and the terms of the THPSS Research Program can be found at

Contact information. The project testate amoebae as indicators of peatland hydrological state’ is jointly being undertaken by: A/Prof Scott Mooney (School of Biological, Earth and Environmental Science, UNSW +61 2 9385 8063,, Mr Xianglin Zheng (School of Biological, Earth and Environmental Science, UNSW, +61 2 9385 8063, and Professor Emeritus Geoffrey Hope (Department of Archaeology and Natural History, School of Culture, History, and Language, College of Asia and Pacific, The Australian National University, +61 2 6125 0389

Table 1. A list of the testate amoebae species found in THPSS environments of the Sydney region and in the high altitude bogs of the ACT. (Those with a ++ are more common.)

Mooney table1

The palaeoenvironmental history of Temperate Highland Peat Swamps on Sandstone

Scott Mooney, James Goff and Lennard Martin

Key words (<5 words): sediments, palaeoenvironmental reconstruction, radiocarbon dating

Introduction. Palaeoecology (i.e. study of past environments using fossils and sediment cores) is often used to provide information regarding past environmental conditions. In comparison to modern ecological research, the expanded temporal perspective of palaeoecology unlocks an understanding of pre-anthropogenic variability and how ecosystems have responded to past disturbance and perturbations, thereby allowing consideration of their resilience to various environmental change.

Our Temperate Highland Peat Swamps on Sandstone Research Program (THPSSRP) research has investigated a number of sites in the Blue Mountains and on the Newnes Plateau. Our project aimed to use the sediments accumulating in these sandstone swamps to better understand the dynamics of these ecosystems over time frames that far exceed what is possible through environmental monitoring. We have been documenting the stratigraphy of the sediments using probing and sediment coring/sampling, in association with radiometric (14C, 210Pb) dating, and applying various palaeoenvironmental techniques and proxies to characterize these environments. Our ultimate aims were to characterise recent (historic) trends against the backdrop of a much longer temporal perspective from the palaeoenvironmental analyses and to examine the responses of the swamps over both long (since sediments started accumulating) and short (high-resolution) time frames to disturbance, environmental change and climatic variability.

Sydney Basin Meta-study of Accumulating Sediments. The first component of our research involved a meta-analysis of previous data regarding the ages and organic content of sediments in various depositional environments across the Sydney region. Our aim was to consider rates of sediment accumulation in the post-glacial period (the period since the last glacial maximum, about 21,000 years ago): this information informed our subsequent sampling strategies (e.g. depth of coring, resolution of analyses) and can be used in for future research to better target various chronozones. It is probable that rates of sediment accumulation reflect landscape instability/stability and together with organic content, this provides palaeoenvironmental information relevant to the overall aims of this project. For this component we collated and recalibrated radiocarbon dates (n=132) from 44 sites across the Sydney region, and we identified a subset of 12 sites with quantification of the organic content of the accumulating sediments.

Findings. The synthesis of these data revealed that sedimentation rates underwent a dramatic increase from ~0.2 mm/yr to ~0.6 mm/yr at the beginning of the Holocene (about ~11,700 years ago), which probably reflects post-glacial climatic amelioration. Sedimentation rates remained relatively high during the Holocene, between 0. 4 and 0. 5 mm/yr, although brief decreases are evident, for example centred at 8200, 6500, 2000 and 1200 calibrated radiocarbon years before present (cal. y BP). Only in the last 400 cal y BP do sedimentation rates increase above those present for the majority of the Holocene, peaking at 0.7 mm/yr.

In contrast, organic material began accumulating at around 14,400 cal y BP in these depositional environments, earlier than the 11,700 cal BP increase in sedimentation rates. Before this time all sites exhibited relatively low rates of highly minerogenic sedimentation. After ~14,400 cal y BP the organic content of the sites gradually increased in a trajectory that continued throughout the Holocene, albeit with some major excursions from this trend. As an example, organic content peaked between about 7,500 and 6,000 cal y BP, only to fall to a low at about 5,400 cal y BP, which is then followed by a rapid increase to another peak between about 4,500 and 4,000 cal y BP. This last peak in organic content achieves similar values to the surface/modern samples. This peak (6.7ka)-trough (5.4ka)-peak (4.2ka)-trough (3.2ka) sequence suggests considerable variation in the controls of organic matter production and accumulation, which are mostly climatic parameters. The palaeoenvironmental implications of these results are currently being written for submission to a scientific journal.

Field–based Sampling. Field-based sampling for this research has focused on stable depositional environments in the Sydney region:

  1. Goochs Crater in the Upper Blue Mountains. This site appears to have formed after a rock fall dammed the upper reaches of a relatively narrow valley/canyon. The site is presently a freshwater reed swamp with semi-permanent surface water, although the site has both flooded and burnt since first we first visited. After investigating the stratigraphy and depth of the accumulating sediments, three cores have been collected (G1,G2 & G3) along a transect from the edge to the centre. G1 is a 455 cm long core sampled close to the current waters edge: radiocarbon dating indicates that this represents from the present day back to about 9,500 cal y BP. This core is mostly organic-rich (>60% loss-on-ignition) but these authochthonous sediments are interspersed with abrupt (allochthonous) layers of sand and charcoal, probably transported to this location after major fire events. Our G2 core is 985 cm long and spans the period from about 4,000 to 17,500 cal y BP: it is also highly organic (20-95% loss-on-ignition) but does not include sand/charcoal layers. Core G3 extended down to highly minerogenic sediments at a depth of 795 cm and has a very similar stratigraphy to core G2.
  2. Queens Swamp near Lawson in the Blue Mountains. Queens Swamp was (re-)cored to a depth of 3.8 m and the sediment profile revealed alternating layers of sandy and peaty sediments similar to the edge core (G1) from Goochs Crater. Radiocarbon dating of the Queens Swamp cores suggests a rapidly accumulating upper section of sediments overlying a much older basal layer.
  3. Hanging Rocks Swamp located in Penrose State Forest in the Southern Highlands. A 5.6 m sediment core was also obtained Hanging Rock Swamp and these sediments returned a basal date of 14,500 cal y BP.

Field observations and preliminary results from fieldwork have been published in Quaternary Australasia and Australian Plant Conservation.

Radiocarbon Dating of Sediments. Our THPSS research has involved 35 new radiocarbon (14C) analyses so far across the three sites (Goochs, Queens, Hanging Rock) mentioned above, with a few more planned soon. Twenty of these dates resulted from two AINSE grants, which allowed accelerator mass spectrometry (AMS) 14C dates. This dating was undertaken to develop robust chronologies of the sediments so that palaeoenvironmental changes could be well constrained, but we also undertook some experimentation to consider the optimum sediment fraction for future 14C dating. The sediment fractions considered were charcoal, pollen and short-lived plant macrofossils that were all isolated from the same depth in the sediment profiles. Preliminary results, in preparation for submission at the moment, suggest that charcoal has an inbuilt age of 60-500 years and plant macrofossils return an age closest to the true (modeled) age of that depth.

Preliminary Palaeoenvironmental Interpretation and Conclusions. A variety of palaeoenvironmental techniques have been applied to the sediments sampled from Goochs Crater and together they provide information about past environmental conditions. As an example, sediment humification, which provides clues to surface moisture conditions at the time of deposition, suggests that the period from 9,500 to 7,500 cal y BP was relatively dry, which contrasts with previous palaeoclimatic inferences for this region. As different photosynthetic and metabolic pathways mean that the ratio of carbon/nitrogen can distinguish between aquatic and terrestrial sources of organic matter we analysed this ratio in 32 samples across the G2 core from Goochs Crater. These results suggests that aquatic sources of organic material dominated from 17,500 to 15,000 cal y BP and between 15,000 to 10,000 cal y BP conditions favored both aquatic and terrestrial sources. A rapid departure to highly terrestrial sources was evident at 10,000 cal y BP, after which a gradual change towards contemporary conditions, with a small aquatic influence, was evident.

While this demonstrates that much of the (contemporary) accumulating sediments at Goochs Crater are derived from within the site, it also receives inorganic aeolian materials from a larger source area.  To investigate this component we quantified the grainsize along the sediment profile to reveal that although clay content remains near constant (~ 5%) for the entire period, sand-sized particles shows a distinct increase in the period between 10,000 and 7,000 cal y BP before disappearing from the record. X-ray fluorescence scanning was also conducted on the G2 core resulting in elemental profiles for 32 elements at a very high (1mm) resolution. While the geochemical investigation of peat and organic sediments is in its infancy, several elements show considerable promise as palaeoenvironmental proxies. In our record, titanium, probably resulting from freshly weathered materials and washed in during periods of high surface runoff, is variable between 17,500 and 12,000 cal y BP, followed by sustained low values throughout the Holocene except for an abrupt, brief increase at 10,000 cal y BP followed again by high levels from 9,500 to 8,500 cal y BP. Bromine, which indicates the deposition of marine aerosols, shows an opposite trend to titanium, with low values until the early Holocene when a gradual increase begins, most likely indicating increased maritime influence on the hydrology of the site as sea level rose and stabilized in the post-glacial period.

In summary, it appears that Goochs Crater began accumulating organic sediments around 17,500 cal y BP, shortly after which a small, shallow lake developed and persisted in an otherwise sparsely vegetated landscape. The establishment of shoreline vegetation by about 15,000 years ago contributed to the accumulating sediments and this seems to have occurred under a climate of strong but variable westerly winds. A gradual but increasing oceanic influence affected the site until 10,000 cal. BP. before abrupt drying occurred. Increased sand present in the record during the early Holocene and other information suggests a relatively dry period. During the rest of the Holocene, the site returned to a wet, swampy environment: we are currently re-analysing the edge core with a broader suite of proxies to better characterize the late Holocene and it is envisaged that this will result in a complete moisture-focused palaeoenvironmental record from the site from 17,500 cal. BP to present. In the rest of this project (it will run until the end of 2016) we will finalize the interpretation of the other sites and the synthesis will provide a regional picture of palaeoclimatic influences on these important ecological communities. This work will also be compared to high-resolution fire histories that are being developed across the region.

Stakeholders, Funding and Acknowledgements. This research was funded through the Temperate Highland Peat Swamps on Sandstone Research Program (THPSS Research Program). This Program was funded through an enforceable undertaking as per section 486A of the Environment Protection and Biodiversity Conservation Act 1999 between the Minister for the Environment, Springvale Coal Pty Ltd and Centennial Angus Place Pty Ltd.  Further information on the enforceable undertaking and the terms of the THPSS Research Program can be found at This work has benefited from discussion with Martin Krogh, Doug Benson, Sarsha Gorissen, Geoff Hope, Roger Good and Jennie Whinam.  This work has also been supported by a 2014 and 2015 AINSE Research Award (ALNGRA14019 and 15019) to SM.

Contact information. The project ‘Palaeoenvironments of sandstone peat’ is being undertaken by A/Prof Scott Mooney (School of Biological, Earth and Environmental Science (BEES) UNSW +61 2 9385 8063,, Professor James Goff  (School of BEES UNSW and Mr Len Martin (PhD candidate, School of BEES, UNSW, +61 2 9385 8063,

Seagrass rehabilitation and restoration, Cockburn Sound, WA

Key words. Coastal ecosystems, transplanting trials, compensatory restoration, Posidonia

Introduction. Seagrasses are flowering plants that form extensive underwater meadows, transforming bare sandy areas into complex 3-dimensional habitats for a diverse faunal community. They provide a wide range of ecosystem services including nutrient cycling, carbon sequestration, and coastal stabilization. Once impacted, seagrass meadows can take decades to recover.

The need for seagrass restoration is mainly driven by loss of seagrass due to human activities including ocean discharges and coastal developments, although changing ocean conditions (warming temperatures and increasing acidity) and sea-level rise now provide additional challenges.

 Posidonia australis, from planting unit to spreading and merging shoots.

Figure 1. Posidonia australis showing spreading and merging shoots from what were initially only single planting units (see inset).

Cockburn Sound project. In 2003, the Seagrass Research and Rehabilitation Plan (SRRP) was established to meet stringent environmental management conditions for two separate industrial development projects in Cockburn Sound, Western Australia. Both projects, Cockburn Cement Ltd and the state Department of Commerce, impacted upon seagrass ecosystems.

The SRRP was aimed at developing and implementing seagrass restoration procedures that are economically feasible and environmentally sustainable. The collaborative project team was coordinated by BMT Oceanica and included researchers from Murdoch University, The University of Western Australia, Edith Cowan University, the Botanic Gardens and Parks Authority, environmental consultants and a marine engineering firm.

Works and their results. Implementing the SRRP involved a range of experimental transplantings of the seagrass Posidonia australis (a slow-growing meadow-forming species).

The transplant trials resulted in good health and high survival rates of transplanted shoots. This showed that meadows can be restored and thus are likely to develop and return to the same ecological functions as natural meadows.

In this case, donor material was harvested from a site that was to be destroyed as part of the permitted development. In other cases, donor material has been harvested from meadows that have demonstrated varying levels of recovery, with a number of years required for recovery depending on the intensity of harvesting. The project resulted in site-specific solutions as well as generic technical guidelines for manual transplantation to restoration sites from donor sites.

Lessons and limitations. The main lessons for practice to date are:

  • While the results of this project are encouraging, the challenge of achieving biological diversity in seagrass meadows, particularly to the equivalence of a natural seagrass meadow, has not yet been demonstrated.
  • The scale of this particular project is still small (3.2 Ha) relative to the amount of restoration required. Focus needs to be on research into how such projects can be scaled-up. Seed-based restoration may be more appropriate for some species (including Posidonia).
  • Selection of a restoration site is a strong factor contributing to the success of transplanted material (i.e. the likelihood of success if higher where seagrass was present before).

Contact. Dr Jennifer Verduin, lecturer, Murdoch University , Tel: +61 8 93606412/0404489385; Email:

Also see:

EMR project summary – report on the seagrass transplanting trials:

Full EMR feature article


Restoring wetland communities in the Coorong and Lower Lakes, South Australia

[Summary will be reinstated soon.]

Peniup Ecological Restoration Project

Justin Jonson

Key words: reconstruction, planning, direct seeding, monitoring, innovation

Introduction. The Peniup Restoration Project was initiated in 2007, when Greening Australia and Bush Heritage Australia jointly purchased a 2,406 hectare property as a contribution to the conservation and restoration objectives of Gondwana Link. The property has an average annual rainfall of approximately 450mm per year and had previously been farmed in a traditional broad acre sheep and cropping rotation system. The site is located within a highly diverse mosaic of varying soils and associated vegetation associations across Mallee, Mallee Shrubland, and Woodland type plant communities.

Planning and 2008 Operational Implementation. In 2008, Greening Australia’s Restoration Manager Justin Jonson developed a detailed ecological restoration plan for 950 hectares of cleared land on the northern section of the property. Information and procedures applied for that work are detailed in the EMR Journal article Ecological restoration of cleared agricultural land in Gondwana Link: lifting the bar at ‘Peniup’ (Jonson 2010). Further information is also available for the specific vegetation associations established via the Peniup Restoration Plan, with species lists according to height stratum, including seedlings planted by hand which were nitrogen fixing or from the Proteaceous genera. Funding for the initial 250 hectares of restoration were raised and the project implemented in 2008 (Fig.1).

Figure 1. Map showing the 2008 operational areas at Peniup with replanted communities replanted by direct seeding, and GPS locations of permanent monitoring plots (n=42), patches of hand planted seedlings (n=31) and seed (n=61), pre-planning soil sampling sites (n=115) and contour oriented tree belts to ensure establishment across the site (direct seeded understory consistently here).

Figure 1. The 2008 operational areas at Peniup showing communities replanted by direct seeding, and GPS locations of permanent monitoring plots (n=42), patches of hand planted seedlings (n=31) and seed (n=61), pre-planning soil sampling sites (n=115) and contour oriented tree belts to ensure establishment across the site.

Figure 2: Map showing GPS locations of permanent monitoring plots established at Peniup.

Figure 2. Location of 42 Permanent Monitoring Plots established in 2008 Peniup Ecological Restoration Project. Recruits from the direct seeding were measured 5 months after implementation, and then annually to assess persistence and long term development

Monitoring. A total of 42 monitoring plots were laid out across seven of the nine plant communities established (Fig.2). Details of the methodology, results and ongoing evaluation have been published (Jonson 2010; Hallet et al. 2014; Perring et al. 2015).

Results to date.  Monitoring indicates approximately 3.8 million plants were re-established by the direct seeding across the 250 hectare project area.  The numbers established in each plant community are shown in Fig.3 and represent the majority of plant species in each reference model. After 8 years it is clear that the project’s objectives are on track to being achieved, considering: a) absence of agricultural weeds; b) nutrient cycling through build up and decomposition of litter and other detritus;  seed-rain by short-lived nitrogen-fixing Acacia shrubs, c) diverse structural development of re-establishing species; and,  d) presence of many target animals using the site. Peniup’s progress in terms of recovery of the National Restoration Standards’s 6 ecosystem attributes is depicted and tablulated in Appendix 1.

Figure 3: Chart showing per hectare estimates of plant establishment counts by restoration plant community.

Figure 3. Per hectare estimates of Peniup plant establishment counts by restoration plant community.

Figure 4. Photo of riparian/drainage Tall Yate open woodland community with mid and understory shrubs and mid-story trees.

Figure 4. Riparian/drainage Tall Yate open woodland community at Peniup – with mid and understory shrubs and mid-story trees.

Innovation. As an adaptive management approach, small, discrete patches of seedlings of the proteaceous family were hand planted to make best use of small quantities of seed. Planting of these 5,800 seedlings in small patches, termed ‘Nodes’, provided further resource heterogeneity within relatively uniform seed mixes (by soil type). The impetus for this approach was to create concentrated food sources for nectarivorous fauna, while increasing pollination and long-term plant species viability (Jonson 2010).

Figure 5. Map showing distribution of Proteaceous Nodes.

Figure 5. Distribution of Proteaceous Nodes.

Lessons learned. Continuity of operational management is a critical component to achieving best practice ecological restoration. Project managers must be involved to some degree in all aspects of works, because flow on consequences of decisions can have high impact on outcomes. Detailed planning is also needed with large scale projects; otherwise the likelihood of capturing a large percent of site specific information is low. Finally, the use of GIS software for information management and site design is an absolute necessity.

Figure 6. Photo showing Banksia media and Hakea corymbosa plants with seed set.

Figure 6. Banksia media and Hakea corymbosa plants with seed set after 5 years.

Figure 7. hoto showing bird nest built within re-establishing Yate tree at Peniup within 5 years.

Figure 7. Bird nest within 5-year old Yate tree at Peniup.

Figure 8. Photo showing ecological processes in development including, a) absence of agricultural weeds, b) nutrient cycling and seed-rain deposition by short-lived nitrogen-fixing Acacia shrubs, c) diverse structural development of re-establishing species, and d) development of leaf litter and associated detritus for additional nutrient cycling.

Figure 8.  Five-year-old vegetation is contributing to a visible build up of organic matter and decomposition is indicating cycling of nutrients.

Stakeholders and Funding bodies. Funding for this Greening Australia restoration project was provided by The Nature Conservancy, a carbon offset investment by Mirrabella light bulb company, and other government and private contributions.

Contact information. Justin Jonson, Managing Director, Threshold Environmental, PO Box 1124, Albany WA 6330 Australia, Tel:  +61 427 190 465;

See also EMR summary Monjebup

See also EMR feature article Penium project

Watch video: Justin Jonson 2014 AABR presentation on Peniup

Appendix 1. Self-evaluation of recovery level at Peniup in 2016, using templates from the 5-star system (National Standards for the Practice of Ecological Restoration in Australia)

Fig 9. Peniup recovery wheel template

Evaluation table2

Brady Swamp wetland complex, Grampians National Park, Victoria

Mark Bachmann

Key words: wetland restoration, Wannon River, hydrology, drainage, Gooseneck Swamp

A series of wetlands associated with the floodplain of the Wannon River (Walker, Gooseneck, and Brady Swamps), situated approximately 12 km north east of Dunkeld in western Victoria, were partially drained from the 1950s onwards for grazing purposes (Fig 1). A portion of these wetlands was later acquired and incorporated into the Grampians National Park (and other peripheral reserves) in the mid-1980s, managed by Parks Victoria. However, the balance of the wider wetland and floodplain area remained under private ownership, creating a degree of uncertainty surrounding reinstatement of water regime – an issue that was left unresolved for over two decades.

Many years of planning work, including modelling studies and biological investigations by a range of organisations, never quite managed to adequately resolve the best way to design and progress wetland restoration work in this area. To address the impasse, at the request of the Glenelg Hopkins CMA in early 2013, Nature Glenelg Trust proposed a staged restoration trial process which was subsequently agreed to by landowners, neighbours, government agencies, and local community groups.

Figure 1. Image from the present day: showing artificial drains (red lines/arrows) constructed to drain Walker, Gooseneck and Brady Swamps, as it operated from the 1950s–2013.

Figure 1. Image from the present day: showing artificial drains (red lines/arrows) constructed to drain Walker, Gooseneck and Brady Swamps, as it operated from the 1950s–2013.

Trials and permanent works undertaken.

Initial trials. The restoration process began in August 2013 with the installation of the first trial sandbag weir structure to regulate the artificial drain at Gooseneck Swamp. Its immediate success in reinstating wetland levels led to similar trials being initiated at Brady Swamp and Walker Swamp (Fig. 2) in 2014.

Figure 2. The volunteer sandbagging crew at the artificial drainage outlet from Walker Swamp - August 2014.

Figure 2. The volunteer sandbagging crew at the artificial drainage outlet from Walker Swamp – August 2014.

Permanent works were ultimately undertaken to reinstate the breached natural earthen banks at Brady and Gooseneck Swamps (Figure 3), implemented by Nature Glenelg Trust in early 2015.

Figure 3a. Trial Structure on the Brady Swamp outlet drain in 2014

Figure 3b. The same view shown in Figure 3a, after the completion of permanent works in 2015

Results. The works have permanently reinstated the alternative, original watercourse and floodplain of the Wannon River, which now activates when the water levels in these wetlands reach their natural sill level. This is predicted to have a positive impact on a wide range of flora and fauna species.

Monitoring is in place to measure changes to vegetation and the distribution and status of key fauna species, such as waterbirds, fish and frogs. Due to drought conditions experienced in 2015, to is too early to describe the full ecological impact of the works at this time.

4. Gooseneck Swamp in Sept 2014: the second season of the restoration trial, just prior to the implementation of permanent restoration works

Figure 4. Gooseneck Swamp in Sept 2014: the second season of the restoration trial, just prior to the implementation of permanent restoration works

Lessons learned. The success of these trials has been based on their tangible ability to demonstrate, to all parties involved, the potential wetland restoration outcome for the sites; made possible by using simple, low-cost, impermanent methods. To ensure the integrity of the trial structures, the sandbags used for this purpose are made of geotextile fabric, with a minimum field service life of approximately 5 years.

The trials were critical for building community confidence and collecting real operational data for informing the development of longer-term measures to increase the depth and duration of inundation.

A vital aspect of the trials has been the level of community participation, not only at the sandbagging “events”, but also the subsequent commitment to ecological monitoring, for helping evaluate the biological impacts of hydrological reinstatement. For example, the Hamilton Field Naturalists Club has been undertaking monthly bird monitoring counts that are helping Nature Glenelg Trust to develop a picture of the ecological value of these wetlands and their role in the wider landscape, including the detection of international migratory species.

Acknowledgements. Project partners include Parks Victoria, Hamilton Field Naturalists Club, the Glenelg Hopkins CMA, Macquarie Forestry and other private landholders. Volunteers from several other groups have also assisted with the trials. Grant funding was generously provided by the Victorian Government.

Contact. Mark Bachmann, Nature Glenelg Trust, PO Box 2177, MT GAMBIER, SA 5290 Australia. Tel +61 8 8797 8181, Mob 0421 97 8181; Email Web|

See also:

Long Swamp EMR short summary

Picanninnie Ponds EMR short summary

Defining reference communities for ecological restoration of Monjebup North Reserve in Gondwana Link

Justin Jonson

Key words: reconstruction; reference ecosystem; planning; ecosystem assemblage; monitoring

Introduction. Bush Heritage Australia’s (BHA) Monjebup North Reserve is a property that directly contributes to the conservation, restoration and connectivity objectives of Gondwana Link – one of Australia’s leading landscape scale restoration initiatives. Building on a solid history of revegetation projects implemented by collaborators from Greening Australia and individual practioners, the BHA management team initiated and funded a $40K Ecological Restoration Planning Project for 400 hectares of marginal farmland in need of restoration.

The specific aim of the Monjebup North Ecological Restoration Project was to 1) plan and 2) implement a ‘five star’ ecological restoration project as defined by the Gondwana Link Restoration Standards. Overarching goals included the re-establishment of vegetation assemblages consistent with the surrounding mosaic of plant communities, with a specific focus on local fauna and the restoration of habitat conditions to support their populations.

Figure 1: Map showing GPS locations of soil auger sampling locations.

Figure 1: Map showing GPS locations of soil auger sampling locations.

Planning and identification of reference communities for restoration of cleared land. The Monjebup North Ecological Restoration Project began with a third party consultancy contract to develop the Monjebup North Ecological Restoration Plan. This work began with the collection of detailed field data, including 120 soil survey pits collected to define the extent and boundaries between different soil-landform units occurring on the site (Fig.1). In the absence of previously defined and/or published information on local plant communities, an additional vegetation survey and report, The Vegetation of Monjebup North, was developed, which included 36 vegetation survey sites widely distributed across the surrounding vegetation (Fig.2). A total of 10 primary vegetation associations were defined within remnant vegetation on and around the site from this work (Fig.3). Additional soil survey pits were established within these defined plant communities to develop relationships between observed vegetation associations and soil-landform units. Cross referencing this information to the 400 hectare area of cleared land resulted in the delineation of seven core reference communities to guide the restoration project. These restoration communities ranged from Banksia media and Eucalyptus pluricaulis Mallee Scrub associations on spongelitic clay soils, to Eucalyptus occidentalis (Yate) Swamp Woodland associations located in low-lying areas where perched ephemeral swamps exist.

Figure 2: Map showing GPS locations of flora survey sampling sites.

Figure 2: Map showing GPS locations of flora survey sampling sites.

Figure 3: Output map of dominant vegetation associations at Monjebup North Reserve.

Figure 3: Output map of dominant vegetation associations at Monjebup North Reserve.

Figure 4: Mosaic of plant communities replanted at Monjebup North in 2012 using direct seeding and hand planted seedlings. A tractor fitted with GPS unit enables real time seeding passes, as shown on the map.

Figure 4: Mosaic of plant communities replanted at Monjebup North in 2012 using direct seeding and hand planted seedlings. A tractor fitted with GPS unit enables real time seeding passes, as shown on the map.

Figure 5: Mosaic of plant communities replanted at Monjebup North in 2013 using direct seeding and hand planted seedlings. A tractor fitted with GPS unit enables real time seeding passes, as shown on the map.

Figure 5: Mosaic of plant communities replanted at Monjebup North in 2013 using direct seeding and hand planted seedlings. A tractor fitted with GPS unit enables real time seeding passes, as shown on the map.

Seed sourcing. Seed from approximately 119 species were collected on and around the site for the restoration works. Seed collections for some species were collected from a number of geographically separate sub-populations, however these were never located further than 10 kilometers from site. Collections were made from at least 20 individuals for each species, and preference was made in collecting from populations which had 200+ individuals.

The primary on-ground works were initiated across four years from 2012 to 2015, starting with a 100 ha project area in 2012 (Fig.4), and a 140 ha area in the following year (Fig.5), both by Threshold Environmental Pty Ltd. A combination of direct seeding and hand planted seedlings treatments were employed, where seed mixes were developed to achieve the bulk of plant recruitment across each of the soil-land form units, and nursery grown seedlings were planted by hand for species found to be difficult to establish from direct seeding or for which stocking densities were to be more closely controlled. This work involved 13 communities and 148 species.

A number of innovative operational treatments were employed. These included grading 5 kilometers of contour banks and spreading chipped vegetation and seed pods, and 180 in situ burning patches where branch and seed material from fire-responsive serotinous species were piled and burned (Fig.6 before, Fig.7 after). Seedlings for rare, high nectar producing plant species were also planted in 203 discrete ‘node’ configurations. Habitat debris piles made of on-site stone and large branch materials were also constructed at 16 locations across the 2012 project areas.

Fig.6 In situ burning of serotinous branch and seed material

Figure 7: Photo of Dryandra nervosa juvenile plants establishing from one of the in situ burn pile locations. Other species used for this technique included Dryandra cirsioides, Dryandra drummondii, Hakea pandanicarpa, Isopogon buxifolius, and Hakea corymbosa.

Figure 7: Photo of Dryandra nervosa juvenile plants establishing from one of the in situ burn pile locations. Other species used for this technique included Dryandra cirsioides, Dryandra drummondii, Hakea pandanicarpa, Isopogon buxifolius, and Hakea corymbosa.

Monitoring. Monitoring plots were established to evaluate the direct seeded revegetation, as presented in the Project Planting and Monitoring Report 2012-2013. Fauna monitoring has also been undertaken by BHA using pit fall traps, LFA soil records, and bird minute surveys.

Results to date. Monitoring collected from post establishment plots in from the 2012 and 2013 areas (2 years after seeding) showed initial establishment of 2.4 million trees and shrubs from the direct seeding (Fig.8 and Fig.9). Results of faunal monitoring are yet to be reported, but monitoring at the site for vegetation and faunal is ongoing.

Figure 8: Graphic representation of monitoring results from 2012 and 2013 operational programs showing scaled up plant counts across the plant community systems targeted for reconstruction.

Figure 8: Graphic representation of monitoring results from 2012 and 2013 operational programs showing scaled up plant counts across the plant community systems targeted for reconstruction.

Figure 9: Photo showing 3 year old establishment and growth of a Banksia media/Eucalyptus falcata Mallee shrub plant community with granitic soil influence from the 2012 Monjebup North restoration project.

Figure 9: Photo showing 3 year old establishment and growth of a Banksia media/Eucalyptus falcata Mallee shrub plant community with granitic soil influence from the 2012 Monjebup North restoration project.

Lessons learned and future directions. The decision to develop a restoration plan in advance of undertaking any on-ground works was a key component contributing to the success of the project to date. Sufficient lead time for contracted restoration practioners to prepare (>12 months) was also a key contributor to the success of the delivery. Direct collaboration with seed collectors with extensive local knowledge also greatly benefited project inputs and outcomes.

Stakeholders and Funding bodies. Major funding for the project was provided by Southcoast Natural Resource Management Inc., via the Federal Government’s National Landcare Program and the Biodiversity Fund. Of note is also Bush Heritage Australia’s significant investment in the initial purchase of the property, without which the project would not have been possible.

Contact information. Justin Jonson, Managing Director, Threshold Environmental, PO BOX 1124, ALBANY WA 6330 +61 427 190 465;

See also EMR summary Peniup

 Watch video: Justin Jonson 2014 AABR presentation

Subtropical rainforest restoration at the Rous Water Rainforest Reserve, Rocky Creek Dam, 1983 – 2016

Key words: Lowland subtropical rainforest, ecosystem reconstruction, drinking water catchment, continual improvement process.

Introduction. Rous Water is actively engaged in ecosystem reconstruction within the drinking water catchment areas it manages on behalf of the community. The aim of these activities is to improve the functioning of essential natural processes that sustain water quality. The methodology used for rainforest restoration by Rous Water has evolved over time through an ‘adaptive management’ process at Rocky Creek Dam. This adaptive management approach has demonstrated that effective large scale sub-tropical regeneration at Rocky Creek Dam is achieved through complete removal of competing plants. The technique has become known as the Woodford Method and is now being applied at other Rous Water restoration sites.

The Rous Water Rainforest Reserve at Rocky Creek Dam is set in the northern headwaters of the Richmond River catchment, on the southern rim of the Tweed shield volcano. Basalt flows from the volcano have produced nutrient rich Red Ferrosol that supported diverse sub-tropical rainforest ecosystems across the region, until the rainforest was largely cleared for agriculture in the late 19th century. The Rocky Creek Dam site is adjacent to the Big Scrub Flora Reserve, the largest remaining remnant subtropical rainforest in the region. This reserve acts as a reference site for the restoration project (Fig 1).

Figure 1. Detail of the regeneration areas at Rocky Creek Dam, showing the areas treated and the year of the initial works

Figure 1. Detail of the regeneration areas at Rocky Creek Dam, showing the areas treated and the year of the initial works

Clearing of land in the vicinity of Rocky Creek Dam by early settlers commenced in the 1890s, with the cleared lands used for the establishment of dairy farms and a sawmill. In 1949, following acquisition of the site by Rous County Council (now Rous Water) for the construction of a water supply dam, this former farmland had reverted to weedy regrowth characterised by a mosaic of native/exotic grass, Lantana (Lantana camara) and Camphor Laurel (Cinnamomum camphora) which supressed any expansion or recovery of scattered rainforest remnants. Transformation of the site commenced in 1983 when Rous Water became actively engaged in ecosystem recovery by systematically removing weeds that suppressed rainforest regeneration, a practice that continues today.

Rainforest restoration methods. The practices and management tools used in rainforest restoration at the site have been previously described by Woodford (2000) and Sanger et al. (2008). The work method typically involves the systematic poisoning and slashing of weeds to promote recruitment of rainforest plants from the soil seed bank and then to facilitate the growth of suppressed rainforest plants, providing a structural framework for further seed dispersal by wind and, particularly, flying frugivores and thus further colonisation by later phase rainforest trees.

Since 1983, an area of approximately 70 ha has been progressively treated in 1-2 ha blocks using this methodology (refer Fig 1), with progressively diminishing amounts of follow-up treatment needing to be conducted in the treated areas over subsequent years to secure successional progression of the rainforest species.

Use of this method means that, due to recruitment from the seed bank and the use of stags (from dead camphor laurel) as perches for seed dispersing birds, very limited planting has been required on the site. This has preserved the genetic integrity of the Big Scrub in this location.

Results. A total of approximately 70 hectares of weed dominated regrowth has been treated at the Rous Water Rainforest Reserve since commencement in 1983 (Figure 1). This is approximately 35 ha since the report previously published in 2000 and represents approximately 30 % of the Rous Water property at Rocky Creek Dam.

This progressive treatment of compartments of weedy regrowth at Rocky Creek Dam has continued to lead to rapid canopy closure by shorter lived pioneer and early secondary tree species, with a gradual progression to higher proportions of later secondary and primary species with increasing time since treatment. All tree species that are listed as occurring in the reference site are not only now present in the restoration area, but informal observations suggest that most, if not all, are increasing in abundance over time (Figs 2-6)

Figure 2. Treated regrowth at the Rous Water Rainforest Reserve, Rocky Creek Dam After 1 year (foreground)

Figure 2. Typical regeneration of rainforest species 1 year after Lantana removal at the Rous Water Rainforest Reserve, Rocky Creek Dam (foreground).

Figure 3. Same photopoint after 6 years

Figure 3. Typical recovery after 6 years

Figure 4. Same photopoint after 12 years

Figure 4. Typical recovery after 12 years

Figure 5. Same scenario after 20 years

Figure 5. typical recovery after 20 years

Figure 6. After 30 years

Figure 6. Typical recovery after 30 years

The structure of the older treated regrowth areas sites appears to be converging on rainforest conditions, as noted by Kanowski & Catterall (2007). Thackway & Specht (2015) depict how 25 ha of systematically treated compartments that were covered almost entirely with lantana are progressing back towards the original Lowland Subtropical Rainforest’s composition, structure and ecological function (Fig 7). Overall the vegetation status in this area was assessed at between 85% and 90% of its pre-clearing status.

This process is, at its oldest 33 years old and in some locations much younger. So it is clear that the development of the subtropical vegetation still has many decades, possibly centuries, to go, before it approaches the composition, structural and habitat characteristics of a primary forest. Notwithstanding the large areas of natural regrowth that are yet to be worked, it is evident that a large proportion of the assisted regeneration areas progressively worked by Rous over the past 33 years now requires only a low level of ongoing maintenance. This shows that these sites are maturing over time and have largely reached a self-organising state, and in the fullness of time will achieve a high degree of similarity to the reference state.  (A recovery wheel for one subsite is shown in Fig 8)

Fig 7, Thackway fig rocky creek dam1

Figure 7. Assessment of change in indicators of vegetation condition in a 25 ha area. This depicts the degree of recoveery of Lowland Subtropical Rainforest found at Rocky Creek Dam, Big Scrub, NSW against a pre-clearing reference. (Graph reproduced with permission. The method used to generate the graph is described in Thackway, R. and Specht, A., (2015). Synthesising the effects of land use on natural and managed landscapes. Science of the Total Environment. 526:136–152 doi:10.1016/j.scitotenv.2015.04.070. ) Condition indices for transition Phase 4 were derived from prior reports including Sanger et al. 2008 and Woodford 2000. Metadata can be viewed at .

Lessons learned. Using this method of harnessing the natural resilience processes of the rainforest, we have been able to progress the recovery of an important water catchment area, restoring very high biodiversity conservation values in a landscape where rainforest was, and remains, in serious decline., The ability of the high resilience sites at Rocky Creek Dam to respond to the Woodford Method is clearly demonstrated, but there is ample evidence that application of this and similar resilience-based rainforest restoration methods can harnessed resilience at other sites in the Big Scrub that are at greater distances from remnants.

Figure 8. Distribution of management intensity classes across the Rous Water Rainforest Reserve at Rocky Creek Dam.

Figure 8. Distribution of management intensity classes across the Rous Water Rainforest Reserve at Rocky Creek Dam. (Legend for this map is in Appendix 1)

Current work and future directions. Work continues at the site and management is supportive of-site evaluation to assess the extent to which the treated areas are undergoing successional development using a range of available assessment tools.

To assist future planning, and in order to address the issue of how to best estimate and plan for restoration works and associated costs, Rous Water has adapted the methodology developed on the Tweed-Byron Bush Futures Project, where each restoration site/area was assigned a Management Intensity Class (MIC) based on a generalised assessment of site condition, weed composition and cover and other management requirements. (Fig 8) The MIC describes the frequency of restoration work required to restore the site to a minimal maintenance level and how many years this would take to achieve. The MIC aims to describe the extent of management intervention necessary to restore the site to a minimal maintenance level. For this analysis this equates to the establishment of a self sustaining sub-tropical rainforest buffer zone. Each management intensity class is associated with a particular restoration trajectory/cost per hectare, based on visitation frequency by a standard 3 person team and expressed in terms of number of visits required to control / manage weeds. Appendix 1 below shows details of the MIC classification, showing for each class, relevant site criteria, and the estimated level of bush regeneration resources required to bring each class to a low maintenance level.

Contact: Anthony Acret, Catchment Assets Manager,  Rous Water. Tel: +61 (0) 2 6623 3800, Email:

Rocky Creek Dam recovery wheel adjacent to Forest Edge

Appendix 1. Legend for Management intensity classes used in Fig 8. (From Tweed-Byron Bush Futures)

Appendix 1. Legend for Management intensity classes used in Fig 8.

Learning from the Coreen TSRS – and scaling up biodiversity recovery works at hundreds of sites in the Riverina, NSW.

Peter O’Shannassy and Ian Davidson

Key words: Travelling Stock Routes and reserves, grazing management, rehabilitation, direct seeding, Biodiversity Fund.

Introduction. The travelling Stock Routes and Reserves (TSRs) in NSW comprise a network of publically owned blocks and linear routes that were set aside between 100-150 years ago in New South Wales (NSW) to allow landholders to move their livestock from their grazing properties to markets. They occur in prime agricultural land and remain under management by the state of New South Wales’s system of Local Land Services organisations (LLSs).

Since trucking of cattle is now the norm, rather than droving, the use of TSRs has gradually changed to more occasional grazing. Considering the concurrent gradual decline in biodiversity of many private properties in the same period this means that the remnant grassy woodland patches and corridors represent the most important habitats in the Riverina region and contain dozens of Threatened species and five Endangered Ecological Communities variously listed under the NSW Threatened Species Conservation Act 1995 (TSC Act 1995) and the Commonwealth EPBC Act 1999. A general recognition of the high biodiversity value of the TSRs (and need to counter degradation on many of them) has resulted in a shift in local policy and practice towards improving the condition of biodiversity in the reserves.

Fig. 1

Fig. 1. Coreen Round Swamp TSR 2005.

Fig. 2

Fig. 2.  Coreen Round Swamp TSR at the same photopoint in 2015. (Note the increase in Bullloak recruitment from improved grazing management.

Works undertaken at Coreen Round Swamp and Oil Tree Reserve

Managed grazing has been applied to a number of Travelling Stock Reserves in the Riverina over a 10 year period – particularly two reserves: Coreen Round Swamp and Oil Tree reserve in the Coreen area. In 1998, condition of Coreen Round Swamp was ranked high conservation quality and Oil Tree TSR medium-high. In general, both TSRs contained tree species at woodland densities, but there was a low density of regenerating palatable trees (e.g. Bulloak and White Cypress Pine), with most species where present recorded as having sparse natural regeneration. The sites contained few regenerating shrubs (again rating sparse or absent) and exotic annual grasses were common in parts, with native grass swards patchy. Weed forbs were common

Restoration works commenced at Coreen Round Swamp and Oil Tree Reserve in 2004 and focused on:

  • Manipulating the timing of grazing with selected sets of livestock at specific times to disrupt the life cycle of, particularly, annual exotic grasses to reduce these undesirable species and to prepare the way for native perennial grasses.
  • Weed control – which involved multiple visits to the site throughout the year to control the various species as they emerged and prior to seed set. Spraying of herbaceous species with knockdown herbicide continued until the balance tipped and began to move towards a stronger native composition. Woody weeds such as Olive and Pepper trees were removed by hand cutting and painting with systemic herbicides.
  • Reduction of grazing impacts: Livestock were camped in the TSR’s holding yards rather than under the trees at night. This was carried out to reduce physical damage to shrubs, trees and the ground layer and reduce fertility inputs to the soils under the trees; fertility levels that are known to favour weed species invasion of such areas.

Results. Monitoring using standard proformas and photopoints showed dramatic changes in both reserves; with sites previously devoid of recruitment now developing a layer of tree and shrub saplings including Bulloak and White Cypress Pine. Where once 20-30% of the Coreen Round Swamp TSR was highly degraded, being dominated by herbaceous and grass weeds, this degradation class has now reduced to less than 10%; with the remaining 90% being of high quality. Similarly Oil Tree TSR had around 30-40% in a similarly degraded condition, which has now been reduced to 10-15% of the area; with 80% being in moderate-high condition and moving towards high as the shrub layer improves. (See Figures 1-5).

Fig 3.

Fig. 3. Oil Tree TSR in 2005 where a mix of native grass (spear grasses) and exotic annual grasses (Wild Oats, Bromus and Rye Grass) are visible.

Figure 4

Fig 4.  Same photopoint at Oil Tree TSR in 2015 showing a sward now dominated by native grass (spear grasses) and Curly Windmill Grass (Chloris truncata).

Coreen Recovery Wheel (a) prior to works and (b) after 10 years (Courtesy Ian Davidson.)

Expansion of the program to hundreds of TSRs in the Riverina

Building on the success of the work at the Coreen Reserves, a five year program is well underway, funded by the Australian Government’s Biodiversity Fund in 2012. In the first for four years, 251 sites have been assessed and interventions have taken place at 102 of these sites; with a further 18 sites to be worked during the remaining funded period.

Works to date include grazing management, weed and pest species management and 960 ha of direct seeding on 70 sites. The sites are being monitored using 250 permanent photopoints located to track key vegetation structural changes, as well some transect counts of regeneration and seedling success (recruitment). Approximately 108 assessments, using the original proformas plus plot counts, are being conducted on a subset of key sites including untreated sites. Initial results of the grazing management and direct seeding are encouraging. Very successful seedling germination has occurred in the direct seeded lines on most of the seeded sites (although germination on some of the drier Boree sites took longer). Some sites have had additional seeding done in subsequent years to provide a mix of age classes. The seedlings have now developed to a range of heights, with some older seedlings up to 2 m high, while some seed continues to germinate. Some of the more mature plants have seeded in the last 12 months and the expectation is that a soil seed bank will now be starting to form.

As aggressive exclusion of birds from woodland and forest habitat by abundant Noisy Miners is listed as a Key Threatening Process (KTP) in NSW and the Commonwealth – culling of Noisy Miner (Manorina melanocephala) is being undertaken to benefit woodland bird populations. This is being done at a scale not attempted before. Baseline bird surveys have been conducted on 80 sites established over 70 reserves including on sites with and without Noisy Minor culling; and sites with shrubs and without shrubs within a range of vegetation types. The seasonal benchmark surveys have been undertaken on 8 occasions but because only one post-culling survey (spring) has been undertaken to date, it is premature to identify whether changes in bird populations have occurred yet. The surveys will continue till Autumn 2017.

Lessons learned. The results of works at the Coreen reserves are clearly a direct response to the manipulation of the timing and intensity of grazing pressure to reduce weed and allow rest for recovering native species. Achieving the desired grazing management required a paradigm shift for managers and clients. The close management of grazing, direct seeding and burning also relies on a high level of understanding and commitment by the TSR manager.

Acknowledgements. We thank Rick Webster for his seminal rapid assessments of TSRs in the late 1990s throughout southern NSW. Norman Wettenhall a visionary philanthropist and a friend of TSRs funded much of the early assessment work. The more recent funding provided by the Australian Government’s Biodiversity Fund. A number of LLS staff / Biosecurity officers are involved in the works, including Peter O’Shannassy, Michael Mullins, Stuart Watson and Roger Harris. Ian Davidson, Regeneration Solutions P/L is undertaking the vegetation assessments, Chris Tzaros, Birds, Bush and Beyond, is undertaking the bird surveys and Phil Humphries provided the mapping

Contact: Peter O’Shannassy, Murray Local Land Services (74 Short St Corowa NSW 2646, 0427010891 peter.o’ and Ian Davidson Regeneration Solutions P/L (15 Weir Street Wangaratta, 0429 662 759,