Category Archives: Monitoring

Eastern Suburbs Banksia Scrub: is fire the key to restoration? – UPDATE to EMR FEATURE

Geoff Lambert, and Judy Lambert

[Update to EMR Feature – Geoff Lambert and Judy Lambert (2015) Progress with restoration and management of Eastern Suburbs Banksia Scrub on North Head, Sydney.  Ecological Management & Restoration, 16:2, 95-199. https://onlinelibrary.wiley.com/doi/10.1111/emr.12160]

Key Words. Banksia Scrub, North Head, Critically Endangered Ecological Community, Diversity.

Fig 1. Images of the same location over time, taken from “walk-through” photographic surveys (top to bottom) pre-fire, immediate post-fire and 5-years post-fire. (Photos Geoff Lambert)

Introduction. In the original feature, we reported on a number of projects related to the fire ecology of Eastern Suburbs Banksia Scrub (ESBS), also known as Coastal Sand Mantle Heath (S_HL03), located in conserved areas on North Head, Sydney Australia. Following a Hazard Reduction burn in September 2012, we examined changes in species numbers and diversity and compared these measures with control areas which had been thinned. We fenced one-third of the survey quadrats to test the effects of rabbit herbivory. There had been no fire in this area since 1951.

Twelve months after treatment, burned ESBS had more native plants, greater plant cover, more native species, greater species diversity and fewer weeds than did thinned ESBS (Fig 1). Areas that had been fenced after fire had “superior” attributes to unfenced areas. The results suggested that fire could be used to rejuvenate this heath and that this method produced superior results to thinning, but with a different species mix. Results of either method would be inferior were attempts not made to control predation by rabbits (See 2015 report).

Further works undertaken. In 2015 and 2017 we repeated the surveys, including photographic surveys on the same quadrats. Further Hazard Reduction burns were conducted, which provided an opportunity to repeat the studies reported in the 2015 feature. The study design of the burns was broadly similar to the earlier study, but rabbits were excluded by fencing four large “exclosures” over half the burn site. The pre-fire botanical survey was carried out in 2014, with logistical difficulties delaying the burn until late May 2018. Drought and other factors saw a post-fire survey delayed until October 2019. Photographic surveys of the quadrats have been completed.

Seven cm-resolution, six-weekly, aerial photography of North Head is regularly flown by Nearmap© (Fig 2). We use this photography to monitor the whole of the headland and, in particular, the various burn areas. In order to extrapolate from our quadrat-based sampling (usually 1% of a burn area), the University of Sydney flew 5mm-resolution UAV-based surveys on our behalf, on one of the 2012 burn areas and on the 2018 burn area in November 2017 (Fig 3) .

Apart from the fire studies, the general program of vegetation propagation and management has been continued by the Sydney Harbour Federation Trust and the North Head Sanctuary Foundation. The Australian Wildlife Conservancy has also undertaken a “whole of headland”, quadrat-based vegetation survey as the first stage of its “Ecological Health” rolling program for its sites.

Fig 2. Nearmap© site images (top to bottom) pre-fire, immediate post-fire and 7-years post-fire. (Photos Nearmap)

Further results. The original results suggested that fire could be used advantageously to rejuvenate ESBS and produced superior results to thinning. While subsequent photographic monitoring shows distinct vegetation change (Figs 1 and 2), on-ground monitoring showed that by five years after the fire we could no longer say this with any optimism. In summary:

  • In the immediate fire aftermath, there was vigorous growth of many species
  • Over the ensuing 5 years, plants began to compete for space, with many dropping out
  • Species diversity was high following the fire but then dropped below pre-fire levels
  • Some plants (e.g. Lepidosperma and Persoonia spp.) came to dominate via vegetative spread
  • The reed, Chordifex dimorphus has almost disappeared
  • Tea-trees (Leptospermum spp.) are gradually making a comeback
  • Between 2015 and 2017, ESBS species numbers were outpaced by non-ESBS species, but held their own in terms of ground cover.

The total disappearance of Chordifex (formerly an abundant species on North Head and prominent in the landscape) from fully-burned quadrats was not something that we could have predicted. This species is not in the Fire Response database, although some Restio spp. are known to be killed by fire. This contributes greatly to the visual changes in the landscape. The great proliferation of Lance Leaf Geebung (Persoonia lanceolata) has also changed the landscape amenity (Fig 1, bottom).

To summarise, the 2012 burn has not yet restored ESBS, but has produced a species mix which may or may not recover to a more typical ESBS assemblage with ongoing management over time. Given that the area had not been burned for 60 years, it may be decades before complete restoration.

Our further studies on the use of clearing and thinning on North Head as an alternative to fire (“Asset Protection Zone Programme”), indicates that thinning and planting can produce a vegetation community acceptable for asset protection fire management and potentially nearly as rich as unmanaged post-fire communities (Fig 4). It is necessary to actively manage these sites by removing fire-prone species every two years. In addition, a trial has been started to test whether total trimming of all except protected species to nearly ground level in an APZ, is an option for longer-term management.

Fig 3. “Thinning Experiment” fenced quadrat #3 in July 2019. The quadrat was created in 2013 by removing Coastal Teatree (Leptospermum laevigatum) and Tree Broom Heath (Monotoca elliptica). The experimental design is a test of raking and seeding, with each treatment in the longer rows. All non-endangered species plants were trimmed to 0.25 metres height in mid-2017. (Photo Geoff Lambert)

Lessons learned and future directions. It is too early to say whether we can maintain and/or restore North Head’s ESBS with a single fire. Further fires may be required. A similar conclusion has been drawn by the Centennial Parklands Trust, with its small-scale fire experiments on the York Road site. We need new and better spot- and broad-scale surveys and further burns in other areas on North Head over a longer period. The spring 2019 survey, just completed, offers an opportunity to better assess the notion that fire is beneficial and necessary.

It will be necessary to monitor the effects of future fires on ESBS diversity closely and for much longer than five years. More active management of the post-fire vegetation may be needed, as we have previously discussed in the feature, and as happens at Golf Club sites (also see video) .

The 2012 burn was relatively “cool”. There is some evidence that “hot” burns (such as have been carried out by NSW Fire and Rescue at some Eastern Suburbs golf courses) may produce improved restoration of ESBS. The 2018 burn on North Head was planned as a “hot” burn. This was not completely achieved, but we may be able to compare “hot” and “cool” burn patches within it.

Fig 4. A 2017 UAV image of quadrat 23 five years after the 2012 burn. The image has been rotated to show the quadrat aligned on the UTM grid. The red square shows the rabbit-proof fences; the black square shows the survey quadrat and the blue squares show the four 1×1 metre vegetation plots. The resolution is approximately 5 mm. (Photo University of Sydney Centre for Field Robotics)

Stakeholders. Sydney Harbour Federation Trust, North Head Sanctuary Foundation. Australian Wildlife Conservancy, NSW National Parks and Wildlife Service, Fire & Rescue NSW.

Funding Bodies. Foundation for National Parks & Wildlife [Grant No. 11.47], Sydney Harbour Federation Trust, Australian Wildlife Conservancy.

Contact Information. Dr G.A.Lambert, Secretary, North Head Sanctuary Foundation, (P.O.Box 896, BALGOWLAH 2093, Tel: +61 02 9949 3521, +61 0437 854 025, Email: G.Lambert@iinet.net.au. Web: https://www.northheadsanctuaryfoundation.org.au/

The rise of invasive ant eradications since the success of the Kakadu project  – UPDATE of EMR feature

Benjamin D Hoffmann

[Update of EMR feature – Hoffmann,  Benjamin D and Simon O’Connor (2004) Eradication of two exotic ants from Kakadu National Park. Ecological Management & Restoration, 5:2, 98-105. https://onlinelibrary.wiley.com/doi/10.1111/j.1442-8903.2004.00182.x]

Key words. pest species management, invasive species, biosecurity

Figure 1. Kakadu staff in 2001 spreading formicide over a super-colony of African Big-headed Ant. This involved a team of people, aligned in a row, walking from one edge of the infested area to the other in parallel paths. (Photo courtesy of Simon O’Connor.)

Introduction. Invasive species management, especially eradications, has been at the forefront of biodiversity conservation gains over the past two decades. For example, over 1,200 invasive vertebrate eradications have been achieved on over 800 islands worldwide and the conservation benefits of such actions have been overwhelmingly positive and often dramatic. Efforts against invasive ants have also been particularly notable over the past two decades, with ants now being the second-most eradicated taxa globally having been eradicated from more than 150 locations, with the largest eradication covering 8300 ha. Two decades ago there were only 12 confirmed ant eradications using modern baits with a combined area totalling a mere 12 ha.

As reported in our original EMR feature, the last treatments against two invasive ants in Kakadu National Park, northern Australia: The African Big-headed Ant (Pheidole megacephala) and the Tropical Fire Ant, (Solenopsis geminata) were conducted in 2003; and the ants were declared eradicated two years later (Hoffmann & O’Connor 2004). At the time this was a globally significant eradication, and the positive outcome was a partial catalyst for the creation of many other relatively small exotic ant eradication attempts around Australia, including against Tropical Fire Ant on Melville island, and African Big-headed Ant on Lord Howe Island. Incidentally, the work coincided with the approximate timeframe of when two other highly invasive ant species were first detected in Australia: Red Imported Fire Ant (RIFA) (Solenopsis invicta), and Electric Ant (Wasmannia auropunctata), prompting the initiation of two massive national cost-shared eradication programs. One of these, the RIFA program, has become Australia’s second-most expensive eradication program at AUD $428 million as of at July 2019. Together, all of these actions put ants high on Australia’s biosecurity and environmental management radars, prompting the development of Australia’s Tramp Ant Threat Abatement Plan and yet even more eradication programs.

Figure 2. Ant bait being dispersed aerially by helicopter using an underslung spreader and side-mounted dispersers. (Photos Ben Hoffmann)

Further advancements in ant eradication programs.  As Australia’s eradication programs became more numerous and larger, it became apparent very quickly that the methodologies and technologies available were insufficient to achieve success in the increasingly challenging conditions being encountered. In response, over the next two decades, there has been an impressive range of advancements that significantly improved our capacity to manage and eradicate invasive ant incursions.

The biggest issue was that work needed to be conducted over such large or inaccessible areas that ground-based work (Fig 1) was not feasible. So, treatments quickly became aerial, using multiple helicopter-based delivery platforms (e.g. underslung buckets and side-mounted hoppers, Fig 2). Even so, there have been locations that are too remote, too small, or too difficult (ie cliffs) to treat using a helicopter. To meet this challenge, in just the last five years treatments have been conducted for the first time using drones, and there is a great focus now to improve the technology so that it becomes more cost effective and more autonomous (Fig 3). This is occurring at such a pace that just a few years ago drones could only operate for a few hours at most on battery power, and only carry a few kilograms. This year we will be using a drone with unlimited flying capacity (petrol driven) that can lift 70 kg per load.

Figure 3. The Fazer with side-mounted bait carriers that can lift up to 40kg of payload. This is soon to be superseded by a drone that can lift a 70k g payload. (Photo Ben Hoffmann)

Assessments for the presence of ants, either before or after treatments, was originally very time consuming, involving teams of people walking ground very slowly and often utilising thousands of attractive lures (Fig 4). At most, only small ant populations (about less than 20 ha) within good working environments (ie open landscapes) could be assessed using teams of people, and it took large amounts of time. It was found very quickly that detector dogs could be trained on the scent of each ant species, and a single dog could cover more than five times the area of a team of people in a single day with greater efficacy (Fig 5). There are now more than 20 detector dogs operating in Australia and New Zealand that have been trained on the scent of four ant species. But even a team of dogs cannot fully cover entire areas at the landscape-scale, such as is the case for the RIFA program, especially in areas with long grass or rugged terrain. One of the saving technologies for the RIFA program has been the development of a multi-spectral sensor and associated algorithms that can identify RIFA nests from imagery captured by remote sensing (Fig 6). This allows program staff to assess just a few identified point locations in a landscape rather than the entirety of landscapes, to determine RIFA presence or absence. The next envisaged step is the development of biosensors that can detect the odours of target ant species, just like detector dogs, and with time these will become small enough to be transported by small drones throughout landscapes to detect ants.

Figure 4. An area covered with hundreds of flags marking spoonfulls of catfood being used as lures to attract African big-headed ant to assess eradication success or failure. (Photo Ben Hoffmann)

Figure 5. An ant detector dog searching for the presence of Red imported fire ant. (Photo courtesy of The State of Queensland (Department of Agriculture and Fisheries 2010–2019))

Australia was caught particularly unprepared two decades ago when the two new exotic ant species were detected for the first time because there were no baits registered for their management in Australia, so legally there were no treatment products that could be used. Even with the implementation of Emergency Use Permits for some unregistered products, as well as the use of the few products that were available for other species, it was often found that individual products could not be used in particular circumstances, especially around water, within crops and on organic farms. Additionally, available baits often did not have high efficacy. With time many baits (comprised of combinations of an attractive food laced with an active constituent) have been formulated and tested providing a greater array of baits that can be used on any new incursion and in numerous settings. The most recent has been the development of hydrogel baits that essentially deliver a liquid product in a solid form.

Figure 6 a and b. Multi-spectral camera flown underneath a helicopter to detect Red imported fire ant nests. (Photos courtesy of The State of Queensland (Department of Agriculture and Fisheries) 2010–2019)

Among the numerous advances described already, possibly the greatest development is on the threshold of becoming a reality, in the form of genomic solutions for individual species. RNA interference, and gene-drive technology are rapidly being developed for a suite of economically important species, and ants are among the taxa that are highest on the priority list as targets for this research. At best, these genomic advances promise to provide species-specific solutions, thereby alleviating the current non-target issues of using toxicants.

Conclusion. Our ability to eradicate ants has improved dramatically over the past two decades, with technologies and methodologies available now that were as yet not thought of back when our work was conducted in Kakadu National Park. New programs are constantly arising, and forging ahead in increasingly challenging situations, and a great deal of effort is placed in information-sharing among programs. Simultaneously there is a sustained focus to improve biosecurity at Australia’s borders, as well as throughout our region to help prevent the need for eradications in the first place.

Contact. Ben Hoffmann, Principal Research Scientist, CSIRO Health & Biosecurity (PMB 44 Winnellie NT 0822 Australia; Tel: +61 8 89448432; Email: Ben.Hoffmann@csiro.au).

Registration of domestic cats on Christmas Island, Indian Ocean: stage one to an eradication program for stray and feral cats to mitigate social and environmental impacts – UPDATE of EMR feature

 David Algar, Neil Hamilton and Caitlyn Pink

[Update to EMR article: Algar, David, Stefanie Hilmer, Don Nickels and Audrey Nickels (2011) Successful domestic cat neutering: first step towards eradicating cats on Christmas Island for wildlife protection. Ecological Management & Restoration, 12:2, 93-101. https://onlinelibrary.wiley.com/doi/10.1111/j.1442-8903.2011.00594.x]

Key words: domestic and feral cats, eradication program, cat de-sexing and registration, cat management, pet cat survey, local cat legislation

Figure 1. Stray cat on Christmas Island (Photo Neil Hamilton DBCA)

Introduction: In 2010 a ‘’Cat Management Plan’’ was commissioned by the various land management agencies on Christmas Island to mitigate the environmental and social impacts of cats (Felis catus) on the island (Fig 1). These impacts included contributing towards the decline of a number of native species through predation, as well as being a source of Toxoplasmosis gondii, a parasite that can lead to serious human health complications.

The plan proposed a strategy to eradicate cats entirely from the island as the domestic population died out and was adopted in late 2010. The essential first stage of the management plan was therefore the registration of all domestic cats. As part of this plan, amendments to the Local Cat Management Laws (Shire of Christmas Island Local Law for the Keeping and Control of Cats 2004 (WA)) under the Local Government Act 1995 (WA) were endorsed in August 2010. These revisions required that all domestic cats in the Shire of Christmas Island were legally bound to be de-sexed, tattooed, microchipped and registered with the Shire. The revisions were designed to limit domestic and stray/feral cat impact on the native fauna, promote responsible cat ownership, compliance and enforcement of cat management laws and prohibit the importation of new cats. Micro-chipping of domestic cats would enable the identification of those animals during trapping campaigns for stray and feral cats, so that they could be released rather than destroyed. De-sexing would prevent potential natal recruitment into the domestic, stray and feral populations. A survey of domestic cats was conducted prior to the veterinary program in October 2010 (see original feature), to guarantee that all domestic cats would be registered. One hundred and fifty-two cats were recorded during the initial survey in October 2010 of which 136 were registered as domestic pets.

Figure 2. Red-tailed Tropic-Bird with chick May 2012. (Photo Neil Hamilton DBCA)

Further works undertaken: Two further veterinary visits were conducted in May 2011 and 2012 following the domestic cat surveys to complete the veterinary program. Subsequent domestic cat surveys have been conducted each May in 2013, 2014, 2015 and 2016. In 2016 prior to the domestic cat survey, it came to our attention that a number of un-registered cats were being kept as pets. It was decided by the ‘’Christmas Island Cat Eradication Steering Committee’’ that a short-term amnesty on pet cat ownership be invoked so that these animals could also be de-sexed and registered. Following this amnesty, a final veterinary program was endorsed and fines were still issued to those residents who wanted their otherwise illegal cat to be de-sexed and registered, or unregistered cats could be handed in and euthanased without charge. Further domestic cat surveys were conducted in May 2017 and October 2018.

Further results to date: Since October 2010, 184 cats have been registered following the various veterinary programs. The survey conducted in 2018 recorded 66 registered cats remaining. The total number of domestic cats registered each year, the sex population structure, the number of new registrations and number deregistered are presented in Table 1, with the decline of two-thirds relatively steady over the years.

Table 1. Total number of domestic cats registered each year, the sex structure, the number of new registrations and number de-registered.

Date No. registered New/re-registers De-registers
  Total Female Male Total Female Male Total Female Male
October 2010 N/A N/A N/A 136 66 70 N/A N/A N/A
May 2011 138 69 69 18 10 8 16 7 9
May 2012 135 66 69 12 5 7 15 8 7
May 2013 111 53 58 0 0 0 24 13 11
May 2014 101 50 51 0 0 0 10 5 5
May 2015 87 45 42 0 0 0 14 5 9
May 2016 75 41 34 2 1 1 14 5 9
June 2016 93 49 44 18 8 10 0 0 0
May 2017 74 38 36 1 0 1 20 11 9
October 2018 66 36 30 0 0 0 8 2 6

Lessons learned and future directions: At the conclusion of the domestic cat survey in 2018, there were 66 registered cats present on the island. An additional seven domestic cats are known to have died before the planned 2019 domestic cat survey. Death of registered cats over the past nine years has been caused by a number of factors including: road fatalities; old age; disease; requests for cats to be euthanased for a variety of reasons and cats exported back to the mainland.

Domestic cats will remain on Christmas Island for a number of years, with the youngest cat approximately three years of age. Initially, as reported in the 2011 feature, it was predicted that the island would be domestic cat-free by 2024 however, this is unlikely given the subsequent and final veterinary program in 2016.

Further amendments to the island’s cat local laws were adopted in 2018, following consultation with the community and the Christmas Island Cat Eradication Steering Committee. This included an increase in penalties for illegal unregistered cats and compulsory transfer of ownership procedures to prevent future movement of registered pet cats into the designated pet cat prohibited zone. This zone protects nesting habitat for the ground-nesting Red-tailed Tropic Bird (Phaethon rubricauda, Fig 2.), where cat predation led to 90% failure of fledgling rates pre-control. Subsequent cat management in this zone has been successful in improving fledgling survival (See 2012 report).

There are several benefits of repeating the domestic cat survey each year as pet numbers decline: continue program awareness to all residents; maintain community support and involvement; offer pet health advice; thoroughly check for illegal cats to report to the Shire and respond to stray cat reports within the township. This continued effort will help ensure there is little opportunity or temptation to obtain new kittens as illegal pets while later stages of the eradication are progressing, and responsible cat ownership is maintained until the domestic cat population has died out.

The goal of eradicating cats remains highly relevant and is supported by the island community, local land management agencies and the federal government. The feasibility of long-term success is high and the outcome is likely to provide valuable lessons for other jurisdictions with social and environmental issues surrounding the presence of feral and domestic cats.

Stakeholders and Funding bodies: This is a collaborative project between Western Australian Department of Biodiversity, Conservation and Attractions and Parks Australia. The authors would like to thank Parks Australia, Christmas Island Phosphates, Shire of Christmas Island, Department of Infrastructure, Transport, Cities and Regional Development and Australian Border Force for their financial, in-kind and logistical support. Special thanks to Robert Muller, Khaleisha Amin and Chris Su for their assistance in annual surveys. The warm welcome and assistance of the whole Christmas Island community during all domestic cat surveys has been appreciated.

Contact information: David Algar, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions (Locked Bag 104, Bentley Delivery Centre, Western Australia, Australia 6983) Email: dave.algar@dbca.wa.gov.au

 

 

Ku-ring-gai Flying-fox Reserve Habitat Restoration Project at Gordon, 2000 – 2019 UPDATE of EMR feature

Nancy Pallin

[Update to EMR feature –  Pallin, Nancy (2001) Ku-ring-gai Flying-fox Reserve Habitat restoration project, 15 years on.  Ecological Management & Restoration 1:1, 10-20. https://onlinelibrary.wiley.com/doi/10.1046/j.1442-8903.2000.00003.x]

Key words:         bush regeneration, community engagement, wallaby browsing, heat events, climate change

Figure 1. Habitat restoration areas at Ku-ring-gai Flying-fox Reserve within the urban area of Gordon, showing areas treated during the various phases of the project. Post-2000 works included follow up in all zones, the new acquisition area, the pile burn site, the ecological hot burn site and sites where vines have been targeted. (Map provided by Ku-ring-gai Council.)

Introduction. The aim of this habitat restoration project remains to provide self-perpetuating indigenous roosting habitat for Grey-headed Flying-fox (Pteropus poliocephalus) located at Ku-ring-gai Flying-fox Reserve in Gordon, NSW Australia (Fig 1).  The secondary aim was to retain the diversity of fauna and flora within the Flying-fox Reserve managed by Ku-ring-gai Council. Prior to works, weed vines and the activity of flying-foxes in the trees had damaged the canopy trees while dense weed beneath prevented germination and growth of replacement trees.  Without intervention the forest was unable to recover.  Natural regeneration was assisted by works carried out by Bushcare volunteers and Council’s contract bush regeneration team.  The work involved weed removal, pile burns and planting of additional canopy trees including Sydney Bluegum (Eucalyptus saligna), which was expected to cope better with the increased nutrients brought in by flying-foxes.

Figure 2. The changing extent of the Grey-headed Flying-fox camp from the start of the project, including updates since 2000. (Data provided by KBCS and Ku-ring-gai Council)

Significant changes have occurred for flying-foxes and in the Reserve in the last 20 years.

In 2001 Grey-headed Flying-fox was added to the threatened species lists, of both NSW and Commonwealth legislation, in the Vulnerable category.  Monthly monitoring of the number of flying-foxes occupying the Reserve  has continued monthly since 1994 and, along with mapping of the extent of the camp, is recorded on Ku-ring-gai Council’s Geographical Information System. Quarterly population estimates contribute to the National Monitoring Program to estimate the population of Grey-headed Flying-fox.  In terms of results of the monitoring, the trend in the fly-out counts at Gordon shows a slight decline.  Since the extreme weather event in 2010, more camps have formed in the Sydney basin in response to declining food resources.

In 2007, prompted by Ku-ring-gai Bat Conservation Society (KBCS), the size of the Reserve was increased by 4.3 ha by NSW Government acquisition and transfer to Council of privately owned bushland. The Voluntary Conservation Agreement that had previously established over the whole reserve in 1998 was then extended to cover the new area.   These conservation measures have avoided new development projecting into the valley.

From 2009 Grey-headed Flying-fox again shifted their camp northwards into a narrow gully between houses (Fig 2).  This led to human-wildlife conflict over noise and smell especially during the mating season. Council responded by updating the Reserve Management Plan to increase focus on the needs of adjoining residents.  Council removed and trimmed some trees which were very close to houses. In 2018 the NSW Government, through Local Governments, provided grants for home retrofitting such as double glazing, to help residents live more comfortably near flying-fox camps.

Heat stress has caused flying-fox deaths in the Reserve on five days since 2002. Deaths (358) recorded in 2013, almost all were juveniles of that year.  KBCS installed a weather station (Davis Instruments Vantage Pro Plus, connected through a Davis Vantage Connect 3G system) and data loggers to provide continuous recording of temperature and humidity within the camp and along Stoney Creek.  The station updates every 15 minutes and gives accurate information on conditions actually being experienced in the camp by the flying-foxes. The data is publicly available http://sydneybats.org.au/ku-ring-gai-flying-fox-reserve/weather-in-the-reserve/Following advice on the location and area of flying-fox roosting habitat and refuge areas on days of extremely high temperatures (Fig 3.) by specialist biologist Dr Peggy Eby, Council adopted the Ku-ring-gai Flying-fox Reserve 10 Year Management and Roosting Habitat Plan in 2018.  Restoration efforts are now focused on improving habitat along the lower valley slopes to encourage flying-foxes to move away from residential property and to increase their resilience to heat events which are predicted to increase with climate change.

Figure 3. Map showing the general distribution of flying-foxes during heat events, as well as the location of exclosures. (Map provided by Ku-ring-gai Council)

Further works undertaken.  By 2000 native ground covers and shrubs were replacing the weeds that had been removed by the regeneration teams and Bushcare volunteers.  However, from 2004, browsing by the Swamp Wallaby (Wallabia bicolor) was preventing growth of young trees and shrubs.  Bushcare volunteers, supported by KBCS and Council responded by building tree cages made from plastic-mesh and wooden stakes. Reinforcing-steel rods replaced wooden stakes in 2008.   From 2011, the Bushcare volunteers experimented with building wallaby exclosures, to allow patches of shrubs and groundcovers to recover between trees (Figs 3 and 4).  Nineteen wallaby exclosures have been built. These range in size from 7m2 to 225m2 with a total area of 846m2.   Wire fencing panels (Mallee Mesh Sapling Guard 1200 x 1500mm) replaced plastic mesh in 2018.  Silt fence is used on the lower 0.5m to prevent reptiles being trapped and horizontally to deter Brush Turkey (‎Alectura lathami) from digging under the fence.

The wallaby exclosures have also provided an opportunity to improve moisture retention at ground level to help protect the Grey-headed Flying-fox during heat events.  While weed is controlled in the exclosures south of Stoney Creek, those north of the creek retain Trad and privets, consistent with the 10 Year Management and Roosting Habitat Plan.

Madeira Vine (Anredera cordifolia) remained a threat to canopy trees along Stoney Creek for some years after 2000, despite early treatments.  The contract bush regen team employed sInce 2010 targeted 21 Madiera Vine incursions.

A very hot ecological burn was undertaken in 2017 by Council in order to stimulate germination of soil stored seed and regenerate the Plant Community Type (PCT) – Smooth-barked Apple-Turpentine-Blackbutt tall open forest on enriched sandstone slopes and gullies of the Sydney region (PCT 1841).  This area was subsequently fenced. The contract bush regeneration team was also employed for this work to maintain and monitor the regeneration in the eco-burn area (720 hours per year for both the fire and Madiera Vine combined).

Figure 4. Exclusion fence construction method. Pictured are Bushcare volunteers, Jill Green and Pierre Vignal. (Photo N Pallin).

Figure 5. Natural regeneration in 2018 in (unburnt) exclosure S-6 (including germination of Turpentines). (Photo N. Pallin)

Further results to date. The original canopy trees in Phase 1 and Phase 2 (1987 -1997) areas have recovered and canopy gaps are now mostly closed. Circumference at breast height measurements were taken for seven planted Sydney Blue gum trees.  These ranged from 710 to 1410mm with estimated canopy spread from 2 to 6m.  While original Turpentine (Syncarpia glomulifera) had circumferences from 1070 and 2350mm with canopy spread estimated between 5and 8m, those planted or naturally germinated now have circumference measurements between 420 and 980mm with canopy spread estimated from 1.5 to 3m.  A Red Ash (Alphitonia excelsa) which naturally germinated after initial clearing of weeds now has a circumference of 1250mm with a canopy spread of 5m.  Also three Pigeonberry Ash (Elaeocarpus kirtonii) have circumference from 265 to 405mm with small canopies of 1 to 2m as they are under the canopies of large, old Turpentines.  As predicted by Robin Buchanan in 1985 few Blackbutt (Eucalyptus pilularis) juveniles survived while the original large old trees have recovered and the Sydney Bluegum trees have thrived.

In the Phase 3 (1998 – 2000) area south of Stoney Creek the planted Sydney Blue Gum now have circumferences measuring between 368 and 743 (n7) with canopy spread between 2 and 6 m.  in this area the original large trees have girths between 1125 and 1770mm (n7) whereas trees which either germinated naturally or were planted now range from 130 to 678mm (n12).  These measurement samples show that it takes many decades for trees to reach their full size and be able to support a flying-fox camp.

Wallaby exclosures constructed since 2013 south of Stoney Creek contain both planted and regenerated species.  Eight tree species, 11 midstorey species, 27 understorey species and eight vines have naturally regenerated.  Turpentines grew slowly, reaching 1.5m in 4 years.  Blackbutts thrived initially but have since died. In exclosures north of the creek,  weeds including Large-leaved Privet,  Ligustrum lucidum,  Small-leaved privet,  L. sinense,  Lantana, Lantana camara,  and Trad, Tradescantia fluminensis) have been allow to persist and develop to maximise ground moisture levels for flying-foxes during heat events. Outside the exclosures, as wallabies have grazed and browsed natives, the forest has gradually lost its lower structural layers, a difference very evident in Fig 6.

Figure 6. Visible difference in density and height of ground cover north and south of Stoney creek. (Photo P. Vignal)

Coachwood (Ceratopetalum apetalum) were densely planted in a 3 x 15m exclosure under the canopies of mature Coachwood next to Stoney Creek in 2015. In 4 years they have reached 1.5m.  In this moist site native groundcovers are developing a dense, moist ground cover.

Madiera Vine, the highest-threat weed, is now largely confined to degraded edges of the reserve, where strategic consolidation is being implemented with a view to total eradication.

In the hot burn area, which was both fenced and weeded, recruitment has been outstanding. One 20 x 20m quadrat recorded 58 native species regenerating where previously 16 main weed species and only 6 native species were present above ground. A total of 20 saplings and 43 seedlings of canopy species including Eucalyptus spp., Turpentine and Coachwood were recorded in this quadrat where the treatment involved weed removal, burning and fencing  (S. Brown, Ku-ring-gai Council, July 2019, unpublished data).  Unfortunately, however, the timing and location of the burn did not take into account its impact on the flying-fox camp and there was some damage to existing canopy trees. It will be many years before the canopy trees, which are regenerating, will be strong enough to support flying-foxes.

Monitoring from the weather station and data loggers has shown that close to Stoney Creek on a hot day it is typically 2-3° C cooler, and 5-10% higher in humidity, than in the current camp area (pers. comm. Tim Pearson). During heat events the flying-foxes move to this cooler and moister zone, increasing their chances of survival.

Fauna observed other than flying-foxes includes a pair of Wedge-tail Eagle ( Aquila audax plus their juvenile, a nesting Grey Goshawk (Accipiter novaehollandiae) and a Pacific Baza (Aviceda subcristata).  Powerful Owl (Ninox strenua) individuals continue to use the valley. The presence of raptors and owls indicate that the ecosystem processes appear to be functional. Despite the decline of the shrub layer outside fenced areas, the same range of small bird species (as seen prior to 2000) are still seen including migrants such as Rufous Fantail ( Rhipidura rufifrons) which prefers dense, shady vegetation. The first sighting of a Noisy Pitta (Pitta versicolor) was in 2014.  Long-nosed Bandicoot (Perameles nasuta) individuals appear and disappear, while Swamp Wallaby remains plentiful.

Lessons learned and future directions. Climate change is an increasing threat to Pteropus species. On the advice of Dr Eby, Flying-fox Consultant, Council, KBCS and Bushcare Volunteers agreed to retain all vegetation including weeds such as Large-leaved Privet and Small-leaved Privet, patches of the shrub Ochna (Ochna serrulata) and Trad as a moist ground cover in the camp area and areas used by the flying-foxes during heat events.

Building cheap, lightweight fencing can be effective against wallaby impacts, provided it is regularly inspected and repaired after damage caused by falling branches. This style of fencing has the additional advantage of being removable and reusable.  It has been proposed that, to provide understory vegetation to fuel future burns in parts of the reserve away from the flying-fox camp, further such temporary fencing could be installed.

Ku-ring-gai Council has commenced a  program to install permanent monitoring points to annually record changes in the vegetation, consistent with the state-based  Biodiversity Assessment Method.

Stakeholders and Funding bodies. Members of KBCS make donations, volunteer for monthly flyout counts, Bushcare and present educational events with live flying-foxes. KBCS hosts the website www.sydneybats.org.au. Ku-ring-gai Council which is responsible for the Reserve has been active in improving management to benefit both residents and flying-foxes.  Ku-ring-gai Environmental Levy Grants to KBCS have contributed substantially to purchase of fencing materials and the weather station. http://www.kmc.nsw.gov.au/About_Ku-ring-gai/Land_and_surrounds/Local_wildlife/Native_species_profiles/Grey-headed_flying-fox

Thank you to Jacob Sife and Chelsea Hankin at Ku-ring-gai Council for preparing the maps and to volunteer Pierre Vignal for assistance with tree measurements, downloading data loggers and a photo.  Researcher,  Tim Pearson installed the weather station.

Contact information. Nancy Pallin, Management Committee member, Ku-ring-gai Bat Conservation Society Inc.  PO Box 607, Gordon 2072  Tel 61 418748109. Email:  pallinnancy@gmail.com

Monitoring the Wunambal Gaambera Healthy Country Plan, Kimberley, Western Australia – UPDATE of EMR feature

[Update to EMR feature: Moorcroft, Heather, Emma Ignjic, Stuart Cowell, John Goonack, Sylvester Mangolomara, Janet Oobagooma, Regina Karadada, Dianna Williams and Neil Waina (2012) Conservation planning in a cross‐cultural context: the Wunambal Gaambera Healthy Country Project in the Kimberley, Western Australia,  Ecological Management & Restoration, 13:1, 16-25. See https://doi.org/10.1111/j.1442-8903.2011.00629.xk]

Key words: conservation planning, participatory conservation, Indigenous people, Kimberley

Figure 1. Location map of Wunambal Gaambera land and sea country. (Source: WGAC)

Introduction. The development of the Wunambal Gaambera Healthy Country Plan (HCP) was a key enabler for Wunambal Gaambera people to look after country (Fig 1) and occurred at an important time when native title rights to country were being secured. The plan came about through a partnership between Wunambal Gaambera Aboriginal Corporation (WGAC) and Bush Heritage Australia (BHA), who brought the planning approach and supported WGAC to develop a plan that met the needs of Traditional Owners. This plan then became the basis of a long term partnership between the two organisations to support implementation.

Healthy Country Planning, a term coined by this project, adapted the Open Standards for the Practice of Conservation (http://cmp-openstandards.org/ ) to an Indigenous native title community context. The approach has subsequently flourished in Australia, adopted by a further 30 indigenous groups ( see doi: 10.1111/emr.12267).

The unique partnership model established between BHA and WGAC, underpinned by Healthy Country Planning, has also expanded (https://www.bushheritage.org.au/what-we-do/aboriginal-partnerships). The program supports indigenous partners to achieve their community and conservation aspirations articulated through Healthy Country Planning.

Figure 2. Terrick Bin Sali handling a northern quoll (Dasyurus hallucatus). (Photo WGAC)

Conservation planning with a difference. Our experience has been that the Open Standards can be successfully applied to an Indigenous context but some important adaptation is required. For example:

  1. People, culture and country are inseparable in Australian indigenous worldviews. As such, Healthy Country Planning is much wider in scope than mainstream conservation or natural resource management planning. The vision in the HCP typically sets long-term goals that include aspirations for looking after country and achieving health conditions for landscapes, seascapes, plants and animals, as well as for people and culture (Figs 2-4). These outcomes are collectively referred to as “Healthy Country”. An indigenous plan will always recognize and value people in the landscape rather than as separate. Traditional Owners, and/or their culture, become a conservation target alongside species and habitats with ‘key cultural attributes’ established alongside ‘key ecological attributes’. HCPs also have a greater degree of management strategies that relate to people and culture than would be found in mainstream management plans, and culture and Indigenous Knowledge is incorporated into land management activities that could be considered mainstream, such as the inclusion of cultural rules within visitor management.
  2. The Open Standards include approaches and tools for stakeholder participation that lend themselves well to Indigenous peoples, however given that Indigenous lands are communally-owned and governed by unique law and culture systems, participation requirements are higher and more complex. Traditional systems of governance are often recognized under State and Federal Law (such as the Native Title Act) requiring additional process steps. In developing the HCP, WGAC undertook a process of involving all Traditional Owner families in various stages of planning and the plan was authorized at a Traditional Owner meeting.
  3. A Healthy Country Plan typically applies to the whole traditional estate of a Traditional Owner group regardless of tenure, consistent with the concept of “Country-based Planning”. WGAC initially dedicated stage I of the Uunguu Indigenous Protected Area over several aboriginal reserves in 2010, and later added exclusive possession lands following native title determination. The marine environment will also be added to the IPA once agreement is reached with State and Commonwealth Governments, as articulated in the Uunguu Wundaagu Plan.

Figure 3. Traditional Owners undertaking a ‘junba’ traditional dance workshop. (Photo: WGAC)

Monitoring & evaluation since 2012. Aspects of the monitoring and evaluation framework established by WGAC include the establishment of the Uunguu Monitoring & Evaluation Committee (UMEC) and the completion of mid-term evaluation of the HCP (see 2017 review doi:10.1111/emr.12257). The UMEC is composed of Traditional Owners and external experts who undertake key Healthy Country Planning steps and functions. A significant investment of time and money was required to support annual or biennial meetings “on country” (ie. on Wunambal Gaambera lands), however the review showed that the investment has proven worthwhile because WGAC has been able to implement the plan to a high degree.

In 2015 a major mid-term evaluation was undertaken to assess the progress of the HCP. It utilized some standard evaluation tools examining Open Standards process. It also incorporated some new approaches to include the views of the wider Traditional Owner community in the evaluation of the plan to ensure the plan was meeting their needs and following effective process with regard to governance and participation. The review made a number of observations as follows.

  1. Considerable progress had been made in the implementation of fire management strategies in the HCP to the point that the health condition of the “Right Way Fire” target was changed from ‘fair’ to ‘good’. Unmanaged wildfires have significantly reduced in size as a result of increased capabilities of the Uunguu Rangers to undertake burning. At the same time “right way” cultural principles have been incorporated into operations to ensure that Traditional Owner families are making decisions about burning and undertaking fire operations on their family areas.
  2. Significant progress has been made against a visitor management strategy. One of the key concerns of elders when developing the plan was unregulated visitation to important cultural sites by the expedition cruise industry and independent travelers. The Uunguu Visitor Pass, launched in 2017, requires visitors to obtain a permit to access authorized visitor locations as well as generating funds for looking after country. Over 90% of commercial tour operators have now registered for the UVP, with a similar independent traveler compliance, generating funds to support Traditional Owner participation in visitor management and delivering tour products.
  3. Progress was not made, however, in the health of cultural targets in the plan. As a result, the 2015 review recommended further investment and effort in culture strategies. Two important books have been completed to document elders’ knowledge of biodiversity and cultural places. There has been an increase in cultural activities including language and corroboree dance workshops and annual culture camps for school children. Law and culture dictates that visitors to country (indigenous or non-indigenous) need to be accompanied by the right local Traditional Owners when undertaking activities on country. In this way Healthy Country work supports large numbers of Traditional Owners to visit country and guide participation in the implementation of the plan. A number of actions have been undertaken to support Traditional Owners to live on country and remote ranger infrastructure has been developed.

Figure 4. Uunguu Rangers during a cultural fire walk. (Photo WGAC)

Future Directions. The first 8 years of the HCP implementation has focused on building WGAC’s land and sea management capacity and resources, with funding from WGAC,  the Australian Governments Indigenous Protected Area and Indigenous Ranger Programs and from Bush Heritage Australia. Traditional Owners currently hold certificate level roles of rangers, tourism workers and construction workers but further work is now needed to support Traditional Owners to take on roles that require higher levels of training. There is also a need to support the development of a wider range of livelihoods to support Traditional Owners to live and/or work on country.

Contact information. Wunambal Gaambera Aboriginal Corporation, PMB 16 Kalumburu via Wyndham WA 6740, Australia.

Email: info@wunambalgaambera.org.au

Web: www.wunambalgaambera.org.au

Facebook: https://www.facebook.com/uunguulife/

 

 

 

 

 

 

Recovering Murray-Darling Basin fishes by revitalizing a Native Fish Strategy – UPDATE of EMR feature

John Koehn, Mark Lintermans and Craig Copeland

[Update of EMR Feature: Koehn JD, Lintermans M, Copeland C (2014) Laying the foundations for fish recovery: The first 10 years of the Native Fish Strategy for the Murray‐Darling Basin, Australia. Ecological Management & Restoration, 15:S1, 3-12. https://onlinelibrary.wiley.com/doi/10.1111/emr.12090]

Key words restoration, native fish populations, threatened species, Australia, Murray-Darling Basin

Figure 1. The construction of fishways can help restore river connectivity by allowing fish movements past instream barriers. (Photo: ARI.)

 Introduction. Fish populations in the Murray-Darling Basin (MDB), Australia, have suffered substantial declines due to a wide range of threats and there is considerable concern for their future. Given these declines and the high ecological, economic, social and cultural values of fish to the Australian community, there is a need to recover these populations. In 2003, a Native Fish Strategy (NFS) was developed to address key threats; taking a coordinated, long-term, multi-jurisdictional approach, focussed on recovering all native fish (not just angling species) and managing alien species. The strategy objective was to improve populations from their estimated 10% of pre-European settlement levels, to 60% after 50 years of implementation.

To achieve this the NFS was intended to be managed as a series of 10-year plans to assist management actions in four key areas; the generation of new knowledge, demonstration that multiple actions could achieve improvements to native fish populations, building of a collaborative approach, and the communication of existing as well as newly-acquired science. The NFS successfully delivered more than 100 research projects across six ‘Driving Actions’ in its first 10 years, with highlights including the implementation of the ‘Sea to Hume’ fishway program (restoring fish passage to >2 200 km of the Murray River, Fig 1), improved knowledge of fish responses to environmental water allocations, development of new technologies for controlling alien fish, methods to distinguish hatchery from wild-bred fish, creating a community partnership approach to ‘ownership’ of the NFS, and rehabilitating fish habitats using multiple interventions at selected river (demonstrations) reaches.  The NFS partnership involving researchers, managers, policy makers and the community delivered an applied research program that was rapidly incorporated into on-the-ground management activities (e.g. design of fishways; alien fish control, environmental watering; emergency drought interventions). The NFS largely coincided with the Millennium Drought (1997-2010) followed by extensive flooding and blackwater events, and its activities contributed significantly to persistence of native fish populations during this time.

Funding for the NFS program ceased in 2012-13, after only the first decade of implementation but the relationships among fishers, indigenous people and government agencies have continued along with a legacy of knowledge, development of new projects and collaborative networks with key lessons for improved management of native fishes (see http://www.finterest.com.au/).

Figure 2. Recreational fishers are a key stakeholder in the Murray-Darling Basin, with a keen desire to have sustainable fishing for future generations. (Photo: Josh Waddell.)

Further works undertaken. Whilst the NFS is no longer funded as an official project, many activities have continued though a range of subsequent projects; some are highlighted below:

  • Environmental water: development of fish objectives and implementation of the Basin Plan, northern MDB complementary measures, further investigation of mitigation measures for fish extraction via pumps and water diversions.
  • Fishways: Completion of sea to Lake Hume fishway program and other fishways such as Brewarrina
  • Community engagement: Continuation of many Demonstration (recovery) reaches and intermittent NFS Forums (Fig 2).
  • Recreational fishery management: engagement of anglers through the creation of the Murray Cod (Maccullochella peelii) fishery management group and OzFish Unlimited.
  • Threatened species recovery: success with Trout Cod (Maccullochella macquariensis)  (Fig 3) and Macquarie Perch (Macquaria australasica) populations, development of population models for nine MDB native fish species.
  • Knowledge improvement: research has continued, as has the publication of previous NFS research-related work.
  • Indigenous and community connection to fishes: development of the concept of Cultural flows, involvement in Basin watering discussions.

Figure 3. Trout Cod are a success story in the recovery of Australian threatened species. (Photo: ARI.)

Further results to date. The continued poor state of native fishes means there is a clear need for the continuation of successful elements of the NFS. There is need, however, for revision to provide a contemporary context, as some major changes have occurred over the past decade. The most dramatic of these, at least publicly, has been the occurrence of repeated, large fish kills (Fig 4). This was most evident in the lower Darling River in early 2019 when millions of fish died. The media coverage and public outcry followed the South Australian Royal Commission and two ABC 4Corners investigations into water management, highlighted that all was not well in the Murray-Darling Basin. Indeed, following two inquiries, political recommendations were made to develop a Native Fish Recovery Management Strategy (NFMRS), and a business case is currently being developed. The drought, water extraction and insufficient management efforts to support native fish populations, especially within a broader sphere of a ‘new’ climate cycle of more droughts and climatic extremes, have contributed to these fish kill events. For example, one of the necessary restoration efforts intended from the Basin Plan was to provide more water for environmental purposes to improve river condition and fish populations. Recent research, however, appears to indicate that flow volumes down the Darling River have generally decreased. There is also a continuing decline of species with examples such as Yarra Pygmy Perch (Nannoperca obscura), now being extinct in MDB, and the closely related Southern Pygmy Perch (Nannoperca australis) which is still declining. Monitoring of fish populations has indicated that they remain in poor health and the need for recovery may be even greater than in 2003. We need to act now.

While some of the legacy of the NFS has continued, there has been a loss of integrated and coordinated recovery actions that were a key feature of the NFS. This loss of a Basin-wide approach has resulted in some areas (e.g. small streams and upland reaches) being neglected, with a concentration on lowland, regulated river reaches. There has also been a shift from a multi-threat, multi-solution approach to recovery, to a narrower, flow-focussed approach under the Basin Plan. In addition, there has been the installation of infrastructure (known as Sustainable Diversion Measures) to ‘save’ water which may have deleterious impacts on fish populations (e.g. the impoundment of water on floodplains by regulators or the changed operations of Menindee Lakes on the Darling River).

A clear success of the NFS was improvements in community understanding of native fishes and their engagement in restoration activities. These community voices- indigenous, conservation, anglers, etc. have been somewhat neglected in the delivery of the Basin Plan. There has been ongoing fish researcher and stakeholder engagement, but this has been largely driven by enormous goodwill and commitment from individuals involved in the collaborative networks established through the NFS. While these efforts have been supported by many funding bodies and partners such as the Murray-Darlin Basin Authority, state and Commonwealth water holders and agencies and catchment management authorities, without true cross-basin agreement and collaboration the effectiveness of these efforts will be significantly reduced.

Figure 4. Fish kills have created great public concern and are an indication of the need for improved management of native fish populations. (Photo:Graeme McRabb.)

Lessons learned and future directions.  Native fish populations in the MDB remain in a poor state and improvements will not be achieved without continued and concerted recovery efforts. Moreover, a 5-year review of the NFS indicated that while the actions undertaken to that time had been positive, they needed to be a scaling up considerably to achieve the established goals.  Recovery actions must be supported by knowledge and the lessons learnt from previous experience.  Some fish management and research activities have continued under the auspices of the Basin Plan, but these have largely focussed on the delivery of environmental water, either through water buy-backs or improved efficiency of water delivery. A key requirement is therefore transparent and accurate measurement and reporting of how much flow has been returned to the environment, and how this may have improved fish populations. This remains problematic as evidenced by the recent inquiries into fish kills in the lower Darling River (and elsewhere) and the lack of available water accounting. Fish kills are likely to continue to reoccur and the lingering dry conditions across much of the Northern Basin in 2018-19 and climate forecasts have highlighted the need for further, urgent actions through an updated NFS.

The NFS governance frameworks at the project level were excellent and while some relationships have endured informally, there is a need for an overarching strategy and coordination of efforts across jurisdictions to achieve the improved fish outcomes that are required. The absence of the formal NFS thematic taskforces (fish passage, alien fishes, community stakeholder, demonstration reaches etc) and the absence of any overarching NFS structures means that coordination and communication is lacking, with a focus only on water, limiting the previously holistic, cross jurisdiction, whole-of-Basin approach. The priority actions developed and agreed to for the NFS remain largely relevant, just need revitalized and given the dire status of native fish, scaled up significantly.

Stakeholders and funding. The continuation of quality research and increased understanding of fish ecology, however, not have kept pace with the needs of managers in the highly dynamic area of environmental watering. The transfer of knowledge to managers and the community needs to be reinvigorated. Efforts to engage recreational fishers and communities to become stakeholders in river health are improving (e.g. OzFish Unlimited: https://ozfish.org.au; Finterest website: http://www.finterest.com.au/) but with dedicated, increased support, a much greater level of engagement would be expected.  Previously, the community stakeholder taskforce and Native Fish coordinators in each state provided assistance and direction, including coordination of the annual Native Fish Awareness week. Some other key interventions such as the Basin Pest Fish Plan have not been completed and recovery of threatened fishes have received little attention (e.g. no priority fish identified in the national threatened species strategy).  Funding for fish recovery is now piecemeal, inadequate and uncoordinated, despite the growing need. The $13 B being spent on implementation of the Basin Plan should be complemented by an appropriate amount spent on other measures to ensure the recovery of MDB fishes.

Contact information. John Koehn is a Principal Research Scientist at the Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, was an author the Murray-Darling Basin Native Fish Strategy and a member of various Native Fish Strategy panels and projects (Email:  John.Koehn@delwp.vic.gov.au). Mark Lintermans is an Associate Professor at Institute for Applied Ecology, University of Canberra, and was a member of various Native Fish Strategy panels and projects; (Email: Mark.Lintermans@canberra.edu.au). Craig Copeland is the CEO of OzFish Unlimited and a leading contributor to the development of the next stage of the Native Fish Strategy, the Northern Basin Complementary Measures Program and the 2017 MDB Native Fish Forum (Email: craigcopeland@ozfish.org.au).

 

Restoration and conservation in an iconic National Park – UPDATE of EMR feature

David Lindenmayer, Chris MacGregor, Natasha Robinson, Claire Foster, and Nick Dexter

[Update of EMR feature – David B. Lindenmayer, Christopher MacGregor, Nick Dexter, Martin Fortescue and Peter Cochrane (2013)  Booderee National Park Management: Connecting science and management.  Ecological Management & Restoration, 14:1, 2-10. https://onlinelibrary.wiley.com/doi/10.1111/emr.12027]

Keywords: Invasive animal and plant control, reintroduction, monitoring

Introduction. Booderee National Park is an iconic, species-rich, coastal reserve that supports a range of threatened and endangered native animals and plants. Several key management actions have been implemented to promote the conservation of biodiversity in Booderee National Park. These include the control of an exotic predator (the Red Fox Vulpes vulpes), the control of highly invasive Bitou Bush (Chrysanthemoides monilifera subsp. rotundata), the management of fire, and the reintroduction of previously extinct native mammals. A key part of work at Booderee National Park has been a long-term monitoring program that commenced in late 2002 and which has aimed to quantify the effectiveness of major management interventions, including the four listed above. The monitoring program has documented the long-term trajectories of populations of birds, arboreal marsupials, terrestrial mammals, reptiles, frogs and native plants in a range of major vegetation types (from heathland and sedgeland to woodland, forest and rainforest) and in response to fire, and weed and feral predator control. Importantly, the monitoring program has provided a foundational platform from which a suite of post-graduate studies and other research programs have been completed.

Further works undertaken. A key part of the researcher-manager partnership has been to analyse the long-term trajectories of populations of mammals, birds and reptiles in Booderee National Park. The monitoring data indicate that many species of mammals are declining, with some having become recently locally extinct (e.g. Greater Glider Petauroides volans) or close to extinction in the reserve (e.g. Common Ringtail Possum Pseudocheirus peregrinus) . This is despite populations of these species persisting in nearby reserves.  Robust interrogation of the multi-taxa monitoring data has been unable to identify reasons for these declines. Interestingly, the declines observed for mammals have not been observed to date in other vertebrate groups, including birds, reptiles and amphibians. An experimentally-based reintroduction program for the Greater Glider aims to not only re-establish populations of the species in Booderee National Park, but also to identify the reasons for the original decline. That program will be in addition to reintroduction programs already underway for other mammal species, the Long-nosed Potoroo (Potorous tridactylus), the Southern Brown Bandicoot (Isoodon obesulus) and Eastern Quoll (Dasyurus vivverinus) that used to inhabit Booderee National Park but which went extinct many decades earlier.

Additional research being undertaken in Booderee National Park has included: (1) studies of the effectiveness of control efforts for Bitou Bush and associated recovery of native vegetation and native fauna, (2) the interactive effects of fire and browsing on native plants and an array of animal groups, and (3) studies of leaf litter and other fuel dynamics in relation to previous fire history and macropod browsing.

Figure 1. Key area of Booderee National Park showing an area of coastal forest before and after Bitou Bush treatment.

Further results to date. Research and monitoring in the past six years have resulted in many new insights including some of considerable value for informing restoration programs. A small subset of these findings is outlined below.

  • Conventional approaches to the control of invasive Bitou Bush entail spraying ultra-low volume herbicide (Fig. 1), followed by burning of the “cured” dead material, and then respraying of the seedlings that germinate after fire. This spray-burn-spray protocol is both the most ecologically effective and the most cost-effective way of controlling Bitou Bush and, at the same time, facilitates the recovery of native vegetation. More recent analysis has revealed spray frequency as the most important determinant of long-term control. There are mixed effects of control methods on native species; plant species abundance was positively related to Bitou Bush control, while native bird abundance (except for Eastern Bristlebird Dasyornis brachypterus, Fig 2.) and mammal abundance were weakly negatively associated with Bitou control.
  • There can be strong interactions between the occurrence of fire and browsing by macropods on native plants as well as particular groups of animals such as spiders.
  • Reintroduction programs for the Southern Brown Bandicoot and Eastern Quoll have been relatively successful, although the latter species suffers high rates of mortality, particularly as a result of fox predation and collisions with motor vehicles. Nevertheless, populations of both species have survived over multiple years and reproduced successfully.

Figure 2. The Eastern Bristlebird, a species for which Booderee National Park is a stronghold. Notably, the species responds positively to management interventions to control Bitou Bush. (Photo Graeme Chapman)

Lessons learned and future directions. The work at Booderee National Park is a truly collaborative partnership between reserve managers, a university and the local Indigenous community.  A key part of the enduring, long-term success of the project has been that a full-time employee of The Australian National University has been stationed permanently in the Parks Australia office in the Jervis Bay Territory. That person (CM) works on an almost daily basis within Booderee National Park and this provides an ideal way to facilitate communication of new research and monitoring results to managers. It also enables emerging management concerns to be included as part of adaptive monitoring practices.

One of the key lessons learned from the long-term work has been the extent of ecological “surprises” – that is, highly unexpected results, including those which continue to remain unexplained. An example is the rapid loss of the Greater Glider and the major decline in populations of the Common Ringtail Possum. One of the clear benefits of this integrated monitoring-management team has been the rapid response to emerging threats. For example in response to high rates of mortality of reintroduced Eastern Quolls, control of the Red Fox was intensified within the park and greater cross-tenure control efforts with neighbouring private and public land managers have commenced. Regular evaluation of monitoring data and management actions has also enabled careful examination of the kinds of risks that can compromise reintroduction programs. These and other learnings will inform other, future reintroduction and translocation programs that are planned for Booderee National Park such as that for the Greater Glider.

Stakeholders and funding bodies. Ongoing work has been supported by many funding bodies and partners. These include the Wreck Bay Aboriginal Community who are the Traditional Owners of Booderee National Park as well as Parks Australia who co-manage the park with the Wreck Bay Aboriginal Community. Other key funders include the Department of Defence, the Thomas Foundation, The National Environmental Science Program (Threatened Species Recovery Hub), the Australian Research Council, the Margaret Middleton Foundation, and the Norman Wettenhall Foundation. Partnerships with Rewilding Australia, Taronga Conservation Society, WWF Australia, NSW Forestry Corporation and various wildlife sanctuaries have been instrumental to reintroduction programs.

Contact information. David Lindenmayer, Chris MacGregor, Natasha Robinson and Claire Foster are with the National Environmental Science Program (Threatened Species Recovery Hub), Fenner School of Environment and Society, The Australian National University (Canberra, ACT, 2601, david.lindenmayer@anu.edu.au). Nick Dexter is with Parks Australia, Jervis Bay Territory, Australia, 2540.

The Tiromoana Bush restoration project, Canterbury, New Zealand

Key words: Lowland temperate forest, animal pest control, weed control, restoration plantings, public access, cultural values, farmland restoration

Introduction. Commencing in 2004, the 407 ha Tiromoana Bush restoration project arose as part of the mitigation for the establishment of the Canterbury Regional Landfill at Kate Valley, New Zealand. The site lies one hour’s drive north of Christchurch City in North Canterbury coastal hill country (Motunau Ecological District, 43° 06’ S, 172° 51’ E, 0 – 360 m a.s.l.) and is located on a former sheep and beef farm.

Soils are derived from tertiary limestones and mudstones and the site experiences an annual rainfall of 920mm, largely falling in winter. The current vegetation is a mix of Kānuka (Kunzea robusta) and mixed-species shrubland and low forest, restoration plantings, wetlands, Gorse (Ulex europaeus) and European Broom (Cytisus scoparius) shrubland and abandoned pasture. Historically the area would have been forest, which was likely cleared 500-700 years ago as a result of early Māori settlement fires. A total of 177 native vascular plant and 22 native bird species have been recorded, including four nationally threatened species and several regionally rare species.

Before and after photo pair (2005-2018). showing extensive infilling of native woody vegetation on hill slopes opposite, restoration plantings in the central valley, and successional change from small-leaved shrubs to canopy forming trees in the left foreground. (Photos David Norton.)

 

Project aims. The long-term vision for this project sees Tiromoana Bush, in 300 years, restored to a: “Predominantly forest ecosystem (including coastal broadleaved, mixed podocarp-broadleaved and black beech forests) where dynamic natural processes occur with minimal human intervention, where the plants and animals typical of the Motunau Ecological District persist without threat of extinction, and where people visit for recreation and to appreciate the restored natural environment.”

Thirty-five year outcomes have been identified that, if achieved, will indicate that restoration is proceeding towards the vision – these are:

  1. Vigorous regeneration is occurring within the existing areas of shrubland and forest sufficient to ensure that natural successional processes are leading towards the development of mature lowland forest.
  2. The existing Korimako (Bellbird Anthornis melanura) population has expanded and Kereru (Native Pigeon Hemiphaga novaeseelandiae) are now residing within the area, and the species richness and abundance of native water birds have been enhanced.
  3. The area of Black Beech (Fuscospora solandri) forest has increased with at least one additional Black Beech population established.
  4. Restoration plantings and natural regeneration have enhanced connectivity between existing forest patches.
  5. Restoration plantings have re-established locally rare vegetation types.
  6. The area is being actively used for recreational, educational and scientific purposes.

Day-to-day management is guided by a five-year management plan and annual work plans. The management plan provides an overview of the approach that is being taken to restoration, while annual work plans provide detail on the specific management actions that will be undertaken to implement the management plan.

Forest restoration plantings connecting two areas of regenerating Kānuka forest. Photo David Norton.

 

Restoration approach and outcomes to date. The main management actions taken and outcomes achieved have included:

  • An Open Space Covenant was gazetted on the title of the property in July 2006 through the QEII National Trust, providing in-perpetuity protection of the site irrespective of future ownership.
  • Browsing by cattle and sheep was excluded at the outset of the project through upgrading existing fences and construction of new fences. A 16 km deer fence has been built which together with intensive animal control work by ground-based hunters has eradicated Red Deer (Cervus elaphus) and helped reduce damage caused by feral pigs (Sus scrofa domesticus).
  • Strategic restoration plantings have been undertaken annually to increase the area of native woody and wetland vegetation, as well as providing food and nesting resources for native birds. A key focus of these has been on enhancing linkages between existing areas of regenerating forest and re-establishing rare ecosystem types (e.g. wetland and coastal forest).
  • Annual weed control is undertaken focusing on species that are likely to alter successional development (e.g. wilding conifers, mainly Pinus radiata, and willows Salix cinerea and fragilis) or that have the potential to smother native regeneration (e.g. Old Man’s Beard Clematis vitalba). Gorse and European Broom are not controlled as they act as a nurse for native forest regeneration and the cost and collateral damage associated with their control will outweigh biodiversity benefits.
  • Establishment of a public walking track was undertaken early in the project and in 2017/2018 this was enhanced and extended, with new interpretation included. Public access has been seen as a core component of the project from the outset so the public can enjoy the restoration project and access a section of the coastline that is otherwise relatively inaccessible.
  • Part of the walkway upgrade included working closely with the local Māori tribe, Ngāi Tūāhuriri, who have mana whenua (customary ownership) over the area. They were commissioned to produce a pou whenua (land marker) at the walkway’s coastal lookout. The carvings on the pou reflect cultural values and relate to the importance of the area to Ngāi Tūāhuriri and especially values associated with mahinga kai (the resources that come from the area).
  • Regular monitoring has included birds, vegetation and landscape, with additional one-off assessments of invertebrates and animal pests. Tiromoana Bush has been used as the basis for several undergraduate and postgraduate student research projects from the two local universities.
Vigorous regeneration of Mahoe under the Kānuka canopy following exclusion of grazing animals. Photo David Norton.

 

Lessons learned. Important lessons learned over the 15-years have both shaped the approach to management at this site and have implications for the management of other projects:

  • Control of browsing mammals, both domestic and feral, has been essential to the success of this project. While domestic livestock were excluded at the outset of the project, feral Red Deer and pigs have the potential to seriously compromise restoration outcomes and these species have required additional management inputs (fencing and culling).
  • Since removal of grazing, the dominant exotic pasture grasses, especially Cocksfoot (Dactylis gomerata), now form tall dense swards. These swards severely restrict the ability of native woody plants to establish and herbicide control is used both pre- and post-planting to overcome this. During dry summers (which are common) the grass sward is also a significant fuel source and the walkway is closed during periods of high fire risk to avoid accidental fires which would decimate the restoration project.
  • Regular monitoring is important for assessing the biodiversity response to management. Annual photo-monitoring now spanning 15-years is highlighting significant changes in land cover across the site, while more detailed monitoring of plants and birds is strongly informing management actions. For example, seven-years of bird monitoring has indicated an ongoing decline in some native birds that is most likely due to predation (by cats, mustelids, rodents, hedgehogs). As a result, a predator control programme is commencing in 2019.
  • Simply removing grazing pressure from areas of existing regenerating native woody vegetation cannot be expected to result in the return of the pre-human forest because of the absence of seed sources. Permanent plots suggest that Kānuka is likely to be replaced by Mahoe (Melicytus ramiflorus), with few other tree species present. Gap creation and enrichment planting is therefore being used to speed up the development of a more diverse podocarp-angiosperm forest canopy.
Kate Pond on the Tiromoana Bush walkway. The pond and surrounding wetland provides habitat for several native water birds. Photo Jo Stilwell.
The pou whenua on the coastal lookout platform looking north up the coastline. Photo David Norton.

 

Looking to the future. Considerable progress in restoring native biodiversity at Tiromoana Bush has been achieved over the last 15 years and it seems likely that the project will continue to move towards achieving its 35-year outcomes and eventually realising the long-term vision. To help guide management, the following goals have been proposed for the next ten-years and their achievement would further help guarantee the success of this project:

  • The main valley floor is dominated by regenerating Kahikatea (Dacrycarpus dacrydioides) forest and wetland, and the lower valley is dominated by regenerating coastal vegetation.
  • At least one locally extinct native bird species has been reintroduced.
  • Tiromoana Bush is managed as part of a wider Motunau conservation project.
  • The restoration project is used regularly as a key educational resource by local schools.
  • The walkway is regarded as an outstanding recreational experience and marketed by others as such.
  • Tiromoana Bush is highly valued by Ngāi Tūāhuriri.
Kereru, one of the native birds that restoration aims to help increase in abundance. Photo David Norton.

 

Stakeholders and funding. The project is funded by Transwaste Canterbury Ltd., a public-private partnership company who own the landfill and have been active in their public support for the restoration project and in promoting a broader conservation initiative in the wider area. Shareholders of the partnership company are Waste Management NZ Ltd, Christchurch City Council and Waimakariri, Hurunui, Selwyn and Ashburton District Councils.

Contact Information. Professor David Norton, Project Coordinator, School of Forestry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand. Phone +64 (027) 201-7794. Email david.norton@canterbury.ac.nz

Lord Howe Island biodiversity restoration and protection programs, NSW, Australia

Hank Bower

Key words: Pest species management, weed control, community engagement.

Figure 1. Weeding teams apply search effort across near 80% of island terrain, their effort monitored through record of GPS track logs across designated weed management blocks. Target weeds on LHI are mostly bird dispersed requiring landscape scale for sustainable and long-term protection from weeds. The remaining 20% of island is subject to surveillance and with investigation of new technical approaches in weed detection using drones.

Introduction: Lord Howe Island (LHI) is located in the Tasman Sea 760 km northeast of Sydney and 570 km east of Port Macquarie. In 1982 the island was inscribed on the World Heritage (WH) List under the United Nations’ World Heritage Convention in recognition of its superlative natural phenomena and its rich terrestrial and marine biodiversity as an outstanding example of an island ecosystem developed from submarine volcanic activity.

The island supports at least 80% cover of native vegetation, broadly described as Oceanic Rainforest with Oceanic Cloud Forest on the mountain summits.  LHI vegetation comprises 239 native vascular plant species with 47% being endemic. Forest ecosystems on LHI are largely intact, but at threat from invasive species and climate change. About 75% of the terrestrial part of the WH property is recognised as a Permanent Park Preserve (PPP) managed on behalf of the New South Wales government by the Lord Howe Island Board on the basis of a holistic conservation and restoration plan (Lord Howe Island Biodiversity Management Plan LHI BMP 2007).

Since settlement of the island in 1834, introduced and invasive plant and animal species have been affecting the Lord Howe Island environment, causing declines in biodiversity and ecosystem health. There have been 11 known extinctions and severe declines in numbers of fauna species including the flightless Lord Howe Woodhen (Hypotaenidia sylvestris), once regarded as one of the rarest birds in the world.  The Lord Howe Island Phasmid (Dryococelus australis), the world’s largest stick insect was feared extinct until the rediscovery of live specimens on Balls Pyramid in 2001. Some 29 species of introduced vertebrates and about 271 species of introduced plant species have naturalised on the island. At least 68 species are the focus for eradication (Fig 1), with 10 main invasive species having colonised extensive areas of the settlement and the PPP, posing a serious threat to island habitats. One of the most serious weeds, Ground Asparagus (Asparagus aethiopicus), for example, was so prolific in the forest understory it completely overwhelmed native vegetation and bird breeding grounds. Weeds are prioritised for eradication following a Weed Risk Assessment and are typically species that are at low density, are localised and/or are limited to gardens, and species with known weed characteristics (e.g. wind or bird dispersed seeds) that have yet to express their weed potential. Identifying species for early intervention is important to prevent their establishment and expansion, particularly post rodent eradication. For example, the removal of 25 individual Cats Claw Creeper in 2006 (which have not been detected since) supports the case for proactive weed management.

The islands limited size and isolation provides great opportunities to achieve complete removal and eradication of key invasive species.  Therefore particular strategies identified in the LHI BMP to effect ecosystem recovery include the management and eradication of invasive weeds, rodents, tramp ants and protection from plant diseases and pathogens.  All projects are delivered at an island wide scale, which incorporates a permanent population of 350 residents and a tourist bed limit of 400.

Works undertaken   Progressive programs to eradicate feral animals commenced in 1979 with the eradication of pig Sus scrofa, cat Felus catus in 1982, goat Capra hircus in 1999 and African Big-headed Ant Pheidole megacephala in 2018. Threatened fauna recovery programs include the captive breeding of Lord Howe Woodhen following the eradication of cats, establishing a captive breeding and management program for the Lord Howe Island Phasmid and the planning and gaining of approvals to implement the eradication program for Black Rat Rattus rattus, House Mouse Mus musculus and introduced Masked Owl Tyto novehollandiae commencing in 2019.

The island wide strategic Weed Eradication Program commenced in 2004, building on earlier years of ad-hoc control effort.  Over 2.4 million weeds have been removed through more than 170,000 hours of grid search method.  Now, near mid-way point of a 30-year LHI Weed Eradication Project (LHIWEP), teams have reduced weed infestations (of all life stages) by 80%.  Ten year program results of the LHIWEP are summarised (LHIB 2016 – Breaking Bad) http://www.cabi.org/isc/abstract/20163360302, which clearly shows the significance of multi-invasive species management to achieve ecosystem recovery.

With the spread of Myrtle Rust Austropuccinia psidii to the Australian mainland in 2010 the LHI Board has been on high alert.  With five endemic plants at risk to this pathogen the LHIB provided training and information to the community on the threats to the island and food plants. The LHIB prepared a Rapid Response Plan and a Rapid Response Kit (fungicides and Personal Protective Equipment). In October 2016 Myrtle Rust was detected on exotic Myrtaceae species, from three leases and subsequently treated in November 2016. This also resulted in the eradication of three highly susceptible exotic myrtaceous plant species from the island.

The root fungus Phytophthora cinnamomi is known from one lease and has been quarantined and treated with granular fungicide quarterly. Periodic monitoring has shown the infestation to be reducing with the eventual aim of eradication. Boot sanitization stations located at all track heads applies effort to prevent introduction of root rot fungus and other soil borne pathogens from users of the walking track system in the PPP.

The LHI Board has carried out a range of local community engagement and visitor education programs to raise awareness of the risks and threats to the island environment and of the LHIB environmental restoration and protection programs. These include a LHI User Guide for visitors to the island and a citizen science program with the LHI Museum, establishing the LHI Conservation Volunteer program to help improve awareness of the importance of LHI conservation programs to both tourists and tourism business. Since 2005, over 150 volunteers supported by the LHIB and external grants have been engaged through the weed eradication project. Increasingly, LHI residents are volunteering to gain experience and to improve employment opportunities in restoring their island. Another long-term partner, Friends of Lord Howe Island, provide invaluable volunteer assistance with their Weeding Ecotours, contributing more than 24,000 hours of weeding building valuable networks.

Biosecurity awareness is critical to protect the investment in conservation programs and the environment to future threats. The LHI Board provide information regarding biosecurity risks to the community, stevedores and restaurateurs. The LHIB now hold two biosecurity detection dogs and handlers on island (Figure 3) whom work with Qantas and freight flights and shipping staff to ensure they are aware of biosecurity risks and plan for appropriate responses.

Results to date.  Achievements include the successful eradication of over 10 weed species, cat, pig, goat, African Big-headed Ant and Myrtle Rust. A further 20+ weeds are considered on the verge of being able to be declared eradicated in coming years with an 80% reduction in weed density island wide and a 90% reduction in the presence of mature weeds. Weed Risk Assessments will be applied to determine the impact or new and emerging weeds and appropriate management actions.

As a result of the eradication of feral pigs and cats and an on-island captive breeding program, the endangered Lord Howe Island Woodhen has recovered to an average of 250 birds. The other eradications, along with the significant reduction in dense and widespread weed invasions, has aided the recovery and protection of numerous endemic and threatened species and their habitats. The program’s significant outcomes have been recognised through the IUCN Conservation Outlook which in 2017 scored the Lord Howe Island Group’s outlook as good, primarily due to the success of projects that have, are being and are planned to be implemented to restore and protect the islands unique World Heritage values. In late 2018 the program received awards for excellence from the Society for Ecological Restoration Australasia (SERA), Green Globe and Banksia Foundations, acknowledging the sustained effort from the Board and Island community in working to restore and protect the island.

Lessons learned and future directions:  The main keys to success has been obtaining expert scientific and management input and actively working with, educating and involving the community (lease holders and local businesses) to help achieve the solution to mitigate and remove invasive species.

The Rodent Eradication Program scheduled for winter 2019 will result in less browsing pressure on both native and invasive plants species, as well as the removal of two domestic pests. Prior to the program the LHIB has targeted the control of introduced plants, currently in low numbers, that may spread after rodent eradication. Monitoring programs are in place to measure ecosystem response with a particular focus on the Endangered Ecological Community Gnarled Mossy Cloud Forest on the summit of Mt Gower. Should the project be successful, consideration can be given to the reintroduction of captive bred individuals of the Lord Howe Island Phasmid as well as other species confined to offshore islands (e.g. Lord Howe Wood Feeding Roach Panesthia lata) or ecological equivalent species on other islands (Norfolk Boobook Owl Ninox novaeseelandiae, Norfolk Parakeet Cyanoramphus cookii, Norfolk Island Grey Fantail Rhipidura albiscapa and Island Warbler Gerygone igata).

Stakeholders and Funding bodies:  The Program is managed by the Lord Howe Island Board and the NSW Department of Environment and Heritage, in collaboration with the local LHI community.

The LHI Board acknowledge the generations of islander stewardship, teams on ground, researchers, the funding and support agencies, all who made it happen. These include but are not limited to NSW Environmental Trust, Caring for Our Country, National Landcare Program, North Coast Local Land Services, Zoos Victoria, Taronga Zoo, Australian Museum, CSIRO, Friends of LHI, the Norman Wettenhall Foundation and Churchill Trust.

Contact: Hank Bower, Manager Environment/World Heritage, Lord Howe Island Board, PO Box 5, LORD HOWE ISLAND, NSW 2898, Tel: +61 2 65632066 (ext 23), Fax: 02 65632127, hank.bower@lhib.nsw.gov.au

Video conference presentation: https://www.aabr.org.au/portfolio-items/protecting-paradise-restoring-the-flora-and-fauna-of-world-heritage-listed-lord-howe-island-hank-bower-and-sue-bower-lhi-board-aabr-forum-2016/

Also see updates of rodent eradication program:

https://lhirodenteradicationproject.org/

https://www.environment.nsw.gov.au/news/rodent-eradication-gives-lord-howe-biodiversity-boom

https://www.abc.net.au/news/2021-02-02/lord-howe-island-recovers-from-rat-infestation/13111770

https://www.theguardian.com/australia-news/2021/apr/19/rats-reappear-on-lord-howe-island-for-the-first-time-since-2019-eradication-program

The ecological restoration of Te Motu Tapu a Taikehu, Hauraki Gulf, New Zealand

The Motutapu Restoration Trust 

Introduction. Te Motu Tapu a Taikehu (Motutapu Island, 1509 ha) is located in the Hauraki Gulf Marine Park, situated on the east coast of the north of New  Zealand’s North Island. It lies immediately adjacent to Rangitoto Island which is a volcano that last erupted approximately 500-550 years ago. This, and previous eruptions would have regularly devastated the forest and wetland ecosystems on Motutapu.

After a history of Maori settlement, European clearing and farming and use for military purposes during WWII, the Island was transferred to what is now the Department of Conservation (DOC) in 1970. The island is now designated a recreation reserve, open to the public.

Pollen records suggest that after the Rangitoto eruptions ceased around AD 1500, Motutapu recovered to be covered by a patchwork of lowland podocarp/broadleaf forest typical of that found in the Auckland region, and presumably was habitat to birds, reptiles, bats, fish and invertebrates similar to those on other Northland islands and the mainland.

Habitat loss through anthropogenic disturbances including fire, clearing for farming, and the introduction of mammalian predators saw many species of native bird, reptile and plants extirpated. Prior to restoration started in 1994, Motutapu was almost entirely covered by pastoral grassland dominated by exotic species, except for a few, very small forest remnants, and a depauperate native faunal communities.

Motutapu Island is a 40-minute ferry journey from Auckland City. Map: Department of Conservation

Restoration project

Planning of the ecological restoration program is undertaken by the Natural Heritage Committee of the Trust, a group of some 15 volunteers who meet monthly to plan, and discuss implementation. Members are highly qualified, skilled and enthusiastic practitioners. Together the committee  brings sound ecological theory and practice to the  restoration of flora and fauna. Published plans they work from include the 1994 Motutapu Restoration Working Plan and subsequent 2010 audit.

The objective is to return the island forest and wetland ecosystems to a post-eruption state, with a goal of reaching 500 ha of restored forest and wetland over coming decades. Although this area is far less than the full area of the island, it allows the conservation of cultural and archaeological sites, such as pā, WWII infrastructure, and farming landscapes. The post-eruption state can be described as lowland mixed broadleaf/podocarp forest, with a suite of seabirds, waders, forest birds, reptiles, bats and invertebrates interacting with each other so that natural evolutionary processes can once more resume for these taxa on the island.

Implementation of the ecological restoration of Motutapu has been underway for 23 years, since the formation of the Motutapu Restoration Trust (MRT) in 1994. To date,  in excess of 100 ha of pasture has been converted  to pioneer forest representing an estimated 450,000+ trees  planted. Volunteer hours total 21,462 between  2005 and 2015, and is currently in excess of 3,200 hours annually.

The major activities of the ecological restoration are:

  • Seed collecting from the island and wider Auckland region
  • Plant propagation in the island nursery – year round
  • Planting in the winter months
  • Weeding year round
  • Fauna translocation and monitoring (birds, reptiles, fish and crustacea) in conjunction with DOC

Planters in action: Photo: MRT

15,136 plants went into Hospital B paddock; one of the most difficult planting sites on the island.
Photo: MRT

Home Bay forest, with Motuihe Island and the Auckland mainland in the background. Photo: MRT

Revegetation. The original strategy (1994 – 2009) was to initiate successional processes by planting pioneer phase species, which would later give way to mature phase species dispersed naturally by birds. However, it was realized that mature phase species would be slow to arrive, as the island is isolated from native forests on nearby islands and seed dispersal from them is unlikely. If seed is dispersed from its own remnant forests, any new forest will continue to reflect the depauperate nature of these remnants.

In 2010, the planting strategy was updated to include enrichment planting of mature phase forest species into the forests planted up to 15 years earlier. Seeds for this were eco-sourced from the wider Auckland region, within boundaries agreed with DOC, and brought to the island nursery for propagation. This was an opportunity to return species to the island that are currently absent, including Swamp Maire (Syzygium maire), Tree  Fuchsia (Fuchsia excorticata),  Pigeonwood (Hedycarya  arborea), White Maire (Nestegis lanceolata), Black Maire (N. cunninghamii), Turepo (Streblus  banksii) and a number  of podocarps including Matai (Prumnopitys taxifolia), Miro (P. ferruginea) and Rimu (Dacrydium cupressinum).

The project has a large nursery, operated by one full time volunteer and supported by other volunteers during the week and weekends. The nursery provides all the plants for the planting programme. Seed is collected by a small team of collectors who travel Auckland’s and the Island’s forest remnants for seeds all year round. Growing media is supplied pro bono by Daltons and Living Earth and delivered by DOC boat. The risk of importing the introduced pests Rainbow Skink (Lampropholis delicata) as eggs and Argentine Ant (Linepithema humile) precludes bringing potted plants onto the island.

Weeds such as Woolly Nightshade (Solanum mauritianum),  Moth  Vine (Araujia  sericifera), Evergreen  Buckthorn (Rhamnus alaternus), Apple of Sodom (Solanum linnaeanum), pampas (Cortaderia  spp.), and Boneseed (Chrysanthemoides monilifera) have been  present on the  island for many years, and in pasture had been kept in check by grazing. However, when pasture is retired, populations of these weeds  explode and threaten the plantings on not only Motutapu  Island, but also by dispersal to neighbouring Hauraki Gulf Islands. In particular, Rangitoto Island is threatened by invasion of weeds from Motutapu.

Weeding of the planted forests takes place in a strategic and planned way year round. Volunteers routinely grid search the plantations and control the infestations (using the hip chain method). Sources of reinfestation on other parts of the island are addressed by contractors who have the training to get at inaccessible weeds (e.g., cliff faces). New drone technology is in the process of being recruited to  identify infestations of weeds  from the  air, where they cannot be seen from the ground, or where access is particularly hazardous (e.g., cliff faces).

Pest species management. The suite of mammalian predators and herbivores on the Island prior to 2009 were detrimental to both flora and fauna, and their continued presence would have meant that neither locally extinct bird and plant species could be reintroduced, nor palatable plant species thrive.  These pests included: rats (Rattus rattus,  R. norvegicus, R. exulans); House Mouse (Mus musculus); Stoat (Mustela erminea); feral Cat (Felis catus); Hedgehog  (Erinaceus  europaeus occidentalis) and the European Rabbit (Oryctolagus cuniculus).

The successful eradication of pests from Motutapu and Rangitoto Islands was undertaken by DOC in 2009 using helicopters to disperse broadifacoum. DOC employs a biosecurity ranger on the island who responds to any new rat, stoat or other incursions.

Recent arrivals of North Island brown kiwi bring the total to 26, closer to the target of 40 required for a founder population. Photo: MRT

Further releases of takahē will bring the breeding
pairs to a total of 20, the largest total outside Fiordland. Photo: MRT

Faunal translocations. A major milestone was the declaration in 2011 of pest-free status for the Island, and the subsequent re-introductions of birds and aquatic taxa that this allowed.

The island’s pest-free status gives safe refuge to some of New Zealand’s rarest bird species. Since it became pest-free, the following rare, endangered and non-threatened species have been translocated:

  • Coromandel Brown Kiwi (Apteryx mantelli)
  • Takahē (Porphyrio hochstetteri)
  • Tīeke (Philesturnus rufusater)
  • Shore Plover (Thinornis  novaeseelandiae)
  • Whitehead (Mohoua albicilla)
  • Pāteke (Anas chlorotis)
  • Redfin bully (Gobiomorphus huttoni)
  • Koura (Paranephrops planifrons)

Survey and Monitoring.  Annual surveys of terrestrial birds and shorebirds by the Ornithological Society of New Zealand have been undertaken since 2007. As well,  a survey of seabirds nesting on the island is underway, and monitoring of translocated birds by MRT volunteers in association with DOC is ongoing. Stream fauna and reptiles are surveyed and reported on annually by DOC.

The Island’s native and exotic plants are also being surveyed to ascertain progress of the recovery over time, and plant survival rates have been monitored informally via regular tours of the plantings to assess what is working and what is not.

Evidence that recovery processes are securely occurring on the island

It is clear that the 100ha of restored vegetation has resulted in natural processes of vegetation recovery occurring, with natural regeneration evident for many species. Once the fruiting forest is fully established on Motutapu Island we envisage that it will be fully self-sustaining via seed dispersal by frugivorous birds.

Populations of fauna, with four exceptions, appear to be self-sustainable on Island. Many of the reintroduced bird species are clearly reproducing on the island and populations are growing without human intervention as evidenced by our bird surveys. The exceptions are Shore plover and Pāteke which naturally disperse away from the Island, necessitating several translocations to ensure the populations build to create a resident population, and are viable. Kiwi and Takahē populations are still being built up to founder population size.

 Bird species (terrestrial diurnal including waders):

  • an increase from 50 species in 2010 to 60 in 2015
  • Re-introduced populations expanding: Takahē, Whitehead,  Tīeke
  • Self-introduced or now detectable: Kākāriki (Cyanoramphus novaezelandiae), Bellbird (Anthornis melanura), Spotless Crake (Porzana tabuensis), Little Blue Penguin (Eudyptula minor), Banded Rail (Gallirallus phillipensis), Grey-faced Storm Petrel (Pterodroma macroptera  gouldi).

Reptiles: Population and range expansions of the four native and one introduced species. The following are the natives:

  • Common Gecko (Woodworthia maculatus): up to ten-fold at some sites since 2008
  • Suter’s Skink (Oligosoma suteri): up to a hundred-fold at some sites since 2008 baseline
  • Copper Skink (Cyclodina aeneum): up to ten-fold at some sites since 2008 baseline
  • Moko Skink (Oligosoma moco): up to ten-fold at some sites since 2008

Fish:

  • Giant kokopu (Galaxius argenteus) now

Secure engagement with local  stakeholders.

There are a number of stakeholders that are fully engaged in the project through the MRT,  including:

  • Department of Conservation – MRT’s partner since the inception of the Trust in 1994, which has been responsible for some of our biggest milestones, such as the eradication of mammalian predators 2009-2011.
  • Motutapu Farms Ltd – leases the pasture from DOC to farm beef and sheep, becoming Auckland’s largest Another long-standing partner, helping the ecology of the island and wider Hauraki Gulf by farming organically.
  • Ngāi Tai ki Tamaki – the iwi who have mana whenua on the island and give their blessing to reintroduced fauna
  • Ngāti Paoa & Ngāti Tamaterā – Coromandel iwi who are kaitiaki of the North Island Brown Kiwi (Coromandel  subspecies) on
  • Motutapu Outdoor Education Centre (MOEC)  – use the island for accommodation of school groups gaining outdoor
  • Pāteke recovery
  • Takahē recovery group
  • Auckland Zoo – monitoring the populations of Redfin Bully ( Gobiomorphus huttoni) and Koura (Paranephrops planifrons).

Contact : Liz Brooks, Manager, Motutapu Restoration Trust, Newmarket, Auckland 1149, New Zealand.  Tel: +64 9 455 9634; PO Box 99 827; Email:  liz@motutapu.org.nz