Category Archives: Techniques & methodology

Lord Howe Island biodiversity restoration and protection programs, NSW, Australia

Hank Bower

Key words: Pest species management, weed control, community engagement.

Figure 1. Weeding teams apply search effort across near 80% of island terrain, their effort monitored through record of GPS track logs across designated weed management blocks. Target weeds on LHI are mostly bird dispersed requiring landscape scale for sustainable and long-term protection from weeds. The remaining 20% of island is subject to surveillance and with investigation of new technical approaches in weed detection using drones.

Introduction: Lord Howe Island (LHI) is located in the Tasman Sea 760 km northeast of Sydney and 570 km east of Port Macquarie. In 1982 the island was inscribed on the World Heritage (WH) List under the United Nations’ World Heritage Convention in recognition of its superlative natural phenomena and its rich terrestrial and marine biodiversity as an outstanding example of an island ecosystem developed from submarine volcanic activity.

The island supports at least 80% cover of native vegetation, broadly described as Oceanic Rainforest with Oceanic Cloud Forest on the mountain summits.  LHI vegetation comprises 239 native vascular plant species with 47% being endemic. Forest ecosystems on LHI are largely intact, but at threat from invasive species and climate change. About 75% of the terrestrial part of the WH property is recognised as a Permanent Park Preserve (PPP) managed on behalf of the New South Wales government by the Lord Howe Island Board on the basis of a holistic conservation and restoration plan (Lord Howe Island Biodiversity Management Plan LHI BMP 2007).

Since settlement of the island in 1834, introduced and invasive plant and animal species have been affecting the Lord Howe Island environment, causing declines in biodiversity and ecosystem health. There have been 11 known extinctions and severe declines in numbers of fauna species including the flightless Lord Howe Woodhen (Hypotaenidia sylvestris), once regarded as one of the rarest birds in the world.  The Lord Howe Island Phasmid (Dryococelus australis), the world’s largest stick insect was feared extinct until the rediscovery of live specimens on Balls Pyramid in 2001. Some 29 species of introduced vertebrates and about 271 species of introduced plant species have naturalised on the island. At least 68 species are the focus for eradication (Fig 1), with 10 main invasive species having colonised extensive areas of the settlement and the PPP, posing a serious threat to island habitats. One of the most serious weeds, Ground Asparagus (Asparagus aethiopicus), for example, was so prolific in the forest understory it completely overwhelmed native vegetation and bird breeding grounds. Weeds are prioritised for eradication following a Weed Risk Assessment and are typically species that are at low density, are localised and/or are limited to gardens, and species with known weed characteristics (e.g. wind or bird dispersed seeds) that have yet to express their weed potential. Identifying species for early intervention is important to prevent their establishment and expansion, particularly post rodent eradication. For example, the removal of 25 individual Cats Claw Creeper in 2006 (which have not been detected since) supports the case for proactive weed management.

The islands limited size and isolation provides great opportunities to achieve complete removal and eradication of key invasive species.  Therefore particular strategies identified in the LHI BMP to effect ecosystem recovery include the management and eradication of invasive weeds, rodents, tramp ants and protection from plant diseases and pathogens.  All projects are delivered at an island wide scale, which incorporates a permanent population of 350 residents and a tourist bed limit of 400.

Works undertaken   Progressive programs to eradicate feral animals commenced in 1979 with the eradication of pig Sus scrofa, cat Felus catus in 1982, goat Capra hircus in 1999 and African Big-headed Ant Pheidole megacephala in 2018. Threatened fauna recovery programs include the captive breeding of Lord Howe Woodhen following the eradication of cats, establishing a captive breeding and management program for the Lord Howe Island Phasmid and the planning and gaining of approvals to implement the eradication program for Black Rat Rattus rattus, House Mouse Mus musculus and introduced Masked Owl Tyto novehollandiae commencing in 2019.

The island wide strategic Weed Eradication Program commenced in 2004, building on earlier years of ad-hoc control effort.  Over 2.4 million weeds have been removed through more than 170,000 hours of grid search method.  Now, near mid-way point of a 30-year LHI Weed Eradication Project (LHIWEP), teams have reduced weed infestations (of all life stages) by 80%.  Ten year program results of the LHIWEP are summarised (LHIB 2016 – Breaking Bad) http://www.cabi.org/isc/abstract/20163360302, which clearly shows the significance of multi-invasive species management to achieve ecosystem recovery.

With the spread of Myrtle Rust Austropuccinia psidii to the Australian mainland in 2010 the LHI Board has been on high alert.  With five endemic plants at risk to this pathogen the LHIB provided training and information to the community on the threats to the island and food plants. The LHIB prepared a Rapid Response Plan and a Rapid Response Kit (fungicides and Personal Protective Equipment). In October 2016 Myrtle Rust was detected on exotic Myrtaceae species, from three leases and subsequently treated in November 2016. This also resulted in the eradication of three highly susceptible exotic myrtaceous plant species from the island.

The root fungus Phytophthora cinnamomi is known from one lease and has been quarantined and treated with granular fungicide quarterly. Periodic monitoring has shown the infestation to be reducing with the eventual aim of eradication. Boot sanitization stations located at all track heads applies effort to prevent introduction of root rot fungus and other soil borne pathogens from users of the walking track system in the PPP.

The LHI Board has carried out a range of local community engagement and visitor education programs to raise awareness of the risks and threats to the island environment and of the LHIB environmental restoration and protection programs. These include a LHI User Guide for visitors to the island and a citizen science program with the LHI Museum, establishing the LHI Conservation Volunteer program to help improve awareness of the importance of LHI conservation programs to both tourists and tourism business. Since 2005, over 150 volunteers supported by the LHIB and external grants have been engaged through the weed eradication project. Increasingly, LHI residents are volunteering to gain experience and to improve employment opportunities in restoring their island. Another long-term partner, Friends of Lord Howe Island, provide invaluable volunteer assistance with their Weeding Ecotours, contributing more than 24,000 hours of weeding building valuable networks.

Biosecurity awareness is critical to protect the investment in conservation programs and the environment to future threats. The LHI Board provide information regarding biosecurity risks to the community, stevedores and restaurateurs. The LHIB now hold two biosecurity detection dogs and handlers on island (Figure 3) whom work with Qantas and freight flights and shipping staff to ensure they are aware of biosecurity risks and plan for appropriate responses.

Results to date.  Achievements include the successful eradication of over 10 weed species, cat, pig, goat, African Big-headed Ant and Myrtle Rust. A further 20+ weeds are considered on the verge of being able to be declared eradicated in coming years with an 80% reduction in weed density island wide and a 90% reduction in the presence of mature weeds. Weed Risk Assessments will be applied to determine the impact or new and emerging weeds and appropriate management actions.

As a result of the eradication of feral pigs and cats and an on-island captive breeding program, the endangered Lord Howe Island Woodhen has recovered to an average of 250 birds. The other eradications, along with the significant reduction in dense and widespread weed invasions, has aided the recovery and protection of numerous endemic and threatened species and their habitats. The program’s significant outcomes have been recognised through the IUCN Conservation Outlook which in 2017 scored the Lord Howe Island Group’s outlook as good, primarily due to the success of projects that have, are being and are planned to be implemented to restore and protect the islands unique World Heritage values. In late 2018 the program received awards for excellence from the Society for Ecological Restoration Australasia (SERA), Green Globe and Banksia Foundations, acknowledging the sustained effort from the Board and Island community in working to restore and protect the island.

Lessons learned and future directions:  The main keys to success has been obtaining expert scientific and management input and actively working with, educating and involving the community (lease holders and local businesses) to help achieve the solution to mitigate and remove invasive species.

The Rodent Eradication Program scheduled for winter 2019 will result in less browsing pressure on both native and invasive plants species, as well as the removal of two domestic pests. Prior to the program the LHIB has targeted the control of introduced plants, currently in low numbers, that may spread after rodent eradication. Monitoring programs are in place to measure ecosystem response with a particular focus on the Endangered Ecological Community Gnarled Mossy Cloud Forest on the summit of Mt Gower. Should the project be successful, consideration can be given to the reintroduction of captive bred individuals of the Lord Howe Island Phasmid as well as other species confined to offshore islands (e.g. Lord Howe Wood Feeding Roach Panesthia lata) or ecological equivalent species on other islands (Norfolk Boobook Owl Ninox novaeseelandiae, Norfolk Parakeet Cyanoramphus cookii, Norfolk Island Grey Fantail Rhipidura albiscapa and Island Warbler Gerygone igata).

Stakeholders and Funding bodies:  The Program is managed by the Lord Howe Island Board and the NSW Department of Environment and Heritage, in collaboration with the local LHI community.

The LHI Board acknowledge the generations of islander stewardship, teams on ground, researchers, the funding and support agencies, all who made it happen. These include but are not limited to NSW Environmental Trust, Caring for Our Country, National Landcare Program, North Coast Local Land Services, Zoos Victoria, Taronga Zoo, Australian Museum, CSIRO, Friends of LHI, the Norman Wettenhall Foundation and Churchill Trust.

Contact: Hank Bower, Manager Environment/World Heritage, Lord Howe Island Board, PO Box 5, LORD HOWE ISLAND, NSW 2898, Tel: +61 2 65632066 (ext 23), Fax: 02 65632127, hank.bower@lhib.nsw.gov.au

Video conference presentation: https://www.aabr.org.au/portfolio-items/protecting-paradise-restoring-the-flora-and-fauna-of-world-heritage-listed-lord-howe-island-hank-bower-and-sue-bower-lhi-board-aabr-forum-2016/

Re-establishing cryptogamic crust at The Waterways, Mordialloc

By Damien Cook

Photo 1.  Crytogamic crust consisting of mosses, lichens and liverworts in inter-tussock space in restored grassland at Waterways. These spaces provide recruitment opportunities for herbaceous species such as Wahlenbergia multicaulis and Brachyscome parvula

Introduction:  The Waterways is a unique urban development on the Mordialloc Creek, in Melbourne’s south eastern suburbs, which combines a housing estate with 48 hectares of restored habitat set aside for indigenous fauna and flora in open space, lakes and other wetlands. (See EMR Project summary ‘The Waterways‘.)

The revegetation of 4 hectares of native grassland and 7 hectares of swamp scrub provided the opportunity to trial the re-establishment of non-vascular plant species, as well as the higher plants which are normally the focus of restoration efforts.

Method. A diversity of cryptogams including Thuidiopsis furfurosa, Hypnum cuppressiforme, Triquetrella papillata and some Rosulabryum and lichen species were collected in the field from nearby remnants of native vegetation threatened with imminent destruction by freeway construction and new housing estates. These were placed in a blender and made into a 2 litre, thick slurry and the slurry was then diluted into a 20 litre a firefighting backpack. The diluted slurry was then applied to bare soils in the revegetated areas at the Waterways in August 2002; some areas were left untreated as a control.

Results. It was not until the wet winter of 2016 that it became apparent how successful this technique had been. There are now quite large areas with a good cover of cryptogams, particularly in the restored grassland and swamp scrub areas. There are some cryptogams in the untreated areas, but the species richness and cover are much lower. Cryptogamic crust cover appears to suppress weed germination, reducing the need for herbicide application, yet provides recruitment opportunities for native forbs (see Photos 1-3).

Acknowledgements. Thanks are due to the Haines family who were the developers of “The Waterways”, and in particular Stephen Haines, for involving us in the revegetation of the site and allowing us scope to trial different ecological restoration techniques. 

Contact: Damien Cook (rakali2@outlook.com.au)

Photo 2. Swamp Scrub at Waterways. Note the dense layer of mosses in the understory, particularly Thuidiopsis furfurosa

Photo 3. Fruiting capsules of a species of Bryum in restored native grassland at Waterways

A water point design to facilitate seed dispersal into revegetation or pasture sites

Amanda N. D. Freeman

Introduction. Although perches have been shown to enhance seed dispersal into revegetation sites, the efficacy of providing a water source to attract seed dispersers is largely untested.  In a Griffith University-led study aimed at “kick-starting” conversion of pasture to forest www.wettropics.gov.au/cfoc , bird-attracting structures that included a perch and water trough at the base were shown to enhance frugivore-assisted seed dispersal.  A complementary study in the same sites has identified the seeds of over 40 bird dispersed species deposited in the water troughs (Amanda Freeman; The School for Field Studies, Centre for Rainforest Studies (SFS-CRS) and Griffith University; 2012-2014, unpublished data).  Although the water troughs demonstrably attracted frugivorous birds, most notably Pied Currawongs (Strepera graculina ) using the water to regurgitate, any seeds regurgitated into troughs would be unavailable to germinate (Fig 1.).

Figure 1. A Pied Currawong at a water trough in a “Kickstart” pasture conversion plot. [See Elgar, A.T., Freebody, K., Pohlman, C.P., Shoo, L.P. & Catterall, C.P. (2014) Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Frontiers in Plant Science 5: 200. http://dx.doi.org/10.3389/fpls.2014.00200]

Figure 1. A Pied Currawong at a water trough in a “Kickstart” pasture conversion plot. [See Elgar, A.T., Freebody, K., Pohlman, C.P., Shoo, L.P. & Catterall, C.P. (2014) Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Frontiers in Plant Science 5: 200. http://dx.doi.org/10.3389/fpls.2014.00200%5D

Preliminary trial. Using a commercially available automatic waterer used for poultry, we designed a water point with a water dispenser that is too small for birds to regurgitate or defecate into, allowing expelled seed to fall to the ground.  The device is also simple and relatively cheap to build (<$100 Australian).  Once installed, the device requires little attention because the water remains cool and evaporation is minimal so the water may last several months without replenishing. The waterer, a plastic container which distributes water to a small dish by the action of a float, sits on a sturdy metal base 1.5m high.  The base has a perch allowing birds of different sizes to access the water from several angles and an attachment for a camera to enable bird visits to be monitored.  We envisage that the water point may facilitate seed dispersal by attracting frugivorous birds that will regurgitate and/or defecate at or near the water point.

We conducted an initial trial at a revegetation site at SFS-CRS in February 2016.  For this trial we baited the water point with Kiwi Fruit (Actinidia sp.) but this was soon consumed by insects. During the trial we recorded two species of fruit-dispersing bird, Pied Currawong and Lewin’s Honeyeater (Meliphaga lewinii) using our prototype water point within one month of its installation in (Fig 2.).

figure-2

Figure 2. A Pied Currawong drinking from a water point (kiwi fruit bait in foreground).

Design of second trial. In July 2016 we established a small trial at SFS-CRS to test the relative efficacy of perches alone versus perches coupled with our water point device in facilitating seed dispersal into cleared sites that lack remnant or planted trees.  We have nine fenced 3m2 plots in ungrazed former pasture, 15m from the edge of primary rainforest (Fig 3.).  Six plots have a perch, 3-4m high, cut to standard form from Sarsaparilla (Alphitonia petriei) trees.  Three of these plots also have a water point placed close to the base of the perch and a camera monitoring visits to the water.  Three plots have no structures.

Grass in all plots will be suppressed by herbicide spray (on an ‘as needed’ basis) and seedling recruitment in the plots will be monitored. In the first three months, no birds have been recorded using the water points in the trial plots.

Figure 3. Perch and water device trial plots, September 2016.

Figure 3. Perch and water device trial plots, September 2016.

Contact: Amanda Freeman, Centre Director, The School for Field Studies, Centre for Rainforest Studies, PO Box 141, Yungaburra, QLD 4884, Tel: +61 (7) 40953656; Email:  afreeman@fieldstudies.org

 

 

 

Seagrass rehabilitation and restoration, Cockburn Sound, WA

Key words. Coastal ecosystems, transplanting trials, compensatory restoration, Posidonia

Introduction. Seagrasses are flowering plants that form extensive underwater meadows, transforming bare sandy areas into complex 3-dimensional habitats for a diverse faunal community. They provide a wide range of ecosystem services including nutrient cycling, carbon sequestration, and coastal stabilization. Once impacted, seagrass meadows can take decades to recover.

The need for seagrass restoration is mainly driven by loss of seagrass due to human activities including ocean discharges and coastal developments, although changing ocean conditions (warming temperatures and increasing acidity) and sea-level rise now provide additional challenges.

 Posidonia australis, from planting unit to spreading and merging shoots.

Figure 1. Posidonia australis showing spreading and merging shoots from what were initially only single planting units (see inset).

Cockburn Sound project. In 2003, the Seagrass Research and Rehabilitation Plan (SRRP) was established to meet stringent environmental management conditions for two separate industrial development projects in Cockburn Sound, Western Australia. Both projects, Cockburn Cement Ltd and the state Department of Commerce, impacted upon seagrass ecosystems.

The SRRP was aimed at developing and implementing seagrass restoration procedures that are economically feasible and environmentally sustainable. The collaborative project team was coordinated by BMT Oceanica and included researchers from Murdoch University, The University of Western Australia, Edith Cowan University, the Botanic Gardens and Parks Authority, environmental consultants and a marine engineering firm.

Works and their results. Implementing the SRRP involved a range of experimental transplantings of the seagrass Posidonia australis (a slow-growing meadow-forming species).

The transplant trials resulted in good health and high survival rates of transplanted shoots. This showed that meadows can be restored and thus are likely to develop and return to the same ecological functions as natural meadows.

In this case, donor material was harvested from a site that was to be destroyed as part of the permitted development. In other cases, donor material has been harvested from meadows that have demonstrated varying levels of recovery, with a number of years required for recovery depending on the intensity of harvesting. The project resulted in site-specific solutions as well as generic technical guidelines for manual transplantation to restoration sites from donor sites.

Lessons and limitations. The main lessons for practice to date are:

  • While the results of this project are encouraging, the challenge of achieving biological diversity in seagrass meadows, particularly to the equivalence of a natural seagrass meadow, has not yet been demonstrated.
  • The scale of this particular project is still small (3.2 Ha) relative to the amount of restoration required. Focus needs to be on research into how such projects can be scaled-up. Seed-based restoration may be more appropriate for some species (including Posidonia).
  • Selection of a restoration site is a strong factor contributing to the success of transplanted material (i.e. the likelihood of success if higher where seagrass was present before).

Contact. Dr Jennifer Verduin, lecturer, Murdoch University , Tel: +61 8 93606412/0404489385; Email: j.verduin@murdoch.edu.au

Also see:

EMR project summary – report on the seagrass transplanting trials:

Full EMR feature article

 

East Trinity remediation and rehabilitation after Acid Sulfate Soil contamination, north Queensland

Hanabeth Luke

Key words. Mangroves, estuarine habitat, migratory waders, ecological conversion

Introduction. The East Trinity case study describes the remediation of a severely degraded coastal acid sulfate soil site adjacent to the Cairns township in Queensland, Australia (Fig 1). The project involved extensive collaborative research into geochemistry, soil properties, groundwater and tidal behaviour, terrain modelling and flood modelling by a range of institutions. An innovative strategy known as lime-assisted tidal exchange (LATE) was used to reverse the acidification of the wetland, leading to improved water quality and health of coastal and estuarine ecosystems.

Acid sulfate soils are formed through a natural process that occurred when coastal lowlands were flooded in periods of high sea-level, leading to a slow build-up of metal sulfides such as pyrite. When these soils, normally protected by natural wetlands, are drained for farming or other development and exposed to oxygen, rapid oxidation of the pyrite occurred. This leads to a build-up of acidity in the soil as oxidation processes produce sulfuric acid, releasing toxic metals and noxious gases creating hostile conditions for plant growth. The acid also affects the availability of nutrients in the soil, creating another challenge for plant life. Rainfall events cause the acid, metals and nutrients to drain into waterways, impacting on aquatic ecosystems, infrastructure, fisheries and potentially, human health.

Figure 1. Aerial photo of he location of the East Trinity coastal and acid sulfate soil rehabilitation site (Source: Landsat 1999).

Figure 1. Aerial photo of he location of the East Trinity coastal and acid sulfate soil rehabilitation site (Source: Landsat 1999).

Prior condition and the degradation phase. East Trinity is a 940 ha coastal wetland situated between important estuarine habitats and a World Heritage listed wet tropical rainforest. Prior to clearing for farming, it was a mixture of paperbark woodland, tidal mangrove and salt marsh and had high ecological value for both marine and terrestrial faunal species. The area formed part of the traditional territory of the local Indigenous Mandingalbay Yidinji people.

The site was developed for sugar cane farming in the 1970s, with a bund-wall built to halt tidal inundation of the site. This drainage led to the oxidation of soil materials and a build-up of sulfuric acid in the sediments. A range of CSIRO and other reports showed that this affected 720 ha of the 940ha site. Between 1976 and 2004, it was estimated that at least 72,000 tonnes of sulfuric acid was released from the site, as well as soluble aluminium, iron, heavy metals and arsenic. Water bodies on site were routinely found to have a pH of 3.5 or lower. Aluminium levels were of particular concern, exceeding ANZECC guideline levels by as much as 6,000 times.

The discharge of acid and heavy metals led to death and dieback of vegetation (Figs 2 and 3) and had severe implications for aquatic life. These impacts were of particular concern due to the proximity of the site to the Great Barrier Reef Marine Park, with substantial evidence that acid sulfate soil runoff was discharging into reef receiving waters.

Figure 2a: Aerial view of Firewood Creek area from the 1980s showing extensive grasslands and Melaleuca leucadendra woodlands to the left of the bund wall roadway

Figure 2a: Aerial view of Firewood Creek area from the 1980s showing extensive grasslands and Melaleuca leucadendra woodlands to the left of the bund wall roadway.

Figure 2b: Aerial view of Firewood Creek area in 2013 with extensive flooded areas, Melaleuca woodland die-back and mangrove development.

Figure 2b: Aerial view of Firewood Creek area in 2013 with extensive flooded areas, Melaleuca woodland die-back and mangrove development.

Fig 3. Iron accumulation in oxidised sediments at the East Trinity site.

Fig 3. Iron accumulation in oxidised sediments at the East Trinity site.

Remediation, rehabilitation and restoration phase. The land was purchased by the QLD government in the year 2000, with the ‘Acid Sulfate Soil Remediation Action Plan’ commencing shortly thereafter. This involved a range of engineering solutions to achieved the desired hydrology and apply the lime-assisted tidal exchange remediation strategy, at first on a trial basis. Positive results during the trial period led to the long-term adoption of lime assisted tidal exchange (LATE) at East Trinity.

The LATE remediation strategy. Management strategies for acid sulfate soils are based on the principles of dilution, containment or neutralisation, with each bringing different benefits and challenges. Containment can lead to substantial acid build up and inhibit the movement of aquatic life, whilst the addition of agricultural lime can be costly. The LATE strategy (Fig. 4) was designed to support natural processes by reintroducing tidal flows, encouraging natural systems to restore the wetlands, hence greatly reducing the costs of lime and infrastructure, as well as hands-on management requirements. Flooding the soil stimulated reducing geochemical conditions whilst diluting the acidity. The bicarbonate in seawater provided a large source of alkalinity, whilst the organic matter present provided energy for microbial reactions to take place in the soil, thereby stimulating the in-situ production of alkalinity. Agricultural lime was added to the incoming tide to support the process, and also added to the out-going exit waters to prevent acid-flush into estuarine waters.

Fig 4. The image above shows some of the key parameters improved by the LATE bioremediation strategy.

Fig 4. The image above shows some of the key parameters improved by the LATE bioremediation strategy.

Results of the remediation project. The East Trinity site now has sediments at a spectrum of stages of remediation, with large areas fully remediated. Tidal inundation has ultimately led to a binding-up of heavy metals in the sediments and the neutralisation of acidity to a pH of 6.5, a typical pH for a subtropical estuarine environment. Following six years of gradually increasing tidal inundation, it was found that in-situ microbial and tidal exchange processes accounted for 99% of the change, whilst the addition of agricultural lime contributed less than 1%.

This greatly reduced the release of heavy metals to the estuarine environment and allowed for the re-establishment of mangrove and intertidal ecosystems (Fig. 2b).

Vegetation. Some ecological communities associated with the incursion of seawater and expansion of the tidal zones within the site have reduced while others have expanded. Mangrove communities have expanded and Acrostichum aureum (mangrove fern) fernlands have particularly increased, although some previous fernland transitioned to mangrove. Pasture areas have been largely replaced by Paperbark (Melaleuca leucadendra) shrublands and low woodlands and by the native grass Phragmites (Phragmites karka). The dieback of open forests of Paperbark impacted by the tidal areas continues, with some stands that were healthy in 2008 now in decline. Decline of low Clerodendrum inerme closed vinelands also continues in proximity to the tidal zone, though in other areas this community appears to be recovering.

Birds. A total of 136 species of birds have been observed at East Trinity since the rehabilitation began. Reports suggest that the expansion of mangrove and other higher elevation wetlands associated with the rehabilitation are likely to have benefited a number of bird species, including some internationally important shorebird species listed in agreements with China (CAMBA), Japan (JAMBA) and the Republic of Korea (ROKAMBA). Recently a new wader roosting site has emerged in mangroves on the northern boundary of the East Trinity area and it seems this may be significant in the regional context.

Future directions. The remediation of the East Trinity site has led to the area now having sufficiently high ecological function to be transferred back to Indigneous ownership and management.

The LATE remediation strategy’s regular tidal inundation will remain in place to ensure the acid sulfate soils remain protected from further oxidation; and monitoring and further research will continue into geochemical pathways to avoid degradation re-occurring.

Acknowledgements. The remediation of the East Trinity site and subsequent research has occurred due to the long-term efforts and collaborations between the Queensland Department of Science, Information Technology and Innovation (DSITI), CSIRO, the CRC for Contamination Assessment and Remediation of the Environment (CRC CARE) and Southern Cross University. Figures and data cited in this summary are derived from reports from these organisations available on request.

Contact. Prof Richard Bush, University of Newcastle (University Drive, Callaghan NSW 2308, Australia Tel: +61 (0)2 49215000; Email: richard.bush@newcastle.edu.au) .  Hanabeth Luke is an Associate Lecturer, Southern Cross University (Lismore, NSW 2480, Australia. Tel: +61 (0) 430092071; Email: Hanabeth.luke@scu.edu.au).

Restoring wetland communities in the Coorong and Lower Lakes, South Australia

[Summary will be reinstated soon.]

Integrating conservation management and sheep grazing at Barrabool, NSW

Martin Driver

Key words: semi-arid, grazing management, conservation management, rehabilitation, ecological restoration

Introduction. Barrabool is a 5000 ha dryland all-Merino sheep property between Conargo and Carrathool in the Western Riverina, NSW. Native pastures are the mainstay of Barrabool, as they are of other grazing properties in the arid and semi-arid rangelands of New South Wales that generally lie to the west of the 500 mm average rainfall limit.

Indigenous ecosystems at Barrabool occur as native grassland, mixed acacia and callitris woodlands and shrublands. The main grass species in the grasslands are Curly Windmill (Enteropogon sp.), White Top (Rytidosperma sp.), Box Grass (Paspalidium sp.), Speargrass (Austrostipa spp.), and Windmill Grass (Chloris sp.). Broad-leaved species include Thorny Saltbush (Rhagodia sp.), Cotton Bush (Maireana sp.) and a diverse annual forb layer in Spring..

The majority of the property has belonged to the Driver family for over 100 years. Like many of the surrounding stations a gradual but noticeable increase in exotic species occurred during the mid-to-late 20th Century, and a decline in native species. This transition has occurred because of species being transferred by livestock movements and because sheep graze not only on grass, but also saltbush shrubs and sub-shrubs as well as seedlings of native trees such as Boree (Acacia pendula) and White Cypress Pine (Callitris glaucophylla). It is well known, for example, that the preferential and continuous grazing of Boree by sheep can turn a Boree woodland into a grassland .within a manager’s lifetime unless rest and regeneration are allowed.

In recent decades – because of the Driver family’s interest in conservation and our exposure to advances in grazing management, paddock subdivision and stock water relocation – we have developed in recent decades a managed grazing system based on feed availability, regeneration capability and seasonal response to rainfall. It was our hope that this system could improve the condition of native vegetation while also improving feed availability.

Figure 1. Boree (Acacia pendula) and Thorny Saltbush (Rhagodia spinescens) in grazed paddocks at the Driver’s 5000 ha sheep property, Barabool, in the western Riverina. (Photo M. Driver).

Figure 1. Boree (Acacia pendula) and Thorny Saltbush (Rhagodia spinescens) in grazed paddocks at the Driver’s 5000 ha sheep property, Barabool, in the western Riverina. (Photo M. Driver).

Works undertaken. Over the last 35 years we have progressively fenced the property so that it is subdivided by soil type and grazing sensitivity, with watering systems reticulated through poly pipe to all those paddocks. This enables us to control grazing to take advantage of where the best feed is and move stock from areas that we are trying to regenerate at any one time; and it gives us a great deal more control than we would have had previously.

Using our grazing system, we can exclude grazing from areas that are responding with regeneration on, say Boree country, for periods of time until Boree are less susceptible to grazing; at which time we bring stock back in. We take a similar approach to the saltbush and grasses, moving sheep in when grazing is suitable and moving them off a paddock to allow the necessary rest periods for regeneration. In this way we operate a type of adaptive grazing management. We also have areas of complete domestic grazing exclusion of very diverse and sensitive vegetation which are essentially now conservation areas.

Figure 2. Mixed White Cypress Pine Woodland grazing exclosure on Barrabool with regeneration of Pine, Needlewood, Sandalwood, Rosewood, Butterbush, Native Jasmine, mixed saltbushes and shrubs. (Photo M. Driver)

Figure 2. Mixed White Cypress Pine Woodland grazing exclosure on Barrabool with regeneration of Pine, Needlewood, Sandalwood, Rosewood, Butterbush, Native Jasmine, mixed saltbushes and shrubs. (Photo M. Driver)

Results. The native vegetation at Barrabool has noticeably improved in quality terms of biodiversity conservation and production outcomes over the last 35 years, although droughts have occurred, and in fact been more frequent during this time.

In terms of conservation goals Boree regeneration and Thorny Saltbush understory restoration has been both the most extensive and effective strategy. Areas of mixed White Cypress Pine woodland have proven to be the most species diverse but also offer the greatest challenges in exotic weed invasion and management. The Pines themselves are also the most reluctant to regenerate and suffer many threats in reaching maturity while many of the secondary tree species are both more opportunistic and show greater resilience to drought and other environmental pressures. The increase in perenniality of grass and shrub components of the property have been significant, with subsequent increase in autumn feed and reduced dependence on external feed supplies.

In terms of production outcomes, after the millennium drought the property experienced three seasons in a row in which there was much less rainfall than the long term average rainfall. At the beginning of that period we had the equivalent of more than the annual rainfall in one night’s fall and then went for 12 months from shearing to shearing with no rain recorded at all. Yet the livestock and the country, however, did very well compared to other properties in the district, which we consider was due to the stronger native vegetation and its ability of the native vegetation to withstand long periods without rain.

Lessons learned and future directions. While many other sheep properties in the wider area are more intent on set stockingin their grazing practices, the results at Barrabool have demonstrated to many people who have visited the property what is possible. I am sure we are also are having some effect on the management systems of other properties in the district especially in the area of conservation areas excluded from grazing.

What we plan for the future is to explore funding options to fence out or split ephemeral creeks and wetlands and encourage Inland River Red Gum and Nitre Goosefoot regeneration.Our long term goal is to maintain the full range of management zones (including restoration zones earmarked for conservation, rehabilitation zones in which we seek to improve and maintain biodiversity values in a grazing context, and fully converted zones around infrastructure where we reduce impacts on the other zones.

Contact:   Martin Driver Barrabool, Conargo, NSW 2710 Email: barrabool@bigpond.com

Project Eden: Fauna reintroductions, Francois Peron National Park, Western Australia

Per Christensen, Colleen Sims and Bruce G. Ward

Key words. Ecological restoration, pest fauna control, captive breeding, foxes, cats.

Figure 1. The Peron Peninsula divides the two major bays of the Shark Bay World Heritage Area, Western Australia.

Figure 1. The Peron Peninsula divides the two major bays of the Shark Bay World Heritage Area, Western Australia.

Introduction. In 1801, 23 species of native mammals were present in what is now Francois Peron National Park. By 1990 fewer than half that number remained (Fig 1.). Predation by introduced foxes and cats, habitat destruction by stock and rabbits had driven many native animals to local extinction.

Project Eden was a bold conservation project launched by the WA government’s Department of Conservation and Land Management (CALM -now Dept of Parks and Wildlife) that aimed to reverse extinction and ecological destruction in the Shark Bay World Heritage Area.

The site and program. Works commenced in Peron Peninsula – an approx. 80 km long and 20 km wide peninsula on the semi-arid mid-west coast of Western Australia (25° 50′S 113°33′E) (Fig 1). In the early 1990s, removal of pest animals commenced with the removal of sheep, cattle and goats and continued with the control of feral predators. A fence was erected across the 3km ‘bottleneck’ at the bottom of the peninsula where it joins the rest of Australia (Fig 2) to create an area where pest predators were reduced to very low numbers.

Figure 2. The feral proof fence was erected at the narrow point where Peron Peninsula joins the mainland.

Figure 2. The feral proof fence was erected at the narrow point where Peron Peninsula joins the mainland.

Once European Red Fox (Vulpes vulpes) (estimated at 2500 animals) was controlled and feral Cat (Felis catus) reduced to about 1 cat per 100 km of monitored track, sequential reintroductions of five locally extinct native animals were undertaken (Figs 3 and 4).  These included: Woylie (Bettongia penicillata – first introduced in 1997), Malleefowl (Leipoa ocellata – 1997), Bilby (Macrotis lagotis – 2000), Rufous Hare-wallaby (Lagorchestes hirsutus – 2001), Banded Hare-wallaby (Lagostrophus fasciatus -2001), Southern Brown Bandicoot (Isoodon obesulus – 2006) and Chuditch (Dasyurus geoffroi geoffroi -2011?)

Methods. Cat baiting involved Eradicat® cat baits, which were applied annually during March–April at a density of 10 to 50 baits/km2. Cat baiting continued for over 10 years, supplemented with a trapping program, carried out year round over a 8 -year period. Cat trapping involved rolling 10 day sessions of leghold trapping along all track systems within the area, using Victor Softcatch No. 3 traps and a variety of lures (predominantly olfactory and auditory).Tens of thousands of trap nights resulted in the trapping of up to 3456 animals. Fox baiting involved dispersal of dried meat baits containing 1080 poison by hand or dropped from aircraft across the whole peninsula. Baiting of the peninsula continues to occur annually, and removes any new foxes that may migrate into the protected area and is likely to regularly impact young inexperienced cats in the population, with occasional significant reductions in the mature cat population when environmental conditions are favourable.

Malleefowl were raised at the Peron Captive Breeding Centre from eggs collected from active mounds in the midwest of Western Australia. Woylies were reintroduced from animals caught in the wild from sites in the southwest of Western Australia, with Bilbies sourced from the Peron Captive Breeding Centre, established by CALM in 1996 to provide sufficient animals for the reintroductions. The centre has since bred more than 300 animals from five species

Monitoring for native mammals involved radio-tracking of Bilbies, Woylies, Banded Hare Wallabies, Rufous Hare-Wallabies, Southern Brown Bandicoots, Chuditch and Malleefowl at release, cage trapping with medium Sheffield cage traps and medium Eliots, as well as pitfall trapping of small mammals. The survey method for cats utilized a passive track count survey technique along an 80 km transect through the long axis of the peninsula. The gut contents of all trapped cats were examined.

Fig. 3. Woylies were first introduced in 1997 from animals caught in the wild at sites in southwest Western Australia.

Figure 3. Once foxes were controlled and cats reduced to about 1 cat per 100 km of monitored track, sequential reintroductions of five locally extinct native animals were undertaken. Woylies were first introduced in 1997 from animals caught in the wild at sites in southwest Western Australia.

Once European Red Fox (Vulpes vulpes) (estimated at 2500 animals) was controlled and feral Cat (Felis catus) reduced to about 1 cat per 100 km of monitored track, sequential reintroductions of five locally extinct native animals were undertaken.

Figure 4. Tail tag being fitted to a Bilby. (Bilbies were re-introduced to the Peron Peninsula in 2000, from animals bred in the Peron Captive Breeding Centre.)

Results. Monitoring has shown that two of the reintroduced species – the Malleefowl and Bilby – have now been successfully established. These species are still quite rare but they have been breeding on the peninsula for several years The Woylie population may still be present in very low numbers, but despite initial success and recruitment for six or seven years, has gradually declined due to prolonged drought and low level predation on a small population. Although the released Rufous Hare-wallabies and the Banded Hare-wallabies survived for 10 months and were surviving and breeding well, they disappeared because of a high susceptibility to cat predation and other natural predators like wedge-tailed eagles. Although some predation of Southern Brown Bandicoot has occurred and the reintroduction is still in the early stages, this species has been breeding and persisting and it is hoped that they will establish themselves in the thicker scrub of the peninsula.

Lessons learned. We found that the susceptibility to predation by cats and foxes varies considerably between species. Malleefowl are very susceptible to fox predation because the foxes will find their mound nests, dig up their eggs up and eat them – consequently wiping them out over a period of time. As cats can’t dig, Malleefowl can actually exist with a fairly high level of cats. Bilbies live in their burrows and are very alert so they can persist despite a certain level of cats. But the Rufous Hare-wallaby and the Banded Hare-wallaby are very susceptible to cat predation and fox predation due to their size and habits.

Examination of the period of time when species disappeared from the Australian mainland showed that there was a sequence of extirpations, reflecting the degree to which the species were vulnerable to pest predators. The ones that survived longest are those that are less vulnerable. This suggests that if complete control of predators is not possible (considering cat control is extremely difficult), it is preferable to focus on those animals that are least vulnerable. While it could be argued that reintroductions should be delayed until such time as all the cats and foxes have been removed, such a delay (which might take us 10, 20 or even 100 years) is likely to exceed the period of time many of these species will survive without some sort of assistance. It is likely to be preferable to proceed with reintroductions although we might be losing some animals.

Future directions. As with the majority of mainland reintroduction projects, level of predator control is the key to successful establishment of reintroduced fauna. The Project is currently under a maintenance strategy and future releases, which included the Western Barred Bandicoot (Perameles bougainville), Shark Bay Mouse (Pseudomys fieldi), geoffroi), Greater Stick-nest Rat (Leporillus conditor) and Red-tailed Phascogale (Phascogale calura) are on hold until improved cat control techniques are available. Despite the uncertain future for reintroductions of these smaller species, ongoing feral animal control activities and previous reintroductions have resulted in improved conditions and recovery for remnant small native vertebrates (including thick billed grass wrens, woma pythons and native mice), and new populations of several of the area’s threatened species which are once again flourishing in their original habitats.

Acknowledgements: the program was carried out by Western Australia’s Department of Parks and Wildlife and we thank the many Departmental employees, including District and Regional officers for their assistance over the years, and the many, many other people that have volunteered their time and been a part of the Project over the years, for which we are very grateful.

Contact: Colleen Sims, Research Scientist, Department of Parks and Wildlife (Science and Conservation Division, Wildlife Research, Wildlife Place, Woodvale, WA 6026, Australia, Tel: +61 8 94055100; Email: colleen.sims@dpaw.wa.gov.au). Also visit: http://www.sharkbay.org.au/project-eden-introduction.aspx

Further detail and other work in WA:

Per E. S. Christensen, Bruce G. Ward and Colleen Sims (2013) Predicting bait uptake by feral cats, Felis catus, in semi-arid environments. Ecological Management & Restoration 14:1, 47-53.

Per Christensen and Tein McDonald (2013) Reintroductions and controlling feral predators: Interview with Per Christensen. Ecological Management & Restoration, 14:2 93–100.

 

Long Swamp, Discovery Bay Coastal Park, Victoria

Mark Bachmann

Key words: wetland restoration, Ramsar, hydrology, Glenelg River, drainage

Long Swamp is a 15 km long coastal freshwater wetland complex situated in Discovery Bay Coastal Park, approximately 50 km north-west from Portland in south-western Victoria. The wetland system supports a diverse suite of nationally threatened species and is currently undergoing a Ramsar nomination process. Despite its size, reserved status and impressive biodiversity values, including recognition on the Directory of Important Wetlands in Australia, the local community in Nelson had expressed concern for over a decade about the impact that two artificial outlets to the ocean were having on wetland condition. The outlets were cut during an era when the swamp was grazed, many decades before being dedicated as a conservation reserve in the 1970s.

The wetland originally discharged into the ocean via Oxbow Lake and the Glenelg River mouth at Nelson. These changes to hydrology caused an interruption of flows, contributing to a long-term drying trend within the wetland complex.    This was not immediately obvious to many as the gradual drying of wetlands in a natural area is often less noticeable than in a cleared agricultural area, driven by a seamless and gradual shift towards more terrestrial species within the composition of native vegetation (Fig. 1).

Figure 1. Shrub (Leptospermum lanigerum) encroachment into sedgeland underway in Long Swamp.

In 2012, Nature Glenelg Trust (NGT) became actively involved in Long Swamp, working closely with Parks Victoria, the Nelson Coast Care Group, and the Glenelg Hopkins CMA. The initial involvement was to undertake a scientific review of the aquatic ecological values that might be impacted by the ecological shifts anecdotally observed to be underway. This early work identified that the more remote artificial outlet to the sea (White Sands) had in fact naturally closed, with a dune forming in front of the former channel several years earlier during the Millennium Drought (c. 2005). This formed an area of aquatic habitat immediately upstream of the former outlet that is now home to a diverse native freshwater fish community, including two nationally threatened fish species, the Yarra Pygmy Perch (Nannoperca obscura) and Dwarf Galaxias (Galaxiella pusilla). This observation and other investigations led to the planning of a restoration trial aimed at regulating or possibly blocking the second and final artificial outlet at Nobles Rocks to increase the availability, diversity and connectivity of aquatic habitats throughout Long Swamp, in order to benefit a wide range of wetland dependant species.

As well as undertaking basic monitoring across a broad range of taxonomic groups (birds, vegetation, frogs), the project has a particular emphasis on native freshwater fish populations as a primary indicator of project success.

Figure 2 – Aerial view of Nobles Rocks artificial outlet, detailing the location of the three trial sandbag structures.

Figure 2 . Aerial view of Nobles Rocks artificial outlet, detailing the location of the three trial sandbag structures.

Figure 3 - NGT staff members celebrate the completion of the third and final sandbag structure with some of the many dedicated volunteers from the local community.

Figure 3. Nature Glenelg Trust staff members celebrate the completion of the third and final sandbag structure with some of the many dedicated volunteers from the local community.

Reversal of artificial outlet impact over three phases.

The first two stages of the restoration trial in May and July 2014 involved 56 volunteers from the community working together to construct low-level temporary sandbag structures, initially at the most accessible and technically feasible sections of drain under flowing conditions. Tackling the project in stages enabled us to learn sufficient information about the hydrological conditions at the site in 2014, before commencing the third and final stage of the trial in March 2015. On the 27th April 2015, the main structure was completed, following two days of preparation and nine days of sandbagging (using about 6,600 sandbags), which were put in place with the dedicated help of over 30 volunteers (see Figs 3 and 4). To achieve our target operating height, the structure was raised by a further 30 cm in August 2015.

A series of gauge boards with water depth data loggers were also placed at key locations in the outlet channel and upstream into Long Swamp proper, to monitor the change in water levels throughout each stage of restoration and into the future.

Fig 4a. Long swamp

Figure 4a. View of the Phase 3 Restoration Trial Structure location prior to construction in March 2015.

Fig 4b. Long swamp

Figure 4b. Same location in June 2015, after construction of the Restoration Trial Structure.

Results to date.

Water levels in the swamp immediately upstream of the final structure increased, in the deepest portion of Long Swamp, from 34 cm (in April 2015) to 116 cm (in early September 2015). Further upstream, in a shallower area more representative of the impact on Long Swamp in the adjacent wider area, levels increased from being dry in April 2015, 14 cm deep in May, through to 43 cm deep in early September 2015, as shown in Figure 5. This is a zone where the shrub invasion is typical of the drying trend being observed in Long Swamp, and hence will be an important long-term monitoring location.

To evaluate the response of habitat to short and longer-term hydrological change, we also undertook longer-term landscape change analysis through GIS-based interpretation of aerial photography. This showed that we have currently recovered approximately 60 hectares of total surface water at Nobles Rocks, not including larger gains across downstream habitats as a result of groundwater mounding, sub-surface seepage and redirected surface flows that have also been observed.  These initial results and longer-term outcomes for targets species of native plants and animals will be detailed fully in future reports.

Fig 5a. Long swamp

Figure 5a. Further inland in the swamp after the Phase 3 structure was complete, shown here in May 2015. Depth – 14 cm.

Fig 5b. Long swamp

Figure 5b. Same photopoint 4 months later in September 2015. Depth – 43 cm.

Lessons learned and future directions.Meaningful community participation has been one of the most critical ingredients in the success of this project so far, leading to a strong sense of shared achievement for all involved. Monitoring will continue to guide the next steps of the project, with the ultimate aim of informing a consensus view (among those with shared interest in the park) for eventually converting the trial structure to a permanent solution.

Acknowledgements. Project partners include Parks Victoria, Nelson Coast Care Group, the Glenelg Hopkins CMA and the Friends of the Great South West Walk. Volunteers from several other groups have also assisted with the trials. Grant funding was generously provided by the Victorian Government.

Contact. Mark Bachmann, Nature Glenelg Trust, PO Box 2177, MT GAMBIER, SA 5290 Australia, Tel +61 8 8797 8181, Mob 0421 97 8181, Email: mark.bachmann@natureglenelg.org.au  Web: www.natureglenelg.org.au

See also:

Video conference presentation

NGH newsletter – including a link to a video on the project

Bradys Swamp EMR short summary

Picanninnie Ponds EMR short summary

 

Brady Swamp wetland complex, Grampians National Park, Victoria

Mark Bachmann

Key words: wetland restoration, Wannon River, hydrology, drainage, Gooseneck Swamp

A series of wetlands associated with the floodplain of the Wannon River (Walker, Gooseneck, and Brady Swamps), situated approximately 12 km north east of Dunkeld in western Victoria, were partially drained from the 1950s onwards for grazing purposes (Fig 1). A portion of these wetlands was later acquired and incorporated into the Grampians National Park (and other peripheral reserves) in the mid-1980s, managed by Parks Victoria. However, the balance of the wider wetland and floodplain area remained under private ownership, creating a degree of uncertainty surrounding reinstatement of water regime – an issue that was left unresolved for over two decades.

Many years of planning work, including modelling studies and biological investigations by a range of organisations, never quite managed to adequately resolve the best way to design and progress wetland restoration work in this area. To address the impasse, at the request of the Glenelg Hopkins CMA in early 2013, Nature Glenelg Trust proposed a staged restoration trial process which was subsequently agreed to by landowners, neighbours, government agencies, and local community groups.

Figure 1. Image from the present day: showing artificial drains (red lines/arrows) constructed to drain Walker, Gooseneck and Brady Swamps, as it operated from the 1950s–2013.

Figure 1. Image from the present day: showing artificial drains (red lines/arrows) constructed to drain Walker, Gooseneck and Brady Swamps, as it operated from the 1950s–2013.

Trials and permanent works undertaken.

Initial trials. The restoration process began in August 2013 with the installation of the first trial sandbag weir structure to regulate the artificial drain at Gooseneck Swamp. Its immediate success in reinstating wetland levels led to similar trials being initiated at Brady Swamp and Walker Swamp (Fig. 2) in 2014.

Figure 2. The volunteer sandbagging crew at the artificial drainage outlet from Walker Swamp - August 2014.

Figure 2. The volunteer sandbagging crew at the artificial drainage outlet from Walker Swamp – August 2014.

Permanent works were ultimately undertaken to reinstate the breached natural earthen banks at Brady and Gooseneck Swamps (Figure 3), implemented by Nature Glenelg Trust in early 2015.

Figure 3a. Trial Structure on the Brady Swamp outlet drain in 2014

Figure 3b. The same view shown in Figure 3a, after the completion of permanent works in 2015

Results. The works have permanently reinstated the alternative, original watercourse and floodplain of the Wannon River, which now activates when the water levels in these wetlands reach their natural sill level. This is predicted to have a positive impact on a wide range of flora and fauna species.

Monitoring is in place to measure changes to vegetation and the distribution and status of key fauna species, such as waterbirds, fish and frogs. Due to drought conditions experienced in 2015, to is too early to describe the full ecological impact of the works at this time.

4. Gooseneck Swamp in Sept 2014: the second season of the restoration trial, just prior to the implementation of permanent restoration works

Figure 4. Gooseneck Swamp in Sept 2014: the second season of the restoration trial, just prior to the implementation of permanent restoration works

Lessons learned. The success of these trials has been based on their tangible ability to demonstrate, to all parties involved, the potential wetland restoration outcome for the sites; made possible by using simple, low-cost, impermanent methods. To ensure the integrity of the trial structures, the sandbags used for this purpose are made of geotextile fabric, with a minimum field service life of approximately 5 years.

The trials were critical for building community confidence and collecting real operational data for informing the development of longer-term measures to increase the depth and duration of inundation.

A vital aspect of the trials has been the level of community participation, not only at the sandbagging “events”, but also the subsequent commitment to ecological monitoring, for helping evaluate the biological impacts of hydrological reinstatement. For example, the Hamilton Field Naturalists Club has been undertaking monthly bird monitoring counts that are helping Nature Glenelg Trust to develop a picture of the ecological value of these wetlands and their role in the wider landscape, including the detection of international migratory species.

Acknowledgements. Project partners include Parks Victoria, Hamilton Field Naturalists Club, the Glenelg Hopkins CMA, Macquarie Forestry and other private landholders. Volunteers from several other groups have also assisted with the trials. Grant funding was generously provided by the Victorian Government.

Contact. Mark Bachmann, Nature Glenelg Trust, PO Box 2177, MT GAMBIER, SA 5290 Australia. Tel +61 8 8797 8181, Mob 0421 97 8181; Email mark.bachmann@natureglenelg.org.au. Web| www.natureglenelg.org.au

See also:

Long Swamp EMR short summary

Picanninnie Ponds EMR short summary