Category Archives: Uncategorized

Exploring “bottom up” approaches to ecosystem repair in Victoria’s Central Goldfields

Chris Pocknee

Figure 1. An example of severely degraded box-ironbark. (Photo Paul Foreman)

Introduction. Box-Ironbark forests are an important ecosystem for biodiversity in southern Australia providing critical habitat for threatened species including Swift Parrots and Regent Honeyeaters. With over 83% of the original box-ironbark forests cleared and much of the remaining area degraded, the box-ironbark forests are one of the most endangered ecosystems in Australia. The box-ironbark forests of the Central Goldfields in Victoria have been severely degraded by gold mining in the 1900s and by forestry activities (Fig. 1).

This project explores a suite of interventions including nest box installation, ecological thinning, soil contour ripping, targeted revegetation and gully ponding. The interventions are intended to restore the hydrology and begin to repair the function of the entire ecosystem from the bottom up (Fig. 2). Biolinks Alliance collected baseline ecological data. These data and the BACI (Before-After-Control-Impact) experimental design will allow thorough assessment of the impacts of the interventions.

Figure 2. An example of the desired outcome. (Photo Paul Foreman)

The project site is within Spring Plains Nature Conservation Reserve (NCR) less than 10 km south-east of the town of Heathcote and is managed by Parks Victoria. Peter’s Gully, the treatment site  is 138 Ha and the control site, White’s Gully, is 140 Ha (Fig. 3).

Figure 3. The project site within Spring Plains NCR .

Works undertaken. To address the lack of natural tree hollows across the site, 200 nest boxes were installed, 100 in both the control and the treatment gully. These boxes are specifically designed for use by brush-tailed phascogales (Phascogale tapoatafa) and Krefft’s gliders (Petaurus notatus) and have been monitored every three months since their installation in August 2022.

Ecological thinning was undertaken across 76.7 ha of the treatment site, with an approximate reduction in tree basal area of 40-75% within thinned areas. Thinning is intended to increase the amount of light reaching the understorey, and decrease the amount of competition for soil nutrients and water, thereby increasing the growth rate of the remaining trees to enhance their natural habitat value. Thinnings were laid down along contour lines where possible to impede overland water flow and create microsites for organic material and seeds to build up. The woody debris also created ground-level habitat for small animals (Fig. 4).

Figure 4. Before (above) and after (below) photos taken in September of 2022 and 2023 showing ecological thinning in Peter’s Gully. (Photo Cameron O’Mara).

Contour lines were ripped to a depth of approximately 30 cm along 71.6 km within the treatment gully, and seeds of local provenance wallaby-grasses (Joycea pallida and Rytidosperma spp.) were directly sown into the rip-lines (Fig. 5). Ripping along contour lines is intended to increase water infiltration into the soil rather than running off downslope, and creates areas with much higher rates of seed germination.

Figure 5.  Seed germination rates in rip lines are high compared to adjacent areas (Photo Cameron O’Mara).

Twenty-one small, shallow ‘ponds’ with leaky weirs were constructed through the gully bottom using timber felled during thinning. This is intended to slow water movement, increase moisture availability to the ecosystem, minimise the loss of top-soil and leaf litter to fast flowing water, and reduce the erosion that occurs during heavy rains. Semi-aquatic rushes and grasses were planted around the ponds to promote stability and re-establish these species across the site.

Results to date. It is too early to have meaningful data on ecological outcomes, as the first round of post-intervention monitoring is still in progress and we expect to see changes unfold over a number of years. We have already observed reduced run-off of water and sediment following heavy rain in the treatment site compared with the control site, although this has not yet been formally quantified.

Recent post-treatment reptile survey results are promising. We recorded 7 individuals from two skink species (Lerista bougainvillii and Lampropholis guichenoti) in tile surveys in the treatment site compared with one individual L. bougainvillii in the control site. Nest box monitoring has revealed a high occupancy rate across the 12 months since installation, with 94% of boxes showing signs of small mammal occupancy (i.e. either animals present or a nest) within 6 months, and 99% after 12 months. We counted a minimum of 604 Krefft’s gliders using these boxes in September 2023, and 22 boxes being used by phascogales.

Lessons learned and future directions. The biggest hurdle to implementing this project was the approval process. We have now been through the process successfully and have a clear idea of how to best approach it in the future. This project requires ongoing monitoring to assess impacts on ecosystem function. There may be a role for targeted threatened species work, such as the reintroduction of missing threatened flora to the site.

Stakeholders and Funding bodies. This project has been funded by the R. E. Ross Trust, Brian D. Newman Foundation, Ian Potter Foundation, private philanthropists, DEECA Nature Fund, and Parks Victoria Volunteer Innovation Fund. We acknowledge Parks Victoria as a partner on this project, and the support from Taungurung Land and Water Council, City of Greater Bendigo, the Victorian Department of Energy, Environment and Climate Action (DEECA), Goulburn-Murray Water and the North-Central Catchment Management Authority.

Contact: Chris Pocknee, Ecologist – Biolinks Alliance. Email: chris.pocknee@biolinksalliance.org.au

Post-fire assisted regeneration at Rutidosis Ridge, Scottsdale Reserve, Bredbo NSW

 

Figure 1. Undamaged grassy woodland reference site occurring at high elevation at Scottsdale (Photo: Brett Howland)

Introduction. Scottsdale Reserve is a 1,328-hectare private conservation reserve, near Bredbo NSW, owned and managed by Bush Heritage Australia. For over 100 years prior to purchase in 2006 the property was utilised for grazing and cropping. While most of the higher elevation areas of the property remained intact and offered the basis for improving landscape connectivity for wildlife, the agricultural land use had resulted in conversion of the flats and lower slopes of the property to largely exotic pasture species and accompanying weed.

This case study focuses on one approx 10 ha Apple Box (Eucalyptus bridgesiana) / Snow Gum, (Eucalyptus pauciflora) grassy woodland ridge within the property – named ‘Rutidosis Ridge’ because it is the location of a small population of the Endangered plant species Button Wrinklewort (Rutidosis leptorhynchoides). Set-grazing by sheep as well as some cropping had left the site nearly wholly dominated by the landscape-transforming exotic pasture grasses African Love Grass (Eragrostis curvula) and Serrated Tussock (Nasella tricotoma). Some scattered copses of eucalypts and some herbaceous natives remained, however, suggesting that the site might have some native regeneration potential, but the number and abundance of natives on the site appeared very low and the site was very dissimilar to a nearby healthy reference site (Fig. 1).

Works undertaken. Around a decade after land purchase and the discontinuation of grazing and cropping, Rutidosis Ridge was aerially sprayed during winter with flupropinate herbicide at a low dilution (1L / ha) known to be effective on some strains of African Love Grass and Serrated Tussock without killing native grasses and forbs. While the African Love Grass and Serrated Tussock had died by the following spring as a result of this soil-active herbicide, no substantial native regeneration was observed due to the persistence of the thick thatch of dead African Love Grass (Fig 2).

  • Figure 2.  Typical site showing sprayed African Love Grass thatch even many years after aerial spraying. (Photo T. McDonald )
  • Figure 3.  Intense wildfire that passed through Bredbo, NSW in early February. (Photo” New York Times)

An intense wildfire passed through the property on 2nd February 2020 (Fig. 3). This largely consumed the thatch, exposing stony topsoils and providing opportunities for regeneration of both natives and weeds that were stored in the soil seed bank.  Anticipating the need for post-fire spot-spray follow-up after the fire to avoid any native regeneration being overwhelmed by weed, Bush Heritage Australia (BHA) collaborated on a program of regular selective treatment of weed with the restoration organisation the Australian Association of Bush Regenerators (AABR). Personnel involved both contractors and volunteers skilled in recognising natives and weeds at seedling stage capable of spot-spraying with negligible off-target damage (Fig 4).  

Because the fire had removed African Love Grass thatch and cued germination of natives and weeds, the aim was to treat all weed prior to its seeding.  This allowed the managers to (a) take advantage of the fire’s flushing out the weed soil seed bank and avoid its further recharge and (b) retain maximum open spaces for further natives to emerge and colonise. 

During the year after the fire (March 2020-April 2021), the ~10ha site had been subjected to approx. 600 person hours of spot spraying, mainly undertaken by experienced bush regenerators. This commenced in March 2000 and continued at least fortnightly during the growing season.

Figure 4. Location of comprehensively spot-sprayed areas and target-weeded areas at Rutidosis Ridge. An opportunity exists to compare differences in richness and cover of natives and weed between the two treatments, ensuring comparisons are confined to within-comparable condition classes.

What we found by 1 year of treatments.  Post-fire observations in  March 2020 revealed Snow Gum resprouting from lignotubers and roots and Apple Box and Candlebark (Eucalyptus rubida) resprouting epicormically.  A wide suite of native grasses and forbs were starting to resprout or germinate alongside diverse herbaceous weeds. Within the first 12 months of regular spot-spraying, the cover and seed production of approx. 30 weed species was very substantially reduced.  Combined with fairly evenly distributed rainfall in the follow 12 months this reduction in weed allowed ongoing increases in native species cover and diversity per unit area, with seed production likely by most native species.  There was negligible off-target damage from the spray treatments. In December 2020 over 50 native herbaceous and sub-shrub species (including at least 11 Asteraceae, 9 Poaceae, 4 Fabaceae and 2 Liliaceae) were recorded within the work zones, with cover of natives very high in the higher condition zones, but plentiful bare ground remaining in the lower condition zones (Fig. 5).  

Figure 5.  Top:  Directly after wildfire showing black stubs of African Love Grass; Middle: Volunteers spot-spraying during the growing season, and Bottom: same site after 12 months but when native grasses were curing off after seeding. (Photos T. McDonald)

Predominant weed species included recovery African Love Grass, Viper’s Bugloss (Echium vulgare), St John’s Wort (Hypericum perforatum), Yellow Catsear (Hypochoeris radicata), Common Plantain (Plantago major), a range of thistles and around 20 other weed species.

Predominant natives included speargrasses (Austrostipa spp.), Redleg Grass (Bothriochloa macrantha), Kangaroo Grass (Themeda triandra), Native Panic (Panicum effusum), Common Raspwort (Gonocarpus teucrioides), Bindweed (Convolvulus erubescens), bluebells (Wahlenbergia spp.), Common Everlasting (Chrysocephalum apiculatum), fuzzweeds (Vitadennia spp.), Bear’s Ear (Cymbonotus lawsonianus), Creamy Candles (Stackhousia monogyna), Yellow Pimelea (Pimelea curviflora subsp. fusiformis) and Native St John’s Wort (Hypericum gramineum).  Species of higher conservation interest that regenerated included Blue Devil (Eryngium ovinum) and Threatened species that regenerated included Silky Swainson’s Pea (Swainsona sericea) and Button Wrinklewort. (Some of these species are pictured in Fig. 6).

Figure 6. Some of the forbs that flowered on Rutidosis Ridge during the growing season – including the Endangered Button Wrinklework (centre) and Vulnerable Silky Swainson’s Pea.(bottom left). (Photos various.)

Gradient of condition improving over time. As expected, the sites showed a gradient of condition (Fig. 7), with highest natural regeneration capacity retained in the tree clusters and stony crest, perhaps due to these less likely to be less favoured by sheep. (The tree clusters appear not to have been used as sheep camps). By March 2020, 1 year after work commenced, all sites were on a trajectory to move to the next higher condition class, assuming successful Winter 2021 aerial spray re-treatment of African Love Grass.  (Note that, while the pre-fire flupropinate treatment would normally have a residual effect for a few years and thus preventing germnation of this species, massive germination did occur of African Love Grass in many areas, which we speculate was either due to suitable post-fire germination conditions being delayed by the presence of dead grass thatch or to a possible denaturing of the chemical by the fire.)  

Figure 7. Condition classes in the Rutidosis Zones A-E revealed during the first few months of treatment. By the end of the growing season and after regular follow up spot-spraying it was clear that all zones comprehensively treated were improving in their native: weed cover ratio except for an increasing cover of African Love Grass, the treatment of which was deferred until a second aerial spray scheduled for winter 2021. (Map: T. McDonald)

Acknowledgements: This project would not have been possible without the help of BHA and AABR volunteers.

Contact: Tein McDonald and Phil Palmer, Scottsdale Tel: +61 (0) 447 860 613; Email: <teinm@ozemail.com.au and phil.palmer@bushheritage.org.au

 

Ecological restoration in urban environments in New Zealand – UPDATE of EMR feature

Bruce Clarkson, Catherine Kirby and Kiri Wallace

[Update of EMR feature  – Clarkson, B.D. & Kirby, C.L. (2016) Ecological restoration in urban environments in New Zealand. Ecological Management & Restoration, 17:3, 180-190.  https://onlinelibrary.wiley.com/doi/10.1111/emr.12229]

Key words: urban ecology; restoration; indigenous biodiversity; New Zealand

Figure 1. Kauri dieback disease is affecting individual trees (left). [Photo Nick Waipara]

Introduction. Our 2016 EMR feature reviewed the state of research and practice of ecological restoration in urban environments in New Zealand. We concluded that urban restoration can influence and support regional and national biodiversity goals. We also observed that research effort was light, lacking interdisciplinary breadth and may not be sufficiently connected to restoration practice to ensure long-term success of many projects.

While it is only three years since that review was published, urban ecological restoration continues to grow and evolve, and the policy setting and political context have changed significantly. New threats and opportunities have emerged. The spread of a dieback disease and the more recent arrival of myrtle rust, rapid uptake of Predator Free 2050, emergence of the One Billion Trees programme, a surge in housing and subdivision development, and a potentially more supportive policy framework are all major factors.

Threats and opportunities. Kauri dieback disease is severely affecting urban kauri forests and individual Kauri (Agathis australis) trees in Auckland and other northern North Island urban centres (Fig. 1). Large forest areas adjoining Auckland, including most notably the Waitākere Range and large parts of the Hunua Range, are now closed to the public, preventing access to popular recreational areas. The dieback is caused by a fungus-like pathogen Phytophtora agathicida that is spread through soil movement. The disease may have arrived from overseas although this is uncertain. There is no known cure but research efforts are underway to find a large-scale treatment option.

Myrtle rust (Austropuccinia psidii) was first found on mainland New Zealand in May of 2017, probably arriving by wind from Australia. Myrtle rust threatens many iconic New Zealand plant species in the family Myrtaceae including Pōhutukawa (Metrosideros excelsa), Mānuka (Leptospermum scoparium), Rātā (Metrosideros robusta), Kānuka (Kunzea spp.), Waiwaka (Syzygium maire) or Swamp maire, and Ramarama (Lophomyrtus bullata). These species are all used to a greater or lesser extent in restoration planting or as specimen trees or shrubs in urban centres, depending on amenity or ecological context. Mānuka is widely used as a pioneer or nurse crop for native forest restoration and is critical to the economically important mānuka honey industry. Waiwaka is a feature of many swamp forest gully restoration projects in Hamilton and this would be a significant setback if they were badly affected. The impact of myrtle rust is still not clear but experience from Australia suggests it may take several years before it reaches population levels sufficient to cause significant damage.

Figure 2. With rapid housing developments in New Zealand, it is important that urban restoration projects are well-planned and efficiently carried out to provide residents with greenspaces to benefit their cultural, health and wellbeing practices. [Photo Catherine Kirby]

In response to a range of housing issues characterised by many as a New Zealand housing crisis, the previous and current government has embarked on several major initiatives to increase the housing stock. A $1B Housing Infrastructure Fund (HIF) was established in October 2016 with provision for interest free loans to local government to enable opening up of new large areas of housing. Many urban centres including Auckland, Tauranga, Hamilton and Queenstown made early applications to the fund. Hamilton City Council was successful in obtaining $290.4 M support for a new greenfield subdivision in Peacocke on the southern edge of the city. This subdivision is intended to enable development of some 3700 houses over the next 10 years and 8100 in 30 years. Approximately 720 ha of peri-urban pastoral agricultural land would eventually be developed (See summary). Coupled with this, and already in progress, is the construction of the Southern Links state highway and local arterial road network. The first proposed subdivision Amberfield covers 105 ha and consent hearings are currently in progress. The environmental impacts of the proposal and how they might be mitigated are being contested. In brief, survival of a small population of the critically endangered Long-tailed Bat (Chalinolobos turberculatus) is the main environmental focus but other aspects including the extent of greenspace and ecological restoration required for ecological compensation are being considered (Figs. 2, 3). With strong political pressure to solve the housing crisis in Hamilton and in other urban centres, making adequate provision for greenspace, especially urban forest, and preventing environmental degradation and indigenous biodiversity decline will be a major challenge.

Figure 3. Aerial photo of Waiwhakareke Natural Heritage Park (65 ha), an award-winning and ongoing ecological restoration project situated on the edge of urban Hamilton. [Photo Dave Norris]

The Predator Free 2050 (PF2050) programme which gained government (National) approval in 2015, aims to eradicate Stoat (Mustela erminea), Ship Rat (Rattus rattus), Norway Rat (Rattus norvegicus) and Possum (Trichosurus vulpecula) from the whole of New Zealand by 2050 (Department of Conservation 2018). PF2050 is now gaining significant traction in urban environments (Figs. 4, 5) with many urban centres having good numbers of community-led projects underway (See PFNZ National Trust map). Crofton Downs in Wellington was New Zealand’s first predator-free community project. Led by Kelvin Hastie this project has effectively reduced predator numbers to the point that some sensitive native birds e.g. Kākā (Nestor meridionalis), have begun to nest in this suburb after an absence of more than 100 years (See RNZ report). Also in Wellington, the Miramar Peninsula (Te Motu Kairangi) has become a focus, because of its advantageous geography, with a goal to make the area predator free by 2019. Possums had already been exterminated in 2006 (www.temotukairangi.co.nz).

Figure 4. John Innes (Wildlife Ecologist, Manaaki Whenua Landcare Research) demonstrating trapping success. Removing pest mammals reduces predation, and also frees up the habitat and resources for our native fauna and flora to flourish. [Photo Neil Fitzgerald]

The One Billion Trees (1BT) programme was initiated by the new coalition government (Labour, NZ First, Greens) in 2017 with $238M released in 2018 for planting of both exotic and native trees across mixed land use types. It is not clear yet whether urban forest projects have received funding support but the guidelines suggest there is no reason why restoration of native forest in urban settings would not be eligible. While the emphasis is on exotic tree plantations, native species and long-term forest protection are increasingly being considered as viable options by the newly established government forestry agency Te Uru Rākau.

The policy setting for ecological restoration in urban environments is potentially becoming more favourable with the draft National Policy Statement on Indigenous Biodiversity (NPSIB) currently in review and the New Zealand Biodiversity Strategy under revision (See terms of reference). The draft NPSIB emphasises restoration of indigenous habitat in biodiversity depleted environments. Specifically, Policy 19: Restoring indigenous biodiversity depleted environments, recommends a target for indigenous land cover, which in urban areas and peri-urban areas must be at least 10 per cent. The revision of the New Zealand Biodiversity Strategy seems likely to give more emphasis to landscape scale restoration including urban environments.

Figure 5. New Zealand native lizards are extremely vulnerable to mammalian predation (e.g. mice, hedgehogs, ferrets, cats) as well as habitat destruction (e.g. new urban developments). [Photo Tony Wills]

Research update. Using the same targeted Google Scholar search method as reported in the EMR feature we have found 18 new peer reviewed papers published between 2015 and July 2019 (see updated bibliography) that are strongly focused on restoration in New Zealand urban environments. The single paper noted for 2015 was missed in our previous search. Again, we have not included books, book chapters or grey literature. This compares very favourably with the total 27 papers listed in our 2016 review of which more than half dated from 2009. An increasing publication rate confirms increasing interest and research efforts in aspects of urban ecological restoration. While most of the publications remain in the ecological science realm there are now some informed by other disciplines including engineering, psychology, landscape architecture and health sciences.

Most notably since our 2016 review, a new government-funded (Ministry of Business, Innovation and Employment) research programme, People, Cities and Nature, began in November of 2016. This four-year $823 k per annum research programme ends in October of 2020 unless a funding rebid to be submitted in March 2020 is successful. The programme undertakes multidisciplinary research in nine NZ cities via six inter-related projects: restoration plantings; urban lizards; mammalian predators; Māori restoration values; green-space benefits and cross-sector alliances. While the emphasis was on the ecological science of urban restoration at the outset, the programme has become increasingly involved in understanding the multiple benefits of urban ecological projects including social cohesion and health and recreation benefits. The need to connect restoration research and practice has been met by undertaking multi-agency and community workshops involving researchers and practitioners in five cities to date with a further four scheduled before the programme ends.

Acknowledgements. The People Cities and Nature research programme is funded by the Ministry of Business Innovation and Employment under grant number UOW1601.

Information. Bruce D. Clarkson, Environmental Research Institute, University of Waikato, Hamilton, New Zealand bruce.clarkson@waikato.ac.nz; Catherine L. Kirby, Environmental Research Institute, University of Waikato, Hamilton, New Zealand catherine.kirby@waikato.ac.nz; and Kiri J. Wallace, Environmental Research Institute, University of Waikato, Hamilton, New Zealand kiri.wallace@waikato.ac.nz.

Long-term restoration in the Box Gum Woodlands of south-eastern Australia – UPDATE of EMR feature

David Lindenmayer, Mason Crane, Daniel Florance, David Smith, and Clare Crane

[Update of EMR feature –   Lindenmayer, David, Emmo Willinck, Mason Crane, Damian Michael, Sachiko Okada, Chris Cumming, Kylie Durant and Judy Frankenberg (2013) Murray Catchment habitat restoration: Lessons from landscape-level research and monitoring. Ecological Management & Restoration, 14:2, 80-92.  https://onlinelibrary.wiley.com/doi/abs/10.1111/emr.12051 ]

Keywords: Revegetation, biodiversity recovery, monitoring, birds

Figure 1. Revegetated woodland near Wagga Wagga in the South West Slopes of New South Wales. (Photo courtesy of the Sustainable Farms project at The Australian National University. Australia).

Introduction

This project encompasses a major set of large-scale, long-term integrated studies quantifying the response of various groups of biota to replanted woodlands in the Box Gum Grassy Woodlands of south-eastern Australia. The work has been underway since 2002 and contrasts revegetated areas with regrowth woodlands and old growth woodlands on multiple farms nested within landscapes with varying amounts of native vegetation cover (Fig 1.). The responses of birds, arboreal marsupials, terrestrial mammal, reptiles, frogs and native plants to these different kinds of broad vegetation types (and within-site and landscape-level attributes) have been documented over the past 17 years.

Further works undertaken

Since the inception of the original project and associated monitoring, an array of additional studies have been completed (https://www.anu.edu.au/about/strategic-planning/sustainable-farms). These include investigations of the impacts on birds and reptiles of livestock grazing in plantings, the benefits for birds of understorey plantings within old growth woodlands, the impacts of a control program for the Noisy Miner (Manorina melanocephala) on other woodland bird species, and interaction effects between long-term climate, short-term weather and revegetation programs on birds (Figs 2 and 3). Further work aims to quantify the biodiversity and livestock production benefits of enhancing the ecological condition (and associated water quality) of farm dams.

Figure 2. Flame Robin and Rufous Whistler – two bird species of conservation concern that respond positively to revegetated woodland. (Photos by Robin Patrick Kavanagh.)Further results to date

Research and monitoring in the past six years have resulted in a number of key new insights of considerable importance for restoration programs. A small subset of these findings includes:

  • The conservation benefits of replanted areas for bird and reptile biodiversity are undermined by intensive livestock grazing in these revegetated areas.
  • The bird biodiversity values of old growth temperate woodlands can be enhanced by underplantings of shrubs and other non-overstorey plants, although it can take many years for such benefits to manifest. Importantly, the occurrence of hyper-aggressive species such as the Noisy Miner is diminished in woodlands where underplantings have been established.
  • Experimental efforts to reduce populations of the Noisy Miner were largely unsuccessful; sites where this species was culled twice were rapidly recolonized by the Noisy Miner.
  • Replanted woodlands provide critical refugia for woodland birds, especially during prolonged drought periods.

Collectively, these findings indicate that restored woodlands have important conservation values (especially for birds but also reptiles), with restoration being valuable to conduct not only in existing old growth woodland (through establishing underplantings) but also in previously cleared sites. The conservation value of woodlands can be particularly critical during climate extremes such as droughts. Efforts to control the Noisy Miner will likely be most effective through targeted revegetation efforts rather than direct culling of birds. Finally, there is a need to limit grazing pressure in revegetated woodlands and this can require the repair or replacement of fences around replantings, especially when such key infrastructure begins to deteriorate.

Figure 3. Noisy Miner – a reverse keystone species for which experimental culling programs have proven to be ineffective. (Photo by Pete Richman.)

Lessons learned and future directions

The ongoing work has clearly demonstrated the important new insights that are derived from long-term ecological research and monitoring. Indeed, long-term changes in patterns of occupancy of restored areas could not have been quantified without rigorous monitoring of a wide range of sites of different sizes, ages and other attributes. Key manager-researcher partnerships have been fundamental to the ongoing success of the array of projects in this restoration initiative. Indeed, some research and monitoring studies were prompted by  questions posed by natural resource managers (such as if there were vegetation cover thresholds for birds in temperate woodlands). Close working relationships with farmers have also been critical to the persistence of the various projects. Field staff in the project, who are based permanently in rural Australia, are key points of outreach and communication with farmers and other natural resource managers. Their presence has accelerated the rate of knowledge transfer and adoption of new practices (such as widening shelterbelts so that they have multiple production and conservation values).

Stakeholders and funding bodies

Ongoing work has been supported by many funding bodies and partners. These include the owners of more than 250 private properties (whom have allowed access to their land and undertaken major restoration works). Funding for the work has been provided by The National Environmental Science Program (Threatened Species Recovery Hub), the Australian Research Council, Murray Local Land Services, Riverina Local Land Services, Central Tablelands Local Land Services, the Ian Potter Foundation, the Vincent Fairfax Family Foundation, The Australian National University, and the Calvert-Jones Foundation.

Contact information

David Lindenmayer, Sustainable Farms Project, Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, david.lindenmayer@anu.edu.au

Restoration and conservation in an iconic National Park – UPDATE of EMR feature

David Lindenmayer, Chris MacGregor, Natasha Robinson, Claire Foster, and Nick Dexter

[Update of EMR feature – David B. Lindenmayer, Christopher MacGregor, Nick Dexter, Martin Fortescue and Peter Cochrane (2013)  Booderee National Park Management: Connecting science and management.  Ecological Management & Restoration, 14:1, 2-10. https://onlinelibrary.wiley.com/doi/10.1111/emr.12027]

Keywords: Invasive animal and plant control, reintroduction, monitoring

Introduction. Booderee National Park is an iconic, species-rich, coastal reserve that supports a range of threatened and endangered native animals and plants. Several key management actions have been implemented to promote the conservation of biodiversity in Booderee National Park. These include the control of an exotic predator (the Red Fox Vulpes vulpes), the control of highly invasive Bitou Bush (Chrysanthemoides monilifera subsp. rotundata), the management of fire, and the reintroduction of previously extinct native mammals. A key part of work at Booderee National Park has been a long-term monitoring program that commenced in late 2002 and which has aimed to quantify the effectiveness of major management interventions, including the four listed above. The monitoring program has documented the long-term trajectories of populations of birds, arboreal marsupials, terrestrial mammals, reptiles, frogs and native plants in a range of major vegetation types (from heathland and sedgeland to woodland, forest and rainforest) and in response to fire, and weed and feral predator control. Importantly, the monitoring program has provided a foundational platform from which a suite of post-graduate studies and other research programs have been completed.

Further works undertaken. A key part of the researcher-manager partnership has been to analyse the long-term trajectories of populations of mammals, birds and reptiles in Booderee National Park. The monitoring data indicate that many species of mammals are declining, with some having become recently locally extinct (e.g. Greater Glider Petauroides volans) or close to extinction in the reserve (e.g. Common Ringtail Possum Pseudocheirus peregrinus) . This is despite populations of these species persisting in nearby reserves.  Robust interrogation of the multi-taxa monitoring data has been unable to identify reasons for these declines. Interestingly, the declines observed for mammals have not been observed to date in other vertebrate groups, including birds, reptiles and amphibians. An experimentally-based reintroduction program for the Greater Glider aims to not only re-establish populations of the species in Booderee National Park, but also to identify the reasons for the original decline. That program will be in addition to reintroduction programs already underway for other mammal species, the Long-nosed Potoroo (Potorous tridactylus), the Southern Brown Bandicoot (Isoodon obesulus) and Eastern Quoll (Dasyurus vivverinus) that used to inhabit Booderee National Park but which went extinct many decades earlier.

Additional research being undertaken in Booderee National Park has included: (1) studies of the effectiveness of control efforts for Bitou Bush and associated recovery of native vegetation and native fauna, (2) the interactive effects of fire and browsing on native plants and an array of animal groups, and (3) studies of leaf litter and other fuel dynamics in relation to previous fire history and macropod browsing.

Figure 1. Key area of Booderee National Park showing an area of coastal forest before and after Bitou Bush treatment.

Further results to date. Research and monitoring in the past six years have resulted in many new insights including some of considerable value for informing restoration programs. A small subset of these findings is outlined below.

  • Conventional approaches to the control of invasive Bitou Bush entail spraying ultra-low volume herbicide (Fig. 1), followed by burning of the “cured” dead material, and then respraying of the seedlings that germinate after fire. This spray-burn-spray protocol is both the most ecologically effective and the most cost-effective way of controlling Bitou Bush and, at the same time, facilitates the recovery of native vegetation. More recent analysis has revealed spray frequency as the most important determinant of long-term control. There are mixed effects of control methods on native species; plant species abundance was positively related to Bitou Bush control, while native bird abundance (except for Eastern Bristlebird Dasyornis brachypterus, Fig 2.) and mammal abundance were weakly negatively associated with Bitou control.
  • There can be strong interactions between the occurrence of fire and browsing by macropods on native plants as well as particular groups of animals such as spiders.
  • Reintroduction programs for the Southern Brown Bandicoot and Eastern Quoll have been relatively successful, although the latter species suffers high rates of mortality, particularly as a result of fox predation and collisions with motor vehicles. Nevertheless, populations of both species have survived over multiple years and reproduced successfully.

Figure 2. The Eastern Bristlebird, a species for which Booderee National Park is a stronghold. Notably, the species responds positively to management interventions to control Bitou Bush. (Photo Graeme Chapman)

Lessons learned and future directions. The work at Booderee National Park is a truly collaborative partnership between reserve managers, a university and the local Indigenous community.  A key part of the enduring, long-term success of the project has been that a full-time employee of The Australian National University has been stationed permanently in the Parks Australia office in the Jervis Bay Territory. That person (CM) works on an almost daily basis within Booderee National Park and this provides an ideal way to facilitate communication of new research and monitoring results to managers. It also enables emerging management concerns to be included as part of adaptive monitoring practices.

One of the key lessons learned from the long-term work has been the extent of ecological “surprises” – that is, highly unexpected results, including those which continue to remain unexplained. An example is the rapid loss of the Greater Glider and the major decline in populations of the Common Ringtail Possum. One of the clear benefits of this integrated monitoring-management team has been the rapid response to emerging threats. For example in response to high rates of mortality of reintroduced Eastern Quolls, control of the Red Fox was intensified within the park and greater cross-tenure control efforts with neighbouring private and public land managers have commenced. Regular evaluation of monitoring data and management actions has also enabled careful examination of the kinds of risks that can compromise reintroduction programs. These and other learnings will inform other, future reintroduction and translocation programs that are planned for Booderee National Park such as that for the Greater Glider.

Stakeholders and funding bodies. Ongoing work has been supported by many funding bodies and partners. These include the Wreck Bay Aboriginal Community who are the Traditional Owners of Booderee National Park as well as Parks Australia who co-manage the park with the Wreck Bay Aboriginal Community. Other key funders include the Department of Defence, the Thomas Foundation, The National Environmental Science Program (Threatened Species Recovery Hub), the Australian Research Council, the Margaret Middleton Foundation, and the Norman Wettenhall Foundation. Partnerships with Rewilding Australia, Taronga Conservation Society, WWF Australia, NSW Forestry Corporation and various wildlife sanctuaries have been instrumental to reintroduction programs.

Contact information. David Lindenmayer, Chris MacGregor, Natasha Robinson and Claire Foster are with the National Environmental Science Program (Threatened Species Recovery Hub), Fenner School of Environment and Society, The Australian National University (Canberra, ACT, 2601, david.lindenmayer@anu.edu.au). Nick Dexter is with Parks Australia, Jervis Bay Territory, Australia, 2540.

Update on Regent Honeyeater Habitat Restoration Project (7 years on) – Lurg Hills, Victoria

Ray Thomas

Key words: Agricultural landscape, faunal recovery, community participation, seed production area

Twenty-one years of plantings in the Lurg Hills, Victoria, have seen a consolidation of the work described in the 2009 EMR feature Regent Honeyeater Habitat Restoration Project.  The priorities of the Project are to protect and restore remnants and enlarge them by add-on plantings. Together, this work has protected relatively healthy remnants by fencing; restored depleted remnants by planting or direct seeding; and revegetated open areas that had been cleared for agriculture. Other restoration activities include mistletoe removal, environmental weeding, environmental thinning; feral animal control, kangaroo reduction, nest box placement, and systematic monitoring of a range of threatened and declining woodland birds and hollow-dependent mammals.

Updated outputs since 2009. A further 540 ha of private land has now been planted (150 additional sites since 2009). This means the total area treated is now 1600ha on over 550 sites. The oldest plantings are now 19 years old and 10m high (compare to 12 years old and 6m high in 2009) (Fig 1).

The total number of seedlings planted is now approx. 620,000 seedlings compared with 385,000 in 2009. Some 280km fencing has been established compared with 190 km in 2009. Mistletoe now treated on scores of heavily infested sites

Foster's Dogleg Lane 19 yrs

Fig. 1. Ecosystem attributes developing in 19-year-old planting at Dogleg Lane (Foster’s). Note pasture grass weeds are gone, replaced by leaf litter, logs, understorey seedling recruitment, open soil areas.

Improvements in genetics and climate readiness. As reported in 2009, seed collection is carried out with regard for maximising the genetic spread of each species, to prevent inbreeding and more positively allow for evolution of the progeny as climate changes. This has meant collecting seed in neighbouring areas on similar geological terrain but deliberately widening the genetic base of our revegetation work. We are also attempting to create as broad bio-links as possible so that they are functional habitat in their own right (not just transit passages). This may allow wildlife to shift to moister areas as the country dries out. With a species richness of 35–40 plant species for each planting site, we also enable natural selection to shift the plant species dominance up or down slope as future soil moisture dictates.

2016 Update: In recent years we have engaged with geneticists from CSIRO Plant Division in Canberra, to improve the genetic health of our plantings. Many of our local plants that we assumed to be genetically healthy, have not recruited in our planting sites. For example, Common Everlasting (Chrysocephalum apiculatum) produces very little if any fertile seed each year because it is sterile to itself or its own progeny (Fig 2 video). In fragmented agricultural landscapes, it seems that many of our remnant plants have already become inbred, and it is seriously affecting fertility, form and vigor. The inbreeding level has affected fertility in this particular case, but we have several other cases where form and vigor are seriously affected as well.

Fig 2. Andie Guerin explaining the importance of collecting seed from larger populations. (Video)

Seed production area. We have now set up a seed production area (seed orchard) for about 30 local species that are ‘in trouble’, to ensure that the plants have sufficient genetic diversity to reproduce effectively and potentially adapt, should they need to as a result of a shifting climate. This will allow these populations to become self-sustaining. Each species is represented in the seed production area by propagules collected from typically10-15 different sites (up to 20kms and sometimes 50kms distant) and as many parents as we can find in each population.

We aim for at least 400 seedlings of each species, to ensure the genetic base is broad enough to have the potential for evolution in situ. The planting ratios are biased towards more from the bigger populations (that should have the best diversity), but deliberately include all the smaller populations to capture any unique genes they may have. We plant each population in separate parallel rows in the seed orchard to maximise the cross pollination and production of genetically diverse seed for future planting projects. We have noticed that the health of some of these varieties is greatly improving as a result of increasing the genetic diversity. On one site we direct-sowed Hoary Sunray, sourced from a large population, and it has since spread down the site very quickly (Fig 3).

Gary Bruce wildflower patch Orbweaver

Fig 3. Small sub-shrubs and herbaceous species are generally not planted in stage 1 of a project, as the weed levels are often too high for such small plants to succeed. These plants are only introduced in stage 2, when the weeds have diminished up to a decade later. This approach has been very successful with direct seeding and planting some of our rarer forbs.

Recruitment of Eucalypts now evident. Nearly 20 years on from the first plantings, we can report that quite a number of sites have eucalypts old enough to be flowering and seeding, and some of them are now recruiting. We are delighted that our early efforts to broaden the planting genetics are demonstrating success with such natural processes (Figs 1 and 3). Ironbark recruitment from our plantings commenced in 2014 and Red Box commenced in 2015.

Recruitment can also be seriously affected by herbivore problems, particularly rabbits. In recent years we have been undertaking careful assessments of rabbit load on a potential planting site and have gained some advantage by deploying an excavator with a ripper attached to the excavator arm. The excavator allows us to rip a warren right next to a tree trunk (in a radial direction), or work close to fence without damaging either. We’re finding this is providing a very good result. On one site we suspected there were a few warrens but it turned out to be just short of 30 warrens within 100 m of the site – each with 30-40 rabbit holes. After ripping all of those, we ended up with activity in only 2 of the warrens, which were then easily retreated.

We have had such good results with the rabbits on some sites that we are trialing planting without tree guards – it’s much more efficient on time, labour, and costs. And adjacent to bush areas, where kangaroos and wallabies are a significant threat to plantings, this process has an extra advantage. It seems that macropods learn that there is something tasty in the guards, so a guard actually attracts their attention. Our initial trials are producing some good results and given us confidence to expand our efforts with thorough rabbit control.

Faunal updates. An important objective of the project is to reinstate habitat on the more fertile soils favoured for agriculture, to create richer food resources for nectarivorous and hollow-dependent fauna including the Regent Honeyeater (Anthochaera phrygia). In 2009 the Regent Honeyeater was nationally Endangered and was thought to be reduced to around 1500 individuals. By 2015, it was thought to be reduced to 500 individuals, and so has been reclassified as Critically Endangered.

Regent Honeyeaters have turned up in recent years in gully areas where the soils are deeper, the moisture and nectar production is better, and there is a bit more density to provide cover against the effects of aggressive honeyeaters like the Noisy Miner (Manorina melanocephala). The Regent Honeyeaters have been able to remain on such sites for around for a week or more, but have not bred on the sites to date. But breeding has occurred about 15kms away on the eastern edge of our project area. Radio-tracking showed that these breeding birds were some of the captive-bred birds released at Chiltern 100km further NE, and that the birds came towards Lurg after the Chiltern Ironbarks had finished flowering. We consider it to be just a matter of time before the Regent Honeyeaters will find the many habitat sites we’ve planted on higher productivity soils in the Lurg area.

Formal monitoring of Grey-crowned Babbler (Pomatostomus temporalis temporalis) for the past last 13 years has documented a rapid rise (due to some wetter years) from 60 birds in 19 family groups to approx. 220 birds in 21 family groups. There is also exciting evidence that the endangered Brush-tailed Phascogale (Phascogale tapoatafa) is returning to the Lurg district. The distinctive shredded Stringybark nests are now found in scores of our next boxes (up to 10km from the site of our first records of 2 dead specimens in the south of our project area in the mid 1990s). This dramatic population spread is presumably a direct result of our carefully located corridor plantings that have bridged the habitat gaps all across the district.

Increased social engagement. In the last 6 years we have increased the number of visits to planting days by 50 per cent. There has been a steady growth in the number of new local landholders involved and the total number is now 160 landholders engaged, compared with 115 in 2009. Everyone we come across knows of the project and anyone new to the area hears about it from one of their neighbours. Very few people (you could count them on one hand), say they would rather not be involved. In fact we increasingly get cold calls from new people who have observed what has happened on their neighbour’s place and then phone us to say they want to be involved. It’s a positive indication that the project is part of the spirit of the area. This was further confirmed by the inclusion, of a very detailed Squirrel Glider (Petaurus norfolcensis) mural in a recent street art painting exhibition. The permanent artwork is the size of a house wall, and situated prominently in the heart of the parklands of Benalla.

Much of our work has relied heavily on volunteers, with a total of 10,344 students and 24,121 community volunteers involved over the past 21 years. City folk have fewer opportunities to be in nature, with the bushwalking clubs, university students and scouts in particular, really keen to come and roll up their sleeves.

Typically about 17 to 20 of the local schools, primary and secondary, help us with propagating the seedlings at the start of each year and then planting their own seedlings back out into the field in the winter and spring. And we are increasingly getting interest from metropolitan schools that come to the country for a week-long camp. Some of the schools even have their own permanent camps up here and they want to be involved with our hands on work too. “It’s simply part of our environmental responsibility”, is the way they express it.

Contact: Ray Thomas, Coordinator of the Regent Honeyeater Project Inc (PO Box 124, Benalla, Vic. 3672, Australia; Tel: +61 3 5761 1515. Email: ray@regenthoneater.org.au

READ MORE

 

 

Examination of options for removal and disposal of Carp from fishways along the Murray River – including the Williams’ Carp Separation Cage

Key words: European carp, ethical disposal, pest fish, fishways, Native Fish Strategy.

The introduced fish species Common Carp (Cyprinus carpio) has been shown to impact on native fish in many ways, including through direct predation as well as competition for resources such as food, shelter and breeding sites. The “Sea to Hume” fishway program has seen the construction of fishways at sites along the Murray River from the tidal barrages to Hume Dam. While the primary aim has been to improve migration of native fishes, the fishways also facilitate the passage of Carp, potentially providing access to upstream habitats (including spawning habitats) for large numbers of this alien species (Fig 1). The Williams’ Carp Separation Cage is designed to offer a way of removing Carp from fishways without significantly impacting on migrating native fishes.

This research project set out to examine issues and options associated with harvesting Carp at fishways along the Murray River. The study looked at options for harvesting Carp at fishways along the Murray River with an emphasis on the use of the Williams’ Carp Separation Cage (Fig 2), together with the ethical and logistic issues associated with the disposal of Carp.

Carp can reach quite high abundance below barriers to migration such as dams and weirs.  (Photocourtesy of Leigh Thwaites, SARDI.)

Figure 1. Carp can reach quite high abundance below barriers to migration such as dams and weirs. (Photo courtesy of Leigh Thwaites, SARDI.)

How the options were examined: The project team reviewed available literature on methods for the collection and removal of Carp. Design constraints and factors affecting performance were considered, as were recommendations made to enhance functionality and effectiveness. Input from each jurisdiction was considered (to determine capacity and willingness to implement collection programs) as were markets for both human and industrial use (including processing requirements and logistics).

Results:

  • The Williams’ Carp Separation Cage was found in most instances to be the preferred method of harvesting Carp. Other methods such as trapping, netting or electrofishing below a weir were considered to have merit for further consideration where the high biomass of Carp may physically impact on migratory native fishes.
  • Harvesting should focus on the migration of pre-spawning adult Carp (about August to December).
  • Disposal methods should favour those that utilize Carp as a resource.
  • While the engagement of commercial fishers is desirable, the commercial Carp fishery is only marginally viable, especially in NSW. It is likely that the involvement of commercial fishers beyond high density sites will have to be subsidized or a coordinated program of collection and storage (e.g. freezers) will need to be implemented.
  • Other options need to be investigated including burial, cremation and composing.
  • Carp must be euthanased in an ethical manner. Currently accepted techniques include the use of anaethetics although with large numbers of fish an ice slurry may be the only practical method. The report also recommends trialling commercially available percussive stunning machines.

A report was produced at the end of the project (Jackson, P. (2009). Final report for River Murray Water, Murray-Darling Basin Authority). This recommends rolling out a coordinated program to harvest Carp along Murray River fishways by expanding first within SA, based on the Lock One experience, and then into NSW. Harvesting should focus on priority sites where high numbers of Carp are present and where fishways will allow access to preferred Carp habitat and potential breeding sites.

The Williams Carp Separator cage provides a potential means for harvesting of Carp at fishways along the Murray River. (Photo courtesy of Ivor Stuart.)

Figure 2. The Williams’ Carp Separation Cage provides a potential means for harvesting of Carp at fishways along the Murray River. (Photo courtesy of Ivor Stuart.)

Take home messages: There is significant potential to harvest Carp at Murray River fishways using the Williams’ Carp Separation Cage but it must be undertaken without any significant impact on native fish migration. A coordinated program with an appropriate level of monitoring is required. The monitoring should include assessments of the impacts of Carp harvesting on upstream Carp populations and recruitment.

Ethical euthanasia of Carp and cost effective disposal remain issues but there are potential solutions. Approval should be sought from relevant Commonwealth agencies for the use of practical destruction measures such as ice slurries and trials using percussive stunning devices should be undertaken. Trials should also be undertaken using commercially available composting bins at sites where commercial fishing is not viable.

Stakeholders and Funding bodies: This research project was funded through the Murray-Darling Basin Authority’s River Murray Assets Division and carried out by consultant Dr Peter Jackson.

Contact: Dr Peter Jackson, Consultant, +61  7  5429 2276+61  7  5429 2276,  Email Peter.Jackson@westnet.com.au

Jindabyne Valve House – Kosciuszko National Park, NSW

Elizabeth MacPhee and Gabriel Wilks

Jindabyne Valve House Spoil Dump was formed between 1964 and 1968 as a depository for spoil material excavated from the Jindabyne-Island Bend and Snowy-Geehi Tunnels. The site sits as a wedge of 300 000m3 of spoil in a valley about 140m above the Snowy River just to the north west of Lake Jindabyne. Water is periodically discharged from the Valve House stilling basin across the site with no functioning water pathway.

The site prior to restoration. Prior to earthworks in 2010, Jindabyne Valve House Spoil Dump contained a quarry basin, an 80m concrete ‘path’ from dumped material over the edge of the spoil, and dumped scrap metal, wire, tanks and concrete slabs. This highly degraded area sat immediately below a public lookout on the edge of Kosciuszko National Park.

Fauna and vegetation surveys were conducted on and in the surrounding forest. A total of 28 bird, 12 mammal, six reptile and one amphibian species were recorded during the survey in the Jindabyne Valve House Rehabilitation Area, and no threatened species. No species were identified that could be adversely affected by proposed works.  Weeds such as St Johns Wort (Hypericum perforatum) occurred at the edges of the site and minimal vegetation was found on the majority of the spoil.

Treatments: Earthworks were undertaken on the site in May 2010. This included re-shaping the wedge of spoil into a stable slope with access tracks and benches, constructing a culvert and concrete / rock lined drain for water flow, and preparing the site for revegetation. Approx. 48, 000 m3 of rock was shifted, with the top bench area of 3000m 3 ripped for planting and 600m3 compost placed in piles across the site in  a 2 month period. The site was planted with 35,000 native species tube stock in 2010 – 2011, and the entire site covered in rice straw and woodchip. Species planted are listed in Table 1.

Results: Monitoring showed that 18 species had acheived about 38 percent cover of the site after one year, with nil weed cover (Table 2). Observations 3 years after treatment show that about 80% of all seedlings survived. Browsing of seedlings by  macropods restricted some plant development.

Lessons learned, Browsing animals (introduced and native) can impact plant growth rates, even on steep sites. On steep sites there is no simple solution to this. However planting densely, using tree guards where possible and providing thatch for seedling protection ameliorated the impact.

Providing key elements such as organic matter, nutrients, protective brush and viable plant material – along with reducing erosive processes – triggered successful revegetation on the site. Covering the ground with a layer of organic matter such as rice straw ameliorated temperature extremes on site, allowing young seedlings to survive and flourish.

Acknowledgements. Thanks are extended to the restoration team at Kosciuszko National Park, including the many contractors who participated.  We also thank Nicki Taws and Angela Calliess (Greening Australia Capital Region) who undertook the formal vegetation monitoring.

 

The site reshaped but prior to planting

The site reshaped but prior to planting 2010

Jindabyne Valve House site after planting

Jindabyne Valve House site after planting

Jindabyne Valve House

Jindabyne Valve House 2016

Table 1: Plant species used in rehabilitation at Jindabyne Valve House Spoil Dump­

Trees
Eucalyptus rubida
Eucalyptus viminalis
Eucalyptus dalrympleana
Shrubs
Acacia dealbata
Acacia melanoxylon
Banksia marginata
Cassinia longifolia
Cassinia uncata
Chrysocephalum semipapposum
Grevillea lanigera
Indigofera australis
Leptospermum obovatum
Mirbelia oxylobioides
Ozothamnus secundflorus
Forbs
Acaena novae zelandae
Rubus parvifolia
Senecio linearifolius
Grasses and Monocotolydon
Lomandra longifolia
Poa fawcettiae
Poa sieberiana

Table 2. Vegetation data recorded on a 50m transect approximately 12 months after treatment.  (Data from Greening Australia Vegetation Monitoring Former Snowy-Hydro Sites Kosciuszko National Park).

Native Overstorey % cover 0
Native mid storey  % cover 0
Native grasses   % cover 2
Native ground shrubs  % cover 18
Native forbs  % cover 2
Sum of native ground cover % 22
Exotic species  % cover 0
Litter  % cover 80
Bare ground  % cover 10
Rock  % cover 10
Woody Debris  % cover 2
Number of native species 15
Woody stems <10cm dbh 425
Coarse Woody Debris (m) 190

SEE ALSO

Video: Planting techniques used at Jindabyne Valve House (Liz MacPhee)

EMR short summary Snowy Adit

 

Grey Box grassy woodland restoration: Mandilla Reserve, Flagstaff Hill, South Australia

Key Words:  Minimal disturbance, bush regeneration, Eucalyptus microcarpa, volunteer, Bush For Life

The Site:  Grey Box (Eucalyptus microcarpa) Grassy Woodland is listed as an endangered ecological community under the EPBC Act 1999. This ecological community was once widespread on the drier edge of the temperate grassy eucalypt woodland belt of south-eastern Australia. In South Australia, this community occupies less than 3 percent of the area it once did before European settlement. One of the remaining suburban remnants of this community can be found in Mandilla Reserve, Flagstaff Hill, SA. The reserve is surrounded by suburban houses and remains under threat from weed and pest invasion, lack of recruitment of canopy species plus degradation associated with urban encroachment (pollution runoff, rubbish, excessive stormwater). Since 1996 the Bush or Life program together with the City of Onkaparinga have supported community volunteers to care for and manage the bush regeneration work within the reserve. The objective was to restore the highly degraded Grey Box remnant into a woodland community representing the unique diverse vegetation it once housed.

Geoff and Barbara Moss, volunteers at Mandilla Reserve

Works:   Two very dedicated community members adopted the site in 1996 and began visiting on average 3 times per week. They used minimal disturbance bushcare techniques to tackle a carpet of bulb weeds such as Sparaxis (Sparaxis bulbifera), Soursob (Oxalis pes-caprae), Bridal Creeper (Asparagus asparagoides) and Cape Tulip (Moraea flaccida) mixed with highly invasive annual and perennial grass species. In the surrounding degraded areas, some strategic planting was also carried out using Grey Box (Eucalyptus microcarpa), Sticky Hop Bush (Dodonaea viscosa) and Sweet Bursaria (Bursaria spinosa) and local sedge seedlings. Four areas were also hand direct seeded with native grasses to encourage ground cover recruitment and discourage weeds. All seed used was collected on site to ensure local provenance was maintained.

The flourishing Grey Box Grassy Woodland now found on the reserve

Success of the combination of natural regeneration and supplementary plantings

Results After thousands of volunteer hours, extensive regeneration of natives occurred on site. The volunteers’ work has transformed the reserve into a flourishing area of lilies, native grasses and understorey shrubs. Today, the vegetation in the reserve is virtually weed free and even native orchids are beginning to return. In addition, the area that the bushland covers has expanded as a result of the planting and direct seeding. Since these works, natural regeneration has also been observed of native sedges including Senecio, Carex, Juncus and native grasses.

Lessons learned:  Regular follow up for several years is vital to the success of any primary clearance work whether or not minimal disturbance techniques are used. Facilitated regeneration can be successfully used with bush regeneration providing it is strategic and complementary to and considerate of existing natural regeneration processes. Maintenance of the plantings or hand direct seeding is also vital to minimise competition from weeds and ensure their success.

Acknowledgements: This site is owned by the City of Onkaparinga Council and is managed in partnership with Trees For Life who train and support volunteers through its Bush For Life program. Thanks goes to Geoff and Barbara Moss, the site’s main volunteers.

Contact:  Jenna Currie, Bush For Life Regional Coordinator, Trees For Life jennac@treesforlife.org.au

Research Road Restoration, Strathalbyn, South Australia

Key Words: Minimal disturbance, bush regeneration, Eucalyptus fasciculosa, volunteer, Bush For Life.

The Site: In June 1996 Trees For Life (TFL), a community based not-for-profit organisation, established a volunteer bush regeneration site (known as a Bush For Life site) on a 1.4km long, one chain wide roadside remnant on Research Road about 6km south of Strathalbyn, SA.  At this stage the road was still being used as a vehicle track.  The vegetation was a very diverse Pink Gum (Eucalyptus fasciculosa) Open woodland with occasional mallee eucalypts, a shrub understorey, sedge and herbaceous groundcover and native grasses with many locally rare and vulnerable species including the nationally vulnerable Silver Daisy-bush (Olearia pannosa ssp. pannosa ).  The largest weed problem was Bridal Creeper  (Asparagus asparagoides) which blanketed the site in the cooler, wetter months.  Other threats to the understorey diversity included broadleaf weeds typical of the dry, agricultural landscapes of the lower Murray Plains.  These weeds included Pincushion(Scabiosa atropurpurea), Wild Sage (Salvia verbenaca) and Horehound (Marrubium vulgare ).

Diverse grassy understorey found on the site

Works:  Volunteers worked on a section of the 1,400m long, one chain wide road reserve, using minimal disturbance techniques. The regenerators very carefully removed Bridal Creeper, broad leaf weeds and weed grasses; but they had to contend with the continual degradation of the remaining area. It was really only a heavily rutted, two-wheel track suitable for dry weather use only, but was subjected to indiscriminate and illegal use through all seasons, including rubbish dumping, firewood collection and “bush-bashing”.

The Alexandrina Council closed the road to motor vehicles in September 2008 and it has been allowed to recover now for 4 years.  After the road closure, discussions between Council and TFL centred on whether to leave the vehicle track to regenerate by itself or to “rip” the track to fill in the ruts and promote germination. As ripping the track was predicted to have have promoted prolific broadleaf and grassy weed establishment, particularly given the close proximity of weedy agricultural land adjacent to the linear reserve, the BFL principle of minimal disturbance prevailed and the track was left to regenerate without other intervention.

Before road closure

Results: Today there is a proliferation of native species germinating on the track, with native regeneration on the track itself far outweighing the weed regeneration.

The ruts have filled with leaf litter and have encouraged the germination of spear grasses Austrostipa sp.) and wallaby grasses(Austrodanthonia sp.). As the volunteers discover new seedlings they protected them with branches; but regeneration has become so significant that this is no longer practical.  .

Many Mallee Honey-myrtle (Melaleuca acuminata) and Dryland Tea-tree (Melaleuca lanceolata) seedlings have germinated and are thriving in bare patches.  Many other species are also germinating, including: Golden Wattle (Acacia pycnantha), Hakea Wattle (Acacia hakeoides,) Sweet Bursaria (Bursaria spinosa), eucalypts (Eucalyptus spp.), Ruby Saltbush (Enchylaena tomentosa), Climbing Saltbush ( Einadia nutans ssp. nutans), Old Man’s Beard (Clematis microphylla var. microphylla), Australian Bindweed (Convolvulus sp., and New Holland Daisy (Vittadinia sp.). Black-anther Flax-lily (Dianella revoluta, Mallee Blue-flower (Halgania cyanea,),  Rosemary Dampiera (Dampiera rosmarinifolia ) and Quandong ( Santalum acuminatum) are spreading from the sides onto the track. Areas where once a vehicle could drive have now been reduced to a narrow walking track between seedlings.

Native grasses regenerating on the road after closure

Treatment with Bridal Creeper rust (Puccinia myrsiphylli) began in 2004/2005 with wider and more intense applications applied every year from 2008. In the last couple of years rust has established itself over a large proportion of the site with very little flowering and fruiting detected during 2011.  Volunteers carefully treat plants at both ends of the site by ‘tonging’ with glyphosate  (i.e. using tongs with sponge tips as herbicide applicators) which has been very successful.  Through careful and consistent work, most of the broad-leaved weeds have been virtually removed from site, with only isolated germinations being detected and removed. One other weed – : Soursob (Oxalis pes-caprae – is prolific on site; and has yet to be targeted for control.

Rabbits re-entered the site early in 2006 and by mid-2008 had bred up to occupy 15 locations on site. They caused significant damage to the native vegetation until controlled by baiting in March 2010. The increase in native grasses in the areas treated has been significant.

Lessons learned:  Four significant events have had the greatest effect on this turnaround: the road closure, the control of rabbits, the establishment of Bridal Creeper rust and most significantly the consistent hard work of the site’s Bush For Life volunteers.

Acknowledgements:  This site is owned by the Alexandrina Council and is managed in partnership with Trees For Life who train and support volunteers through its Bush For Life program.

Contact:  Sue Bradstreet.  Regional Coordinator, Trees For Life sueb@treesforlife.org.au

Volunteers Maggie Hincks and Dean Mortimer assisting the regeneration