Category Archives: Rainforest

Ecological Restoration of Donaghys Corridor, Gadgarra, north Queensland – UPDATE of EMR feature

[Update of EMR feature – Tucker, Nigel I. J. and Tania Simmons (209) Restoring a rainforest habitat linkage in north Queensland: Donaghy’s Corridor, Ecological Management & Restoration, 10:2, 98-112, https://onlinelibrary.wiley.com/doi/10.1111/j.1442-8903.2009.00471.x%5D

Nigel Tucker

Keywords: Rainforest, corridor, regeneration, disturbance effects

Introduction. Complex notophyll vine forests of the Atherton Tablelands, particularly from basalt derived soils, have been significantly fragmented and degraded by human settlement over a 100yr period. Fragment isolation results in edge effects, exotic species colonisation, loss of genetic variability and species decline. During high rainfall events, eroding streambanks on farms mobilise sediments to the receiving environment of the Great Barrier Reef. Re-connecting isolated fragments to larger forest blocks through restored riparian corridors aims to reverse these effects through adaptive management. The restoration of Donaghys Corridor is an example of adaptive management, and its establishment was a key factor in the adoption of other local corridor projects.

As reported in the 2009 features, around 20,000 plants of selected local species were established in four yearly plantings (1995/96/97/98) along Toohey Creek, creating a continuous habitat corridor between the isolated Lake Barrine fragment (500ha) and the adjacent Gadgarra section of Wooroonooran N.P (80,000ha), both being part of the Wet Tropics World Heritage Area. The corridor is 1,200m in length and 100m wide, with three rows of Hoop Pine (Araucaria cunninghamiana) planted either side of the fenced corridor, which was established on lands largely owned by the Donaghy family. On completion, the corridor was secured through the Queensland Government’s declaration of Donaghys Corridor Nature Refuge, the State’s first Nature Refuge proclaimed over an ecologically restored site.

Ongoing recovery. In 2000, a vegetation survey of 3m x 5m plots in 12 permanent transects throughout the corridor showed regeneration had occurred upon canopy closure (Tucker and Simmons 2009).  Between 1995 and 1998, 119 native species had regenerated within the transects, mainly through vertebrate-mediated dispersal. The most recent (ongoing) survey, ca.20yrs after planting, indicates that regeneration has continued, and the majority of regenerating species are again vertebrate dispersed. There has also been a measurable increase in vegetation structural complexity, and a variety of life forms are present including ferns, orchids, vines, scramblers and canopy trees.

Restored vegetation in 2000 was characterised by vegetation of even age and size classes and only a developing canopy was present (no sub-canopy). Recruitment was limited to the ground storey. Over 20yrs, total numbers of recruiting species have increased, along with canopy height, and the sub-canopy is now a distinguishable and measurable feature. To illustrate this change, species diversity and structure in two typical transects from the oldest (1995) and youngest (1998) plantings are shown in the table below. Figures are from the most recent survey (2019) and the bracketed numbers indicate comparative values in 2000.

Canopy

height

Sub-canopy

Height

Number of species Average number of species/plot Average number of species/plot – sub-canopy Average number of species/plot – ground storey
1995 19.9 (5) 7.5 (0) 84 (53) 22.6 (12.5) 8.3 13.8
1998 14.4 (2.5) 7.3 (0) 63 (15) 14.2 (1.6) 2.2 15.8

There has also been a significant difference in the distribution of regenerating vegetation. In 2000, regeneration was negatively correlated with edge, being concentrated in the central portion of each transect. Greater structural complexity and increased shading have significantly reduced the edge effect and regeneration is now distributed equally across the entire width of the corridor. This edge-effect reduction may partially result from the three Hoop Pine rows, now ca.15m tall, planted on each side of the corridor.

Figure 1.  Part of the 18m x 250m fence crossing Donaghys Corridor

Natural and man-made disturbance. Since establishment there has been both natural and anthropogenic disturbance. Occasional incursions by cattle have occurred, entering via fences sometimes damaged by branches falling from maturing corridor vegetation. In small areas incursions have visibly damaged regeneration but surveys show this has not significantly affected regeneration. Feral pig disturbance has also occurred but does not appear to have affected regeneration.

In 2006, corridor vegetation was damaged by severe tropical Cyclone Larry. Most stems lost crowns and some waters’ edge stems were permanently bent by floodwaters, but vegetation recovery was rapid and no weed invasion occurred. This infers a measure of resilience by restored vegetation to disturbance, and the distribution of regeneration described above supports this inference.

Anthropogenic disturbance has been more interventionist and not aligned to the original concept adopted by government, landholders, scientists and the community when the project commenced in 1995.  In 2017, the corridor’s upstream neighbour, with support from the DES but without consultation with the Donaghy family or other affected landholders, erected a chain mesh fence 250m long and 1.8m high across the western end of the corridor (see Figure 1). This is part of a larger fence which completely encloses mature forest at the western end of the corridor, including corrugated iron placed across the bed of Toohey Creek. Enquiries revealed the fence is part of an enclosure for a Cassowary (Casuarius casuarius johnsonii) rehabilitation facility, operated by Rainforest Reserves Australia (RRA) under a commercial arrangement with the Queensland Government.

Enhancing landscape permeability was the key reason for undertaking the Donaghys Corridor project, and the endangered Cassowary was a key target species; 53 Cassowary food plants were included in the original planting matrix of 100 species to encourage corridor utilisation. The Queensland Government notes that corridors are a key strategy in Cassowary conservation. In addition to blocking the movement of terrestrial vertebrates such as Cassowaries, Pademelon (Thylogale stigmatica) and Musky Rat Kangaroo (Hypsiprymnodon moschatus), construction of the enclosure has inadvertently fenced in a number of animals whose territories included part of the enclosure.

DES has advised that the fence is temporary and will be removed when restoration plantings on RRA lands are ‘sufficiently well-developed’ to support Cassowaries being rehabilitated.  It is unknown, however, when or through what processes this removal will occur. Resolution of the issue is anticipated.  However, such actions highlight the pitfalls associated with single-species conservation, and potential conflicts that might arise when responsibility for management of endangered species moves from the State to the non-scientific, commercially-focused private sector. Whilst iconic wildlife e.g., the Cassowary, can be effective in harnessing community and landholder participation in restoration, here it is clear that decision making and communication has been far from optimal, which may well lead to landholder and community disillusionment. In this case, the fence has also disrupted ongoing monitoring and evaluation. Planned re-survey of terrestrial vertebrate colonisation and movement has now been cancelled, given the unknown effect of the fence on wildlife passage and the behaviour of animals inadvertently trapped within the enclosure.

Lessons learned.  The project shows that sustained regeneration of native species can be achieved in restored tropical vegetation, along with increased structural complexity and functional resilience to natural disturbance.  However, the fencing incident shows that dysfunction in a restoration project can arise from totally unanticipated causes, potentially undoing well-established partnerships between government, community, scientists and landholders.

Contact.  Nigel Tucker, Director & Principal Environmental Scientist, Biotropica.  PO Box 866 Malanda QLD 4885 ; Email: nigeltucker@biotropica.com.au; Tel: +61 7 4095 1116.

 

 

 

Developments in Big Scrub Rainforest Restoration: UPDATE of EMR feature

By Tony Parkes, Mark Dunphy, Georgina Jones and Shannon Greenfields

[Update of EMR feature article: Parkes, Tony, Mike Delaney, Mark Dunphy, Ralph Woodford, Hank Bower, Sue Bower, Darren Bailey, Rosemary Joseph, John Nagle, Tim Roberts, Stephanie Lymburner, Jen Ford and Tein McDonald (2012) Big Scrub: A cleared landscape in transition back to forest? Ecological Management & Restoration 12:3, 212-223. https://doi.org/10.1111/emr.12008]

Key words: Lowland Subtropical Rainforest, ecological restoration, seed production, landholder action, corridors

Figure 1a. Rainforest regenerators undertake camphor injection, leaving bare trees standing creating light and an opportunity for seed in the soil to naturally regenerate. (Photo © Envite Environment)

Figure 1b Aerial photo showing camphor conversion by injection
(Photo © Big Scrub Regeneration Pty. Ltd.)

Introduction. The Big Scrub, on the NSW north coast, was once the largest tract of Lowland Subtropical Rainforest (LSR) in Australia. It was reduced to less than 1% of its original extent by he end of hte 19th century after clearing for agriculture. Big Scrub Landcare (BSL) is a non-profit organisation dedicated to improving the long-term ecological functionality of what remains of this critically endangered ecosystem –  lowland subtropical rainforest.  Our 2012 EMR feature reported on remnant restoration and revegetation works overseen by BSL to 2012. At that time, 68 remnants were identified as significantly affected from the impacts of environmental degradation including weed invasion and cattle access. These remnants had been undergoing treatments, with 20 substantially recovered and on a ‘maintenance’ regime.  Approximately 900,000 trees had been planted to establish 250 ha of young diverse well-structured rainforest.  A comparatively small area of forest dominated by the highly invasive exotic, Camphor Laurel (Cinnamomum camphora) (Camphor), which  has colonised much of the Big Scrub landscape had been converted to early phase LSR by skilled removal of a range of weeds and facilitating natural regeneration. 

Progress since 2012. Substantial progress in restoring critically endangered lowland subtropical rainforest in the Big Scrub has been achieved over the past seven years in the following areas.

  • Assisted regeneration of remnants has continued and become more focused
  • Re-establishment of LSR through plantings has expanded
  • Camphor conversion has developed in scale and techniques
  • Greater security of funding has been achieved
  • Community engagement has greatly improved and expanded
  • Genome science is being applied to produce seed with optimal genetic diversity for rainforest restoration.

Assisted regeneration of remnants. This work continues to be the major focus of on-ground restoration work. About 2000 regenerator days (9 years Full Time Equivalent) of work has been undertaken in 45 remnants. BSL’s remnant restoration program has become more strategic, with more focus on Very High Conservation Value (VHCV) remnants, particularly those in the NSW National Parks Estate, including the VHCV sites in Nightcap National Park (NP) including Big Scrub Flora Reserve, Minyon Falls and Boomerang Falls; Andrew Johnston’s Scrub NR; Snow’s Gully Nature Reserve (NR); Boatharbour NR; Victoria Park NR and Davis Scrub NR, plus the Booyong Flora Reserve. Rehabilitation work at these sites is prioritised in the major new four-year Conservation Co-funding project funded jointly by BSL and the NSW government’s Saving our Species program. Big Scrub Foundation (BSF) funding has enabled BSL to continue maintenance work in remnants that have reached or are approaching the maintenance stage.

Monitoring outcomes has become more rigorous and has demonstrated ongoing improvements in vegetation structure, with decreasing levels of weed invasion and improvements in native species cover.

BSL’s partner Envite Environment, with some assistance from BSL, is creating an important linkage between Nightcap NP and Goonengerry NP by the restoration of rainforest through the progressive removal of weeds that had dominated the 80 ha Wompoo/Wanganui corridor between these two NPs.

 Re-establishment of rainforest by planting. The area of LSR is being re-established by planting on cleared land has also continued to expand.   In the last 7 years  more than 0.5 million rainforest trees have been planted in the Big Scrub region, contributing to the restoration of another 175 ha of LSR, expanding total area of re-established rainforest by another 13%. While landscape-scale landholder driven work is inevitably opportunistic rather than strategic, the establishment of new patches of LSR enhance valuable stepping-stone corridors across the Big Scrub. Since 2012 the number of regenerators working fulltime in the Big Scrub region has increased by approximately 50%.  Another trend that has strengthened in the last 7 years is that larger plantings are now being carried out by well-resourced landowners. This is accounting for about 40% of the annual plantings. Offsets for residential development account for another 40% of trees planted. The remaining 20% is made up by small landowners, cabinet timber plantations, large-scale landscaping, and other planting of Big Scrub species. This is a significant change from the more dominant grant-based small landowner/Landcare group plantings prior to 2012.

 Camphor conversion. Larger areas of Camphor forest are being converted to rainforest, with project areas increasing substantially from less than a hectare to ten and twenty hectares. BSL estimates that more than 150 ha of Camphor forest are currently under conversion. Some landowners underake camphor injection which leaves bare trees standing, creating light and an opportunity for existing native seedlings and seed in the soil (or seed dropped by perching birds) to naturally regenerate (Fig 1). Others are choosing the more expensive option of physically removing the Camphor trees and carefully leaving the rainforest regrowth (Fig 2).  Improved techniques and landholder capacity building continue to progress and camphor conversion is now a significant component of rainforest restoration.

BSL alone is facilitating the conversion of almost 40 ha of Camphor forest to LSR funded by two 3-year grants from the NSW Environmental Trust, together with contributions from the 19 landholders involved in these projects. The ecological outcomes being achieved are significant and less costly than revegetation via plantings.

Figure 2a. Camphor forest under conversion using heavy machinery leaving rainforest regrowth intact (Photo © Big Scrub Landcare)

Figure 2b. Aerial photo showing camphor conversion by removal
(Photo © Big Scrub Landcare)

Greater security of funding. Australian Government funding for biodiversity conservation is at a very low level. Competition for existing NSW state government funding is increasing. BSL therefore has continued to  develop new strategies for fund raising to ensure continuity of its long-term program for the ecological restoration of critically endangered LSR in the Big Scrub and elsewhere. Ongoing funding of at least $150,000 annually is needed to ensure the great progress made  over the past 20 years in rehabilitating remnants is  maintained and expanded to new areas of large remnants. These funds finance weed control and monitoring; weeds will always be a part of the landscape and an ongoing threat to our rainforest remnants.

Establishment of the Big Scrub Foundation in 2016 was a major development in BSL’s fund raising strategy. The Foundation received a donation of AUD $1M to establish a permanent endowment fund that is professionally invested to generate annual income that helps finance BSL’s remnant care program and its other activities. Generous donors are also enabling the Foundation to help finance the Science Saving Rainforest Program.

Figure 3a. Australian gardening celebrity Costa Gregoriou at a Big Scrub community tree planting (part of the 17th annual Big Scrub Rainforest Day) in 2015 (Photo © Big Scrub Landcare)

Figure 3b. Founder of the Australian Greens political party Bob Brown and Dr. Tony Parkes at the 18th annual Big Scrub Rainforest Day in 2016. (Photo © Big Scrub Landcare)

Community engagement. The  Big Scrub Rainforest Day continues to be BSL’s  major annual community engagement event, with the total number of attendees estimated to have exceeded 12,000 over the past 7 years; the 2016 day alone attracted more than 4000 people (Fig 3). Every second year the event is held at Rocky Creek Dam.  A new multi-event format involving many other organisations has been introduced on alternate years.

BSL’s Rainforest Restoration Manual has been updated in the recently published third edition and continues to inform and educate landowners, planners and practitioners.

BSL in partnership with Rous County Council produced a highly-commended book on the social and ecological values of the Big Scrub that has sold over 1000 copies. BSL’s website has had a major upgrade: its Facebook page is updated weekly; its e-newsletter is published every two months. BSL’s greatly improved use of social media is helping to raise its profile and contribute to generating donations from the community, local businesses and philanthropic organisations to fund its growing community education and engagement work and other activities.

Science saving rainforests program. BSL, the Royal Botanic Gardens Sydney, the BSF and their partners have commenced an internationally innovative program to apply the latest DNA sequencing and genome science to establish plantations to produce seed of key species with optimal genetic diversity for the ecological restoration of critically endangered lowland subtropical rainforest. This program will for the first time address the threat posed by fragmentation and isolation resulting from the extreme clearing of Australia’s LSR, which is estimated to have resulted in the destruction of 94% of this richly biodiverse Gondwana-descended rainforest.

Many  key  LSR species are trapped in small populations in  isolated remnants  that  lack the genetic diversity needed to adapt and survive in the long term, particularly faced with climate change Necessary  genetic diversity is also lacking in many key species in the 500 ha of planted and regrowth rainforest. The first stage of the program, already underway, involves collecting leaf samples from approximately 200 individual old growth trees in 35 remnant populations across the ranges of 19 key structural species of the ‘original’ forest. DNA will be extracted from the leaf samples of each species and sequenced. The  latest genome science will be applied to select the 20 individual trees of each species that will be cloned to provide planting stock with optimal genetic diversity for the establishment of a living seed bank in the form of a plantation that will produce seed  for use in restoration plantings. As the individual trees in the restoration plantings reproduce, seed with appropriate genetic diversity and fitness will be distributed across the landscape. The project focuses on key structural species and thus helping the survival of Australia’s critically endangered Lowland Subtropical Rainforest in the long term.

Lessons learned and current and future directions. A key lesson learned some five years ago was that BSL had grown to the point where volunteers could no longer manage the organisation effectively. BSL took a major step forward in 2015 by engaging a part-time Manager, contributing to BSL’s continuing success by expanding the scope, scale and effectiveness of its community engagement activities and improving its day to day management.

The principal lesson learned from BSL’s on-ground restoration program is to focus on rehabilitation of remnants and not to take on large planting projects, but rather support numerous partnered community tree planting events. Large grant-funded multi-site tree planting projects are too difficult to manage and to ensure landholders carry out the necessary maintenance in the medium to long term.

Acknowledgements.  BSL acknowledges our institutional Partners and receipt of funding from the NSW government’s Saving our Species program, NSW Environmental Trust and Big Scrub Foundation.

Contact:  Shannon Greenfields, Manager, Big Scrub Landcare (PO Box 106,  Bangalow NSW 2479 Australia; . Tel: +61 422 204 294; Email: info@bigscrubrainforest.org.au Web: www.bigscrubrainforest.org.au)

Restoration and conservation in an iconic National Park – UPDATE of EMR feature

David Lindenmayer, Chris MacGregor, Natasha Robinson, Claire Foster, and Nick Dexter

[Update of EMR feature – David B. Lindenmayer, Christopher MacGregor, Nick Dexter, Martin Fortescue and Peter Cochrane (2013)  Booderee National Park Management: Connecting science and management.  Ecological Management & Restoration, 14:1, 2-10. https://onlinelibrary.wiley.com/doi/10.1111/emr.12027]

Keywords: Invasive animal and plant control, reintroduction, monitoring

Introduction. Booderee National Park is an iconic, species-rich, coastal reserve that supports a range of threatened and endangered native animals and plants. Several key management actions have been implemented to promote the conservation of biodiversity in Booderee National Park. These include the control of an exotic predator (the Red Fox Vulpes vulpes), the control of highly invasive Bitou Bush (Chrysanthemoides monilifera subsp. rotundata), the management of fire, and the reintroduction of previously extinct native mammals. A key part of work at Booderee National Park has been a long-term monitoring program that commenced in late 2002 and which has aimed to quantify the effectiveness of major management interventions, including the four listed above. The monitoring program has documented the long-term trajectories of populations of birds, arboreal marsupials, terrestrial mammals, reptiles, frogs and native plants in a range of major vegetation types (from heathland and sedgeland to woodland, forest and rainforest) and in response to fire, and weed and feral predator control. Importantly, the monitoring program has provided a foundational platform from which a suite of post-graduate studies and other research programs have been completed.

Further works undertaken. A key part of the researcher-manager partnership has been to analyse the long-term trajectories of populations of mammals, birds and reptiles in Booderee National Park. The monitoring data indicate that many species of mammals are declining, with some having become recently locally extinct (e.g. Greater Glider Petauroides volans) or close to extinction in the reserve (e.g. Common Ringtail Possum Pseudocheirus peregrinus) . This is despite populations of these species persisting in nearby reserves.  Robust interrogation of the multi-taxa monitoring data has been unable to identify reasons for these declines. Interestingly, the declines observed for mammals have not been observed to date in other vertebrate groups, including birds, reptiles and amphibians. An experimentally-based reintroduction program for the Greater Glider aims to not only re-establish populations of the species in Booderee National Park, but also to identify the reasons for the original decline. That program will be in addition to reintroduction programs already underway for other mammal species, the Long-nosed Potoroo (Potorous tridactylus), the Southern Brown Bandicoot (Isoodon obesulus) and Eastern Quoll (Dasyurus vivverinus) that used to inhabit Booderee National Park but which went extinct many decades earlier.

Additional research being undertaken in Booderee National Park has included: (1) studies of the effectiveness of control efforts for Bitou Bush and associated recovery of native vegetation and native fauna, (2) the interactive effects of fire and browsing on native plants and an array of animal groups, and (3) studies of leaf litter and other fuel dynamics in relation to previous fire history and macropod browsing.

Figure 1. Key area of Booderee National Park showing an area of coastal forest before and after Bitou Bush treatment.

Further results to date. Research and monitoring in the past six years have resulted in many new insights including some of considerable value for informing restoration programs. A small subset of these findings is outlined below.

  • Conventional approaches to the control of invasive Bitou Bush entail spraying ultra-low volume herbicide (Fig. 1), followed by burning of the “cured” dead material, and then respraying of the seedlings that germinate after fire. This spray-burn-spray protocol is both the most ecologically effective and the most cost-effective way of controlling Bitou Bush and, at the same time, facilitates the recovery of native vegetation. More recent analysis has revealed spray frequency as the most important determinant of long-term control. There are mixed effects of control methods on native species; plant species abundance was positively related to Bitou Bush control, while native bird abundance (except for Eastern Bristlebird Dasyornis brachypterus, Fig 2.) and mammal abundance were weakly negatively associated with Bitou control.
  • There can be strong interactions between the occurrence of fire and browsing by macropods on native plants as well as particular groups of animals such as spiders.
  • Reintroduction programs for the Southern Brown Bandicoot and Eastern Quoll have been relatively successful, although the latter species suffers high rates of mortality, particularly as a result of fox predation and collisions with motor vehicles. Nevertheless, populations of both species have survived over multiple years and reproduced successfully.

Figure 2. The Eastern Bristlebird, a species for which Booderee National Park is a stronghold. Notably, the species responds positively to management interventions to control Bitou Bush. (Photo Graeme Chapman)

Lessons learned and future directions. The work at Booderee National Park is a truly collaborative partnership between reserve managers, a university and the local Indigenous community.  A key part of the enduring, long-term success of the project has been that a full-time employee of The Australian National University has been stationed permanently in the Parks Australia office in the Jervis Bay Territory. That person (CM) works on an almost daily basis within Booderee National Park and this provides an ideal way to facilitate communication of new research and monitoring results to managers. It also enables emerging management concerns to be included as part of adaptive monitoring practices.

One of the key lessons learned from the long-term work has been the extent of ecological “surprises” – that is, highly unexpected results, including those which continue to remain unexplained. An example is the rapid loss of the Greater Glider and the major decline in populations of the Common Ringtail Possum. One of the clear benefits of this integrated monitoring-management team has been the rapid response to emerging threats. For example in response to high rates of mortality of reintroduced Eastern Quolls, control of the Red Fox was intensified within the park and greater cross-tenure control efforts with neighbouring private and public land managers have commenced. Regular evaluation of monitoring data and management actions has also enabled careful examination of the kinds of risks that can compromise reintroduction programs. These and other learnings will inform other, future reintroduction and translocation programs that are planned for Booderee National Park such as that for the Greater Glider.

Stakeholders and funding bodies. Ongoing work has been supported by many funding bodies and partners. These include the Wreck Bay Aboriginal Community who are the Traditional Owners of Booderee National Park as well as Parks Australia who co-manage the park with the Wreck Bay Aboriginal Community. Other key funders include the Department of Defence, the Thomas Foundation, The National Environmental Science Program (Threatened Species Recovery Hub), the Australian Research Council, the Margaret Middleton Foundation, and the Norman Wettenhall Foundation. Partnerships with Rewilding Australia, Taronga Conservation Society, WWF Australia, NSW Forestry Corporation and various wildlife sanctuaries have been instrumental to reintroduction programs.

Contact information. David Lindenmayer, Chris MacGregor, Natasha Robinson and Claire Foster are with the National Environmental Science Program (Threatened Species Recovery Hub), Fenner School of Environment and Society, The Australian National University (Canberra, ACT, 2601, david.lindenmayer@anu.edu.au). Nick Dexter is with Parks Australia, Jervis Bay Territory, Australia, 2540.

Motuora Restoration Project, New Zealand

Key Words: Ecological restoration, reintroductions, island restoration, community engagement, Motuora Restoration Society

Motuora Restoration Society (http://motuora.org.nz) is recognised by the New Zealand Department of Conservation as the lead community agency for the restoration of Motuora, an 80 ha island in the Hauraki Gulf, New Zealand.  Since 2003 the Society has taken responsibility for the Island’s day-to-day management as well as developing and implementing the Island’s long term restoration strategy. Our aspiration is summed up in our  statement “It is our dream that future generations will enjoy a forest alive with native birds, reptiles and insects”.

Figure 1 – Aerial view of the Island before planting began. Area to bottom left has been sprayed in preparation for planting (Photo from cover of 2007 Motuora Native Species Restoration Plan).

Figure 1 – Aerial view of the Island before planting began. Area to bottom left has been sprayed in preparation for planting (Photo from cover of 2007 Motuora Native Species Restoration Plan).

 Figure 2 – Aerial view of the Island after completion of the pioneer planting. (Photo by Toby Shanley)


Figure 2 – Aerial view of the Island after completion of the pioneer planting. (Photo by Toby Shanley)

Background. Motuora is located on the east coast of New Zealand’s North Island near Auckland City. Motuora would once have been tree-covered and have hosted a wide range of native plants, invertebrates, reptiles and birds, particularly burrow-nesting seabirds. It was visited by early Polynesian settlers, later Māori, who would have initially camped, but later lived more permanently on the Island raising crops and harvesting fish, shellfish and presumably seabird eggs, chicks and adults. European settlers later occupied the Island, burning off most of the bush to encourage growth of grasses for their grazing livestock.

Towards the end of the farming period in the 1980s most of the Island’s native flora and fauna were gone. Interestingly however, there were never breeding populations of introduced mammalian pests on the Island so the remnant ecosystem had not been impacted by mice, rats, mustelids, hedgehogs, possums, goats, pigs or deer.

From about 1987 onwards both Government and members of the public began to take an interest in the Island and to promote the idea of adopting it as a predator-free bird habitat. Discussions continued over the next few years and by 1992 a sub-committee of the mid-North Royal Forest and Bird Protection Society had been formed and, in partnership with the Department of Conservation, drew up the first ‘strategy plan’ for the Island. Work parties began seed collecting, trial tree planting, weeding and fencing upgrades. By 1995 it had become apparent that the project could best proceed by way of an independent group dedicated to the task and the Motuora Restoration Society was formed.

The work on Motuora was designed to be a true restoration project combining firm ideas about the model ecosystem desired and a ‘bottom-up’ approach (vegetation-invertebrates-reptiles-birds) timing planting and introductions in a logical sequence. The historical presence of species on Motuora was inferred from comparisons with other less modified islands off the north east of the North Island, and particularly those from within the Rodney and Inner Gulf Ecological Districts, and using paleological information collected from the adjacent mainland.  Motuora Restoration Society has resisted the temptation to add iconic attractive species not originally present on the Island which might have raised the profile of the project.

Works carried out. The Society and its volunteers have contributed many thousands of hours to the restoration of the Island since 1995, raising and planting more than 300,000 native seedlings. This was particularly challenging with the logistics of working on an island without a regular ferry service or wharf. The project also included seabird and other species translocations, monitoring, weeding and track maintenance as well as fundraising.

The framework adopted began with reforestation so that appropriate habitat could be reinstated. A nursery was set up and seeds were collected from the Island, from nearby islands and, when necessary, from the mainland. With the exception of some areas of higher ground providing panoramic views from the Island, the land area was prepared (by weed-killing rampant kikuyu grass) and planted with hardy, wind and salt tolerant tree species. Once the trees were established, the canopy closed and sufficient shelter available, less hardy species and those requiring lower light levels were planted among the pioneers.  Today the planting of 400,000 trees of pioneer species is all but complete; and the raising and planting of ‘canopy’ and less hardy species continues.

In terms of fauna, invertebrate populations were surveyed and have been monitored as the forest has matured. One species, Wētāpunga (Deinacrida heteracantha) has been introduced.   Four reptiles have been introduced: Shore Skink (Oligosoma smithi), Duvaucel’s Gecko (Hoplodactylus duvaucelii),  Raukawa Gecko (Woodworthia maculata) and Pacific Gecko (Dactylocnemis pacificus).  One small land bird – Whitehead (Mohoua albicilla) has been translocated with 40 individuals moved to the Island.  Four seabird species have been attracted or translocated to the Island including the Common Diving Petrel (Pelecanoides urinatrix), and Pycroft’s Petrel (Pterodroma pycrofti).

Results. The project has restored Motuora from a pastoral farm (dominated by introduced grasses, weeds and only a small remnant fringe of naturally regenerating native forest) to a functioning native ecosystem, predominantly covered in early succession native forest with an intact canopy.

Initially the population of invertebrates was dominated by grassland species but the range and population size of forest dwellers has now much improved and the invertebrate fauna is now rich and plentiful (although rarer and endangered species are still to be added).  An initial suite of populations of flightless invertebrates remain depauperate.  Whitehead, an insectivorous bird species, has flourished with a current population of several hundred. At this early stage in the introduction of native fauna it is possible to report successful breeding and, for the most part, sufficient survival of initial colonisers of the species introduced to suggest that new populations will be established.  Sound attraction systems have led to initial breeding of Fluttering Shearwater (Puffinus gavia) and Australasian Gannet (Morus serrator).

Partnerships. Management of the Island is shared with the Department of Conservation (DOC) who administer the site on behalf of the Crown. DOC has legal commitments to engage with and act on behalf of the general public and particularly with iwi (Māori) who have generally expressed strong support for the restoration project and are expected to have co-management rights over the Island in the future.

Over the years the combined efforts of DOC staff, University researchers, the committee, thousands of volunteers and a host of donors and sponsors have worked hard to bring the Island to its present state.

Future directions. A sustained effort will continue to be required each year on biosecurity and weeding programmes. It will be many more decades before the forest matures and seabird and reptile populations reach capacity levels and a substantial workload is anticipated in managing and monitoring the emerging ecosystem for many years to come.

Acknowledgements: The success of the project is reinforced by the fact that the Society has maintained a close collaboration with a range of scientists and have inspired the active support and engagement of so many volunteers.  We thank all our inspiring volunteers and the following participating academics and researchers who have contributed to the project over the past ten years: Plants: Shelley Heiss Dunlop, Helen Lindsay (contractor). Reptiles: Marleen Baling (Massey University), Dylan van Winkel (consultant), Su Sinclair (Auckland Council), Manuela Barry (Massey University). Invertebrates: Chris Green (DOC), Robin Gardner-Gee (Auckland University), Jacqueline Beggs (Auckland University), Stephen Wallace (Auckland University). Birds: Robin Gardner-Gee (Auckland University), Jacqueline Beggs (Auckland University), Kevin Parker (Massey University), Richard Griffiths (DOC), Graeme Taylor (DOC), Helen Gummer (DOC contractor). The restoration project has been supported financially though grant aid received from a wide range of funders.

Contact: Secretary, Motuora Restoration Society, Email: secretary@motuora.org.nz; www: http://motuora.org.nz/

A water point design to facilitate seed dispersal into revegetation or pasture sites

Amanda N. D. Freeman

Introduction. Although perches have been shown to enhance seed dispersal into revegetation sites, the efficacy of providing a water source to attract seed dispersers is largely untested.  In a Griffith University-led study aimed at “kick-starting” conversion of pasture to forest www.wettropics.gov.au/cfoc , bird-attracting structures that included a perch and water trough at the base were shown to enhance frugivore-assisted seed dispersal.  A complementary study in the same sites has identified the seeds of over 40 bird dispersed species deposited in the water troughs (Amanda Freeman; The School for Field Studies, Centre for Rainforest Studies (SFS-CRS) and Griffith University; 2012-2014, unpublished data).  Although the water troughs demonstrably attracted frugivorous birds, most notably Pied Currawongs (Strepera graculina ) using the water to regurgitate, any seeds regurgitated into troughs would be unavailable to germinate (Fig 1.).

Figure 1. A Pied Currawong at a water trough in a “Kickstart” pasture conversion plot. [See Elgar, A.T., Freebody, K., Pohlman, C.P., Shoo, L.P. & Catterall, C.P. (2014) Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Frontiers in Plant Science 5: 200. http://dx.doi.org/10.3389/fpls.2014.00200]

Figure 1. A Pied Currawong at a water trough in a “Kickstart” pasture conversion plot. [See Elgar, A.T., Freebody, K., Pohlman, C.P., Shoo, L.P. & Catterall, C.P. (2014) Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Frontiers in Plant Science 5: 200. http://dx.doi.org/10.3389/fpls.2014.00200%5D

Preliminary trial. Using a commercially available automatic waterer used for poultry, we designed a water point with a water dispenser that is too small for birds to regurgitate or defecate into, allowing expelled seed to fall to the ground.  The device is also simple and relatively cheap to build (<$100 Australian).  Once installed, the device requires little attention because the water remains cool and evaporation is minimal so the water may last several months without replenishing. The waterer, a plastic container which distributes water to a small dish by the action of a float, sits on a sturdy metal base 1.5m high.  The base has a perch allowing birds of different sizes to access the water from several angles and an attachment for a camera to enable bird visits to be monitored.  We envisage that the water point may facilitate seed dispersal by attracting frugivorous birds that will regurgitate and/or defecate at or near the water point.

We conducted an initial trial at a revegetation site at SFS-CRS in February 2016.  For this trial we baited the water point with Kiwi Fruit (Actinidia sp.) but this was soon consumed by insects. During the trial we recorded two species of fruit-dispersing bird, Pied Currawong and Lewin’s Honeyeater (Meliphaga lewinii) using our prototype water point within one month of its installation in (Fig 2.).

figure-2

Figure 2. A Pied Currawong drinking from a water point (kiwi fruit bait in foreground).

Design of second trial. In July 2016 we established a small trial at SFS-CRS to test the relative efficacy of perches alone versus perches coupled with our water point device in facilitating seed dispersal into cleared sites that lack remnant or planted trees.  We have nine fenced 3m2 plots in ungrazed former pasture, 15m from the edge of primary rainforest (Fig 3.).  Six plots have a perch, 3-4m high, cut to standard form from Sarsaparilla (Alphitonia petriei) trees.  Three of these plots also have a water point placed close to the base of the perch and a camera monitoring visits to the water.  Three plots have no structures.

Grass in all plots will be suppressed by herbicide spray (on an ‘as needed’ basis) and seedling recruitment in the plots will be monitored. In the first three months, no birds have been recorded using the water points in the trial plots.

Figure 3. Perch and water device trial plots, September 2016.

Figure 3. Perch and water device trial plots, September 2016.

Contact: Amanda Freeman, Centre Director, The School for Field Studies, Centre for Rainforest Studies, PO Box 141, Yungaburra, QLD 4884, Tel: +61 (7) 40953656; Email:  afreeman@fieldstudies.org

 

 

 

Subtropical rainforest restoration at the Rous Water Rainforest Reserve, Rocky Creek Dam, 1983 – 2016

Key words: Lowland subtropical rainforest, ecosystem reconstruction, drinking water catchment, continual improvement process.

Introduction. Rous Water is actively engaged in ecosystem reconstruction within the drinking water catchment areas it manages on behalf of the community. The aim of these activities is to improve the functioning of essential natural processes that sustain water quality. The methodology used for rainforest restoration by Rous Water has evolved over time through an ‘adaptive management’ process at Rocky Creek Dam. This adaptive management approach has demonstrated that effective large scale sub-tropical regeneration at Rocky Creek Dam is achieved through complete removal of competing plants. The technique has become known as the Woodford Method and is now being applied at other Rous Water restoration sites.

The Rous Water Rainforest Reserve at Rocky Creek Dam is set in the northern headwaters of the Richmond River catchment, on the southern rim of the Tweed shield volcano. Basalt flows from the volcano have produced nutrient rich Red Ferrosol that supported diverse sub-tropical rainforest ecosystems across the region, until the rainforest was largely cleared for agriculture in the late 19th century. The Rocky Creek Dam site is adjacent to the Big Scrub Flora Reserve, the largest remaining remnant subtropical rainforest in the region. This reserve acts as a reference site for the restoration project (Fig 1).

Figure 1. Detail of the regeneration areas at Rocky Creek Dam, showing the areas treated and the year of the initial works

Figure 1. Detail of the regeneration areas at Rocky Creek Dam, showing the areas treated and the year of the initial works

Clearing of land in the vicinity of Rocky Creek Dam by early settlers commenced in the 1890s, with the cleared lands used for the establishment of dairy farms and a sawmill. In 1949, following acquisition of the site by Rous County Council (now Rous Water) for the construction of a water supply dam, this former farmland had reverted to weedy regrowth characterised by a mosaic of native/exotic grass, Lantana (Lantana camara) and Camphor Laurel (Cinnamomum camphora) which supressed any expansion or recovery of scattered rainforest remnants. Transformation of the site commenced in 1983 when Rous Water became actively engaged in ecosystem recovery by systematically removing weeds that suppressed rainforest regeneration, a practice that continues today.

Rainforest restoration methods. The practices and management tools used in rainforest restoration at the site have been previously described by Woodford (2000) and Sanger et al. (2008). The work method typically involves the systematic poisoning and slashing of weeds to promote recruitment of rainforest plants from the soil seed bank and then to facilitate the growth of suppressed rainforest plants, providing a structural framework for further seed dispersal by wind and, particularly, flying frugivores and thus further colonisation by later phase rainforest trees.

Since 1983, an area of approximately 70 ha has been progressively treated in 1-2 ha blocks using this methodology (refer Fig 1), with progressively diminishing amounts of follow-up treatment needing to be conducted in the treated areas over subsequent years to secure successional progression of the rainforest species.

Use of this method means that, due to recruitment from the seed bank and the use of stags (from dead camphor laurel) as perches for seed dispersing birds, very limited planting has been required on the site. This has preserved the genetic integrity of the Big Scrub in this location.

Results. A total of approximately 70 hectares of weed dominated regrowth has been treated at the Rous Water Rainforest Reserve since commencement in 1983 (Figure 1). This is approximately 35 ha since the report previously published in 2000 and represents approximately 30 % of the Rous Water property at Rocky Creek Dam.

This progressive treatment of compartments of weedy regrowth at Rocky Creek Dam has continued to lead to rapid canopy closure by shorter lived pioneer and early secondary tree species, with a gradual progression to higher proportions of later secondary and primary species with increasing time since treatment. All tree species that are listed as occurring in the reference site are not only now present in the restoration area, but informal observations suggest that most, if not all, are increasing in abundance over time (Figs 2-6)

Figure 2. Treated regrowth at the Rous Water Rainforest Reserve, Rocky Creek Dam After 1 year (foreground)

Figure 2. Typical regeneration of rainforest species 1 year after Lantana removal at the Rous Water Rainforest Reserve, Rocky Creek Dam (foreground).

Figure 3. Same photopoint after 6 years

Figure 3. Typical recovery after 6 years

Figure 4. Same photopoint after 12 years

Figure 4. Typical recovery after 12 years

Figure 5. Same scenario after 20 years

Figure 5. typical recovery after 20 years

Figure 6. After 30 years

Figure 6. Typical recovery after 30 years

The structure of the older treated regrowth areas sites appears to be converging on rainforest conditions, as noted by Kanowski & Catterall (2007). Thackway & Specht (2015) depict how 25 ha of systematically treated compartments that were covered almost entirely with lantana are progressing back towards the original Lowland Subtropical Rainforest’s composition, structure and ecological function (Fig 7). Overall the vegetation status in this area was assessed at between 85% and 90% of its pre-clearing status.

This process is, at its oldest 33 years old and in some locations much younger. So it is clear that the development of the subtropical vegetation still has many decades, possibly centuries, to go, before it approaches the composition, structural and habitat characteristics of a primary forest. Notwithstanding the large areas of natural regrowth that are yet to be worked, it is evident that a large proportion of the assisted regeneration areas progressively worked by Rous over the past 33 years now requires only a low level of ongoing maintenance. This shows that these sites are maturing over time and have largely reached a self-organising state, and in the fullness of time will achieve a high degree of similarity to the reference state.  (A recovery wheel for one subsite is shown in Fig 8)

Fig 7, Thackway fig rocky creek dam1

Figure 7. Assessment of change in indicators of vegetation condition in a 25 ha area. This depicts the degree of recoveery of Lowland Subtropical Rainforest found at Rocky Creek Dam, Big Scrub, NSW against a pre-clearing reference. (Graph reproduced with permission. The method used to generate the graph is described in Thackway, R. and Specht, A., (2015). Synthesising the effects of land use on natural and managed landscapes. Science of the Total Environment. 526:136–152 doi:10.1016/j.scitotenv.2015.04.070. ) Condition indices for transition Phase 4 were derived from prior reports including Sanger et al. 2008 and Woodford 2000. Metadata can be viewed at http://portal.tern.org.au/big-scrub-rocky-queensland-brisbane/16908 .

Lessons learned. Using this method of harnessing the natural resilience processes of the rainforest, we have been able to progress the recovery of an important water catchment area, restoring very high biodiversity conservation values in a landscape where rainforest was, and remains, in serious decline., The ability of the high resilience sites at Rocky Creek Dam to respond to the Woodford Method is clearly demonstrated, but there is ample evidence that application of this and similar resilience-based rainforest restoration methods can harnessed resilience at other sites in the Big Scrub that are at greater distances from remnants.

Figure 8. Distribution of management intensity classes across the Rous Water Rainforest Reserve at Rocky Creek Dam.

Figure 8. Distribution of management intensity classes across the Rous Water Rainforest Reserve at Rocky Creek Dam. (Legend for this map is in Appendix 1)

Current work and future directions. Work continues at the site and management is supportive of-site evaluation to assess the extent to which the treated areas are undergoing successional development using a range of available assessment tools.

To assist future planning, and in order to address the issue of how to best estimate and plan for restoration works and associated costs, Rous Water has adapted the methodology developed on the Tweed-Byron Bush Futures Project, where each restoration site/area was assigned a Management Intensity Class (MIC) based on a generalised assessment of site condition, weed composition and cover and other management requirements. (Fig 8) The MIC describes the frequency of restoration work required to restore the site to a minimal maintenance level and how many years this would take to achieve. The MIC aims to describe the extent of management intervention necessary to restore the site to a minimal maintenance level. For this analysis this equates to the establishment of a self sustaining sub-tropical rainforest buffer zone. Each management intensity class is associated with a particular restoration trajectory/cost per hectare, based on visitation frequency by a standard 3 person team and expressed in terms of number of visits required to control / manage weeds. Appendix 1 below shows details of the MIC classification, showing for each class, relevant site criteria, and the estimated level of bush regeneration resources required to bring each class to a low maintenance level.

Contact: Anthony Acret, Catchment Assets Manager,  Rous Water. Tel: +61 (0) 2 6623 3800, Email: anthony.acret@rouswater.nsw.gov.au

Rocky Creek Dam recovery wheel adjacent to Forest Edge

Appendix 1. Legend for Management intensity classes used in Fig 8. (From Tweed-Byron Bush Futures)

Appendix 1. Legend for Management intensity classes used in Fig 8.

Establishment of an assisted natural regeneration model for Big Scrub sub-tropical rainforest: The Woodford Method

The results of long-term restoration at Rocky Creek Dam, have informed the development of an assisted natural regeneration model for sub-tropical rainforest known as The Woodford Method (named after the pioneering restoration work of Ralph Woodford). This method is now commonly applied across the Big Scrub region, particularly on high resilience sites and is more fully explained in Woodford (2000).

Figure 1. Remove Lantana thickets.

Figure 1. Remove Lantana thickets.

1. Winter (July-August) – refer Figure 1. In a typical area of secondary regrowth dominated by weeds such as Camphor Laurel (Cinnamomum camphora), Privet (Ligustrum sinense) and Lantana (Lantana camara), Lantana is the weed that should be killed first. Winter is the best time to do this as it is dry and it won’t reshoot when on the ground. In extensive areas, this can be done effectively by flattening thickets of Lantana with a tractor, then slashing it repeatedly to create a deep mulch, and pulling the Lantana stumps out to disturb the soil. Removing the Lantana thickets also allows access to tree weeds.

Figure 2. Kill Privet and Camphor Laurel.

Figure 2. Kill Privet and Camphor Laurel.

2. Spring (September-October) – refer Figure 2. Tree weeds such as Camphor and Privet have their biggest growth spurt, so this is a good time to give them a shot of herbicide to kill them. (Leaving the Camphor in place rather than cutting them down means that they act as ‘perch trees’ for birds and bats to land on and spread seeds through their droppings). As the Lantana, Camphor and Privet die, their leaves and branches fall to the ground and form a rich mulch on the forest floor. Light is also able to reach the forest floor, where previously it had only reached the canopy.

Spring storms come and wet the mulch, and fungal mycelium (the feeding filaments of fungi) move through the mulch and break it down, fertilising and leaving bare patches of soil where the mulch layer has totally receded.

Figure 3. Remove annual weeds.

Figure 3. Remove annual weeds.

3. Late spring / early summer (November-January) – refer Figure 3. Where you have bare soil, and there is moisture, light and an appropriate temperature, you will get seed germination. The first things to come up are annual weeds such as ‘Farmers Friends’ or ‘Cobblers Pegs’ (Bidens pilosa); ‘Blue Billy Goat Weed’ (Ageratum houstonianum); and ‘Crofton’ or ‘Mistweed’ (Ageratina spp). Annual weeds are always first to appear. They will germinate on the smell of a storm and a slight increase in temperature. Camphor and privet seedlings often come up at the same time.

When the weeds grow, they form a canopy just like the forest but at a height of one metre. In this way, weeds stop light from reaching the forest floor, inhibiting the growth of rainforest seedlings.

Therefore, it is important to remove these annual weeds and not let them go to seed. Depending on time available they are either pulled or sprayed. The experience at this site has been that the seedbank is strong enough to lose some rainforest seedlings in this initial spraying. If using herbicide, two sprays during this season generally removes all the weeds and their seeds.

Figure 4. Weed around rainforest seedlings.

Figure 4. Weed around rainforest seedlings.

4. Late summer / early autumn (February-March) – refer Figure 4.The seeds of rainforest species tend to germinate after the highest summer temperatures (sometimes up to 38 and 40 degrees) have passed. By late February and early March, daytime temperatures don’t generally go over 30 degrees, but the soil temperature and moisture is at its maximum. These conditions can produce a massive germination of rainforest seeds and those seedlings grow up very rapidly. Hand weeding is usually needed around these rainforest ‘pioneers’.

Figure 5. Enjoy the growing rainforest.

Figure 5. Enjoy the growing rainforest.

5. Early winter (May-June) – refer Figure 5. On a good site, with the best seasonal conditions, many of these rainforest seedlings will have grown to saplings above head height and can create a closed canopy within the same year. This means that less light reaches the forest floor, which reduces the amount of weed regrowth in this area – but there is still enough light for later successional rainforest seedlings to germinate, building the rainforest diversity over time.

Note: The process may be slightly different depending on the type of ‘before restoration’ landscape. Refer to Woodford (2000) for more information.

Contact: Anthony Acret,  Catchment Assets Manager, Rous Water, NSW Australia. Tel+62 2 6623 3800; Email: anthony.acret@rouswater.nsw.gov.au

Donaghy’s Corridor – Restoring tropical forest connectivity

Key words: tropical forest restoration, habitat connectivity, small mammal recolonisation, ecological processes, community partnerships.

Introduction. Closed forest species are considered especially susceptible to the effects of forest fragmentation and habitat isolation. The Wet Tropics of north Queensland contains many forest fragments between 1ha and 500ha, mostly surrounded by dairy and beef pastures, and crops such as maize, sugar cane and bananas. Larger blocks are often internally fragmented by roads and powerlines. The Lake Barrine section of Crater Lakes National Park is a 498ha fragment that is 1.2km distant from the 80,000ha Wooroonooran N.P, and ecologically isolated since the 1940s with detectable effects on genetic diversity of rainforest mammals.

In 1995 the Qld Parks and Wildlife Service, along with landholders and the local ecological restoration group TREAT Inc., began riparian forest restoration along Toohey Creek to re-connect the Barrine fragment to Wooroonooran and to document colonisation by small mammals and native plants typically associated with rain forest environments (Fig 1).

AERIAL VIEW

Fig 1. Donahy’s Corridor, Atherton Tablelands, linking Crater Lakes NP and Wooroonooran NP, Qld (Photo TREAT).

Connectivity Works. Prior to works commencement, small mammal communities (e.g. Rattus spp. and Melomys spp.) along and adjacent to Toohey Creek were sampled, along with a full vegetation survey, to determine base-line community composition and structure. Permanent stock exclusion fencing was erected and off-stream stock watering points established.

A 100m wide corridor of vegetation was established over a four year period using local provenances of 104 native species comprising around 25% pioneer species, 10% Ficus spp., and the remainder from selected primary and secondary species. In total, 20,000 trees, shrubs and vines were planted along the creek, and a three-row shelterbelt was planted adjacent to the corridor to reduce edge effects. Species were selected on a trait basis, including suitability as food plants for targeted local fauna e.g. Cassowary (Casuarius casuarius johnsonii).

Ecological furniture (e.g., rocks, logs) was placed prior to planting. On completion, the 16ha Donaghy’s Corridor Nature Refuge was declared over the area, recognising the Donaghy family’s significant land donation and the corridor’s protection by legislation. A three year monitoring program, conducted quarterly, commenced on completion of planting.

TREAT2012Donaghy'sCorridor22

Fig. 2. Developing rainforest in Donahys Corridor (Photo Campbell Clarke)

Monitoring. Flora monitoring was conducted along transects bisecting the four annual plantings (1995/96/97/98), and small mammal colonisation in 11, 20m x 20m plots located in the plantings, adjacent open paddocks, and in forests at either end. Small mammal sampling included mark-recapture and DNA studies, to determine colonisation and movement patterns and genetic effects.

Results. Three years after establishment, over 4000 native plants were recorded – representing 119 species from 48 families. This included 35 species naturally dispersed from the adjacent forest (Figs 2 and 3). Small mammal sampling showed 16 long-distance movements by Rattus species and the appearance of an FI hybrid Bush Rat (Rattus fuscipes) in the central section of the corridor in the third year of the study. The rainforest rodent Fawn-footed Melomys (Melomys cervinipes) had established territories in the second year of the study. A study of wood-boring beetles (Coleoptera)in ecological furniture showed 18 morpho-species in a three year period. Many other orders/families were also recorded.

Water quality in Toohey Creek was not studied but has continued to increase since the replacement exotic grasses with woody vegetation, and the exclusion of cattle from accessing the stream. There is increased shade available for stock and less pressure on the limited number of existing paddock shade trees.

TREAT2012Donaghy'sCorridor18

 Fig. 3. Indicators of rainforest structure (species and layering) and functions (habitat providion, nutrient cycling, recruitment) are now highly evident. (Photo Campbell Clarke).

What we learned.

  • Plant colonisation was rapid, dominated by fleshy-fruited species (10-30mm diameter), of which a proportion are long-lived climax species
  • Plant colonisation was initially highest in the interior, close to the creek margin, but has become more even over time
  • Vegetation structural complexity and life form diversity have continued to increase since establishment
  • Small mammal communities changed in response to habitat structure, grassland species dominate until weeds are shaded out when they are replaced by closed forest species
  • Many long distance mammal movements occurred that were only detected by genetic analysis
  • Monitoring showed small mammals used the new habitat to traverse from end to end until resources were worth defending: at that time long distance movements declined and re-capture of residents increased
  • Partnerships between government, research bodies, community groups, and landholders are essential if practical solutions to fragmentation are to be developed and applied

Acknowledgements: Trees for the Evelyn and Atherton Tableland acknowledges and appreciates the support of all the volunteers involved in this project, staff from the Qld Parks and Wildlife Service-Restoration Services, , James Cook University, University of Qld, Griffith University and UCLA Berkely. In particular we would like to acknowledge the Donaghy family.

Contact: TREAT Inc. PO Box 1119, Atherton. 4883 QLD Australia. http://www.treat.net.au/

SEE ALSO:

Global Restoration Network Top 25 report: http://www.treat.net.au/projects/index.html#donaghy

Watch the video on RegenTV – presented by Nigel Tucker

 

 

 

 

 

 

 

 

Thiaki biodiversity-ecosystem functioning and restoration experiment

P1010852-Gabriela-small

Fig 1. Research students measuring planted Queensland Maples for modelling studies

Noel Preece

Key words rainforest reforestation, carbon sequestration, cost-effectiveness, old fields, weeds

Introduction. Restoring agricultural landscapes to forest is time-consuming, expensive and often hit-and-miss. Trees take years to show survival and growth rates and effects of planting methods and maintenance. World-wide, there are few large-scale reforestation experiments designed to test the effectiveness of and functional responses to reforestation, especially in the tropical regions for biodiversity and carbon benefits.

In the wet tropics of Australia, far north Queensland, the Thiaki Restoration Research project was established to examine aspects of reforestation (Figs 1-3). The reference model for the project is ‘Simple to complex notophyll vine forest of cloudy wet highlands on basalt, Regional Ecosystem 7.8.4’. Three fully-replicated experiments were established in 2010, 2011 and 2013 to examine different approaches to reforestation. The experimental plots are all replicated, with control plots, to examine different aspects of reforestation. Plot size varies from 25 m square up to 50 m square, and we now manage 90 experimental plots over more than 30 hectares of planted land.

Experimental design. The first experiment is examining the effect of different planting methods; the second is researching three combinations of native rainforest species and two treatments (high and low planting densities); and the third is examining the effects of two different herbicide treatments (blanket spraying and strip spraying). One of the major emphases of the experiments is to analyse planting practices for their cost-effectiveness for the carbon sequestration industry. Reducing establishment and maintenance costs for carbon sink forests is essential, as published and anecdotal costs of establishing forests in the region and elsewhere has been so high as to make the carbon economy unreachable for environmental planting practitioners to ‘make a buck’ from carbon farming. We will publish these findings in the near future, as most of the plantings have reached an (almost) self-maintaining height and size.

Current work, which will be published from the experiments, includes:

  • examination of field-based measurements compared with national modelling tools;
  • effects of herbicide spraying and grass suppression practices; rates and patterns of natural recruitment;
  • functional responses of trees to soil nutrients and characteristics (such as compaction, moisture and organic content); functional responses of dung beetles and mammals to restoration;
  • responses of ants to restoration and remnant patches and proximity to remnant forests; and
  • the functioning of barriers to recruitment by rainforest fauna.

Weeds also present a significant research component, and examination of the effects and faculty of weeds to restoration is being conducted. We are also examining the effects of different planters on survival rates, which is of vital interest to restorationists.

P1020070-sml

Fig. 2. Sampling soils and roots to study functional responses of tree families.

Results to date. The experiments have resulted in important findings which affect reforestation success, and publications which have contributed some of the first replicated experimental results on: planting methods; allometrics for young trees; functional responses of several taxa to restoration; young tree root:shoot ratios; improved wood density data on young trees; and cost-effectiveness of planting methods. Some of the related research has contributed to better Australian models of carbon sequestration in the tropics.

Lessons learned and future directions. Top priority lessons include the preparation and planting stage, as all else follows and mistakes made at this point ramify later. Vital considerations are: site preparation, especially early weed control; selecting species which will survive the harsh exposed conditions; nurturing and sun-hardening seedlings; ensuring that the soil is very wet and that seedlings are soaked immediately before planting; and, ensuring that planters plant in ways that don’t damage the seedlings.

Collaborators. Charles Darwin, James Cook, Adelaide, Lancaster (UK), and Queensland Universities. Funding: Australian Research Council Linkage project LP0989161, Biome5 Pty Ltd, Terrain NRM, Greening Australia, Stanwell Corporation, Biodiversity Fund.

Contact. Dr Noel Preece, Director, Biome5 Pty Ltd, PO Box 1200, Atherton Qld 4883, +61407996953; email: noel@biome5.com.au. Website www.biome5.com.au.

Read also: https://site.emrprojectsummaries.org/2011/09/16/thiaki-creek-cost-effective-rainforest-restoration-for-carbon-biodiversity/

 

 

 

 

 

Wompoo Gorge Lowland Subtropical Rainforest Restoration Project, Coopers Creek, New South Wales

Key words : Connectivity, Lowland Subtropical Rainforest, Threatened Species

Introduction. Much of the state- and nationally listed Lowland Subtropical Rainforest at Wompoo Gorge, located on Coopers Creek near Rosebank, was partially cleared for pasture early last century. Parts of the cleared forest regenerated naturally with the removal of agricultural activities from the site during the 1940s-50s, but Lantana (Lantana camara) established in large gaps (Fig 1) and prevented any further rainforest regeneration. This weed domination reduced the function of an important habitat linkage between Nightcap and Goonengerry National Parks. Twenty-seven threatened species (10 threatened flora species and 17 vulnerable animal species) have been recorded on the site, which has been identified as a key climate change and wildlife corridor.

In 2009 a program of ecological restoration commenced, guided by the recommendations of the Wompoo Gorge (South) Ecological Restoration Plan (updated in 2013). The aim of the restoration works was to control Lantana and other weeds, restoring the integrity of the rainforest and helping to supporting the region’s exceptional biodiversity.

A monitoring program was established on site prior to commencement of works. This included eight transects and photopoints. Structural and floristic information has been collated and photos taken prior to the commencement of works, and subsequently over the course of restoration work. Data have been entered into then MERV (Monitoring and Evaluation of the Restoration of Vegetation) database and used to produce reports.

Figure 1. (map) Lantana cover prior to restoration. By 2014 very little lantana remained with regenerating rainforest taking the place of weeds.

Figure 1. (map) Lantana cover prior to restoration. By 2014 very little lantana remained with regenerating rainforest taking the place of weeds.

Works undertaken: Lantana has been controlled by a range of methods (Figs 2-4) including: mechanically with a tractor; spraying with a splatter gun; over-spraying dense, less accessible areas; hand weeding with brush hooks and loppers; and, cut/scrape and paint of scattered Lantana among remnant vegetation. Other less dominant weeds have been controlled to facilitate replacement of Lantana with regenerating rainforest. Follow-up work includes flattening down dead Lantana, spot spraying and hand weeding. No planting has been undertaken but fruit from native plants on site has been collected and spread throughout regeneration areas.

Figure 2. September 2009: Prior to lantana control

Figure 2. September 2009: Prior to lantana control

Figure 3.  17 September 2009: Tractor crushes down lantana

Figure 3. 17 September 2009: Tractor crushes down lantana

Figure 4. 21 October 2009: Second tractor run slashing lantana

Figure 4. 21 October 2009: Second tractor run slashing lantana

Results: Lantana has been virtually eliminated from extensive areas and vigorous regeneration of a high diversity of species has occurred (Figs 5-6). Common regenerating species include: Poison Peach (Trema aspera), Red Cedar (Toona ciliata), Giant Stinging Tree (Dendrocnide excelsa), Tamarind (Diploglottis australis), Sandpaper Figs (Ficus coronata) White Cedar (Melia azedarach) Bangalow Palm (Archontophoenix cunninghamiana), Brown Kurrajong (Commersonia bartramia), Pencil Cedar (Polyscias murrayi), Celerywood (P. elegans), Quandong (Elaeocarpus grandis) , Black Bean (Castanosperma australis), Sally Wattle (Acacia melanoxylon). Groundcovers included Soft Bracken Fern (Calochlaena dubia), Cunjevoi (Alocasia brisbanensis) Juncus (Juncus sp.), Cyperus (Cyperus spp.) and Basket Grass (Oplismenus aemulus). A range of later stage rainforest species have also germinated including Hairy Walnut (Endiandra pubens), Maiden’s Blush (Sloanea australis) and White Bolly Gum (Neolitsea dealbata).

Figure 5. ‘’Oct 2010: Resilient native regeneration in tractor cleared area

Figure 5. Oct 2010: Resilient native regeneration in tractor cleared area

Figure 6. May 2014: Natives have replaced lantana throughout cleared area

Figure 6. May 2014: Natives have replaced Lantana throughout cleared area

What we have learned. Wompoo Gorge has proven to be a highly resilient site, located as it is between two major sources of propagules. The site’s unique location, resilience and beauty has made it an ideal site to educate and inspire the community to restore rainforest Field days held on site have assisted in raising regional awareness of the value of the Lowland Rainforest EEC, the habitat it provides and of the degrading impacts of weeds. Various weed control techniques have also been discussed and demonstrated. Involving Green Army participants alongside professional regenerators has helped Green Army participants gaining valuable knowledge, skills and training in ecological restoration.

In 2014 NSW National Parks and Wildlife Service acquired the property realising the goal of former property owner Dailan Pugh to protect the property in perpetuity for the benefit of conserving native species and for future generations.

Acknowledgements: The project has received funding from the NSW Environmental Trust’s Restoration and Rehabilitation program. Additional funding has been invested through the former Northern Rivers Catchment Management Authority, the Great Eastern Ranges Initiative and a Raymond Borland Landcare grant. In 2015 Green Army teams have commenced working on site, alongside professional bush regenerators, undertaking additional and complimentary restoration works.

Contact: Paul O’Connor, Technical Manager, EnviTE Environment, 56 Carrington Street (P.O.Box 1124) Lismore  2480 Australia.

Tel: +61 2 6627 2841 Mob: + 61 427 014 692. Email: paulo@envite.org.au