Category Archives: Fire Ecology & Management

Eastern Suburbs Banksia Scrub: is fire the key to restoration? – UPDATE to EMR SUMMARY

Geoff Lambert, and Judy Lambert

[Update to EMR summary  – Geoff Lambert and Judy Lambert (2015) Progress with restoration and management of Eastern Suburbs Banksia Scrub on North Head, Sydney.  Ecological Management & Restoration, 16:2, 95-199. https://onlinelibrary.wiley.com/doi/10.1111/emr.12160]

Key Words. Banksia Scrub, North Head, Critically Endangered Ecological Community, Diversity.

Fig 1. Images of the same location over time, taken from “walk-through” photographic surveys (top to bottom) pre-fire, immediate post-fire and 5-years post-fire. (Photos Geoff Lambert)

Introduction. In the original feature, we reported on a number of projects related to the fire ecology of Eastern Suburbs Banksia Scrub (ESBS), also known as Coastal Sand Mantle Heath (S_HL03), located in conserved areas on North Head, Sydney Australia. Following a Hazard Reduction burn in September 2012, we examined changes in species numbers and diversity and compared these measures with control areas which had been thinned. We fenced one-third of the survey quadrats to test the effects of rabbit herbivory. There had been no fire in this area since 1951.

Twelve months after treatment, burned ESBS had more native plants, greater plant cover, more native species, greater species diversity and fewer weeds than did thinned ESBS (Fig 1). Areas that had been fenced after fire had “superior” attributes to unfenced areas. The results suggested that fire could be used to rejuvenate this heath and that this method produced superior results to thinning, but with a different species mix. Results of either method would be inferior were attempts not made to control predation by rabbits (See 2015 report).

Further works undertaken. In 2015 and 2017 we repeated the surveys, including photographic surveys on the same quadrats. Further Hazard Reduction burns were conducted, which provided an opportunity to repeat the studies reported in the 2015 feature. The study design of the burns was broadly similar to the earlier study, but rabbits were excluded by fencing four large “exclosures” over half the burn site. The pre-fire botanical survey was carried out in 2014, with logistical difficulties delaying the burn until late May 2018. Drought and other factors saw a post-fire survey delayed until October 2019. Photographic surveys of the quadrats have been completed.

Seven cm-resolution, six-weekly, aerial photography of North Head is regularly flown by Nearmap© (Fig 2). We use this photography to monitor the whole of the headland and, in particular, the various burn areas. In order to extrapolate from our quadrat-based sampling (usually 1% of a burn area), the University of Sydney flew 5mm-resolution UAV-based surveys on our behalf, on one of the 2012 burn areas and on the 2018 burn area in November 2017 (Fig 3) .

Apart from the fire studies, the general program of vegetation propagation and management has been continued by the Sydney Harbour Federation Trust and the North Head Sanctuary Foundation. The Australian Wildlife Conservancy has also undertaken a “whole of headland”, quadrat-based vegetation survey as the first stage of its “Ecological Health” rolling program for its sites.

Fig 2. Nearmap© site images (top to bottom) pre-fire, immediate post-fire and 7-years post-fire. (Photos Nearmap)

Further results. The original results suggested that fire could be used advantageously to rejuvenate ESBS and produced superior results to thinning. While subsequent photographic monitoring shows distinct vegetation change (Figs 1 and 2), on-ground monitoring showed that by five years after the fire we could no longer say this with any optimism. In summary:

  • In the immediate fire aftermath, there was vigorous growth of many species
  • Over the ensuing 5 years, plants began to compete for space, with many dropping out
  • Species diversity was high following the fire but then dropped below pre-fire levels
  • Some plants (e.g. Lepidosperma and Persoonia spp.) came to dominate via vegetative spread
  • The reed, Chordifex dimorphus has almost disappeared
  • Tea-trees (Leptospermum spp.) are gradually making a comeback
  • Between 2015 and 2017, ESBS species numbers were outpaced by non-ESBS species, but held their own in terms of ground cover.

The total disappearance of Chordifex (formerly an abundant species on North Head and prominent in the landscape) from fully-burned quadrats was not something that we could have predicted. This species is not in the Fire Response database, although some Restio spp. are known to be killed by fire. This contributes greatly to the visual changes in the landscape. The great proliferation of Lance Leaf Geebung (Persoonia lanceolata) has also changed the landscape amenity (Fig 1, bottom).

To summarise, the 2012 burn has not yet restored ESBS, but has produced a species mix which may or may not recover to a more typical ESBS assemblage with ongoing management over time. Given that the area had not been burned for 60 years, it may be decades before complete restoration.

Our further studies on the use of clearing and thinning on North Head as an alternative to fire (“Asset Protection Zone Programme”), indicates that thinning and planting can produce a vegetation community acceptable for asset protection fire management and potentially nearly as rich as unmanaged post-fire communities (Fig 4). It is necessary to actively manage these sites by removing fire-prone species every two years. In addition, a trial has been started to test whether total trimming of all except protected species to nearly ground level in an APZ, is an option for longer-term management.

Fig 3. “Thinning Experiment” fenced quadrat #3 in July 2019. The quadrat was created in 2013 by removing Coastal Teatree (Leptospermum laevigatum) and Tree Broom Heath (Monotoca elliptica). The experimental design is a test of raking and seeding, with each treatment in the longer rows. All non-endangered species plants were trimmed to 0.25 metres height in mid-2017. (Photo Geoff Lambert)

Lessons learned and future directions. It is too early to say whether we can maintain and/or restore North Head’s ESBS with a single fire. Further fires may be required. A similar conclusion has been drawn by the Centennial Parklands Trust, with its small-scale fire experiments on the York Road site. We need new and better spot- and broad-scale surveys and further burns in other areas on North Head over a longer period. The spring 2019 survey, just completed, offers an opportunity to better assess the notion that fire is beneficial and necessary.

It will be necessary to monitor the effects of future fires on ESBS diversity closely and for much longer than five years. More active management of the post-fire vegetation may be needed, as we have previously discussed in the feature, and as happens at Golf Club sites (also see video) .

The 2012 burn was relatively “cool”. There is some evidence that “hot” burns (such as have been carried out by NSW Fire and Rescue at some Eastern Suburbs golf courses) may produce improved restoration of ESBS. The 2018 burn on North Head was planned as a “hot” burn. This was not completely achieved, but we may be able to compare “hot” and “cool” burn patches within it.

Fig 4. A 2017 UAV image of quadrat 23 five years after the 2012 burn. The image has been rotated to show the quadrat aligned on the UTM grid. The red square shows the rabbit-proof fences; the black square shows the survey quadrat and the blue squares show the four 1×1 metre vegetation plots. The resolution is approximately 5 mm. (Photo University of Sydney Centre for Field Robotics)

Stakeholders. Sydney Harbour Federation Trust, North Head Sanctuary Foundation. Australian Wildlife Conservancy, NSW National Parks and Wildlife Service, Fire & Rescue NSW.

Funding Bodies. Foundation for National Parks & Wildlife [Grant No. 11.47], Sydney Harbour Federation Trust, Australian Wildlife Conservancy.

Contact Information. Dr G.A.Lambert, Secretary, North Head Sanctuary Foundation, (P.O.Box 896, BALGOWLAH 2093, Tel: +61 02 9949 3521, +61 0437 854 025, Email: G.Lambert@iinet.net.au. Web: https://www.northheadsanctuaryfoundation.org.au/

Ku-ring-gai Flying-fox Reserve Habitat Restoration Project at Gordon, 2000 – 2019 UPDATE of EMR feature

Nancy Pallin

[Update to EMR feature –  Pallin, Nancy (2001) Ku-ring-gai Flying-fox Reserve Habitat restoration project, 15 years on.  Ecological Management & Restoration 1:1, 10-20. https://onlinelibrary.wiley.com/doi/10.1046/j.1442-8903.2000.00003.x]

Key words:         bush regeneration, community engagement, wallaby browsing, heat events, climate change

Figure 1. Habitat restoration areas at Ku-ring-gai Flying-fox Reserve within the urban area of Gordon, showing areas treated during the various phases of the project. Post-2000 works included follow up in all zones, the new acquisition area, the pile burn site, the ecological hot burn site and sites where vines have been targeted. (Map provided by Ku-ring-gai Council.)

Introduction. The aim of this habitat restoration project remains to provide self-perpetuating indigenous roosting habitat for Grey-headed Flying-fox (Pteropus poliocephalus) located at Ku-ring-gai Flying-fox Reserve in Gordon, NSW Australia (Fig 1).  The secondary aim was to retain the diversity of fauna and flora within the Flying-fox Reserve managed by Ku-ring-gai Council. Prior to works, weed vines and the activity of flying-foxes in the trees had damaged the canopy trees while dense weed beneath prevented germination and growth of replacement trees.  Without intervention the forest was unable to recover.  Natural regeneration was assisted by works carried out by Bushcare volunteers and Council’s contract bush regeneration team.  The work involved weed removal, pile burns and planting of additional canopy trees including Sydney Bluegum (Eucalyptus saligna), which was expected to cope better with the increased nutrients brought in by flying-foxes.

Figure 2. The changing extent of the Grey-headed Flying-fox camp from the start of the project, including updates since 2000. (Data provided by KBCS and Ku-ring-gai Council)

Significant changes have occurred for flying-foxes and in the Reserve in the last 20 years.

In 2001 Grey-headed Flying-fox was added to the threatened species lists, of both NSW and Commonwealth legislation, in the Vulnerable category.  Monthly monitoring of the number of flying-foxes occupying the Reserve  has continued monthly since 1994 and, along with mapping of the extent of the camp, is recorded on Ku-ring-gai Council’s Geographical Information System. Quarterly population estimates contribute to the National Monitoring Program to estimate the population of Grey-headed Flying-fox.  In terms of results of the monitoring, the trend in the fly-out counts at Gordon shows a slight decline.  Since the extreme weather event in 2010, more camps have formed in the Sydney basin in response to declining food resources.

In 2007, prompted by Ku-ring-gai Bat Conservation Society (KBCS), the size of the Reserve was increased by 4.3 ha by NSW Government acquisition and transfer to Council of privately owned bushland. The Voluntary Conservation Agreement that had previously established over the whole reserve in 1998 was then extended to cover the new area.   These conservation measures have avoided new development projecting into the valley.

From 2009 Grey-headed Flying-fox again shifted their camp northwards into a narrow gully between houses (Fig 2).  This led to human-wildlife conflict over noise and smell especially during the mating season. Council responded by updating the Reserve Management Plan to increase focus on the needs of adjoining residents.  Council removed and trimmed some trees which were very close to houses. In 2018 the NSW Government, through Local Governments, provided grants for home retrofitting such as double glazing, to help residents live more comfortably near flying-fox camps.

Heat stress has caused flying-fox deaths in the Reserve on five days since 2002. Deaths (358) recorded in 2013, almost all were juveniles of that year.  KBCS installed a weather station (Davis Instruments Vantage Pro Plus, connected through a Davis Vantage Connect 3G system) and data loggers to provide continuous recording of temperature and humidity within the camp and along Stoney Creek.  The station updates every 15 minutes and gives accurate information on conditions actually being experienced in the camp by the flying-foxes. The data is publicly available http://sydneybats.org.au/ku-ring-gai-flying-fox-reserve/weather-in-the-reserve/Following advice on the location and area of flying-fox roosting habitat and refuge areas on days of extremely high temperatures (Fig 3.) by specialist biologist Dr Peggy Eby, Council adopted the Ku-ring-gai Flying-fox Reserve 10 Year Management and Roosting Habitat Plan in 2018.  Restoration efforts are now focused on improving habitat along the lower valley slopes to encourage flying-foxes to move away from residential property and to increase their resilience to heat events which are predicted to increase with climate change.

Figure 3. Map showing the general distribution of flying-foxes during heat events, as well as the location of exclosures. (Map provided by Ku-ring-gai Council)

Further works undertaken.  By 2000 native ground covers and shrubs were replacing the weeds that had been removed by the regeneration teams and Bushcare volunteers.  However, from 2004, browsing by the Swamp Wallaby (Wallabia bicolor) was preventing growth of young trees and shrubs.  Bushcare volunteers, supported by KBCS and Council responded by building tree cages made from plastic-mesh and wooden stakes. Reinforcing-steel rods replaced wooden stakes in 2008.   From 2011, the Bushcare volunteers experimented with building wallaby exclosures, to allow patches of shrubs and groundcovers to recover between trees (Figs 3 and 4).  Nineteen wallaby exclosures have been built. These range in size from 7m2 to 225m2 with a total area of 846m2.   Wire fencing panels (Mallee Mesh Sapling Guard 1200 x 1500mm) replaced plastic mesh in 2018.  Silt fence is used on the lower 0.5m to prevent reptiles being trapped and horizontally to deter Brush Turkey (‎Alectura lathami) from digging under the fence.

The wallaby exclosures have also provided an opportunity to improve moisture retention at ground level to help protect the Grey-headed Flying-fox during heat events.  While weed is controlled in the exclosures south of Stoney Creek, those north of the creek retain Trad and privets, consistent with the 10 Year Management and Roosting Habitat Plan.

Madeira Vine (Anredera cordifolia) remained a threat to canopy trees along Stoney Creek for some years after 2000, despite early treatments.  The contract bush regen team employed sInce 2010 targeted 21 Madiera Vine incursions.

A very hot ecological burn was undertaken in 2017 by Council in order to stimulate germination of soil stored seed and regenerate the Plant Community Type (PCT) – Smooth-barked Apple-Turpentine-Blackbutt tall open forest on enriched sandstone slopes and gullies of the Sydney region (PCT 1841).  This area was subsequently fenced. The contract bush regeneration team was also employed for this work to maintain and monitor the regeneration in the eco-burn area (720 hours per year for both the fire and Madiera Vine combined).

Figure 4. Exclusion fence construction method. Pictured are Bushcare volunteers, Jill Green and Pierre Vignal. (Photo N Pallin).

Figure 5. Natural regeneration in 2018 in (unburnt) exclosure S-6 (including germination of Turpentines). (Photo N. Pallin)

Further results to date. The original canopy trees in Phase 1 and Phase 2 (1987 -1997) areas have recovered and canopy gaps are now mostly closed. Circumference at breast height measurements were taken for seven planted Sydney Blue gum trees.  These ranged from 710 to 1410mm with estimated canopy spread from 2 to 6m.  While original Turpentine (Syncarpia glomulifera) had circumferences from 1070 and 2350mm with canopy spread estimated between 5and 8m, those planted or naturally germinated now have circumference measurements between 420 and 980mm with canopy spread estimated from 1.5 to 3m.  A Red Ash (Alphitonia excelsa) which naturally germinated after initial clearing of weeds now has a circumference of 1250mm with a canopy spread of 5m.  Also three Pigeonberry Ash (Elaeocarpus kirtonii) have circumference from 265 to 405mm with small canopies of 1 to 2m as they are under the canopies of large, old Turpentines.  As predicted by Robin Buchanan in 1985 few Blackbutt (Eucalyptus pilularis) juveniles survived while the original large old trees have recovered and the Sydney Bluegum trees have thrived.

In the Phase 3 (1998 – 2000) area south of Stoney Creek the planted Sydney Blue Gum now have circumferences measuring between 368 and 743 (n7) with canopy spread between 2 and 6 m.  in this area the original large trees have girths between 1125 and 1770mm (n7) whereas trees which either germinated naturally or were planted now range from 130 to 678mm (n12).  These measurement samples show that it takes many decades for trees to reach their full size and be able to support a flying-fox camp.

Wallaby exclosures constructed since 2013 south of Stoney Creek contain both planted and regenerated species.  Eight tree species, 11 midstorey species, 27 understorey species and eight vines have naturally regenerated.  Turpentines grew slowly, reaching 1.5m in 4 years.  Blackbutts thrived initially but have since died. In exclosures north of the creek,  weeds including Large-leaved Privet,  Ligustrum lucidum,  Small-leaved privet,  L. sinense,  Lantana, Lantana camara,  and Trad, Tradescantia fluminensis) have been allow to persist and develop to maximise ground moisture levels for flying-foxes during heat events. Outside the exclosures, as wallabies have grazed and browsed natives, the forest has gradually lost its lower structural layers, a difference very evident in Fig 6.

Figure 6. Visible difference in density and height of ground cover north and south of Stoney creek. (Photo P. Vignal)

Coachwood (Ceratopetalum apetalum) were densely planted in a 3 x 15m exclosure under the canopies of mature Coachwood next to Stoney Creek in 2015. In 4 years they have reached 1.5m.  In this moist site native groundcovers are developing a dense, moist ground cover.

Madiera Vine, the highest-threat weed, is now largely confined to degraded edges of the reserve, where strategic consolidation is being implemented with a view to total eradication.

In the hot burn area, which was both fenced and weeded, recruitment has been outstanding. One 20 x 20m quadrat recorded 58 native species regenerating where previously 16 main weed species and only 6 native species were present above ground. A total of 20 saplings and 43 seedlings of canopy species including Eucalyptus spp., Turpentine and Coachwood were recorded in this quadrat where the treatment involved weed removal, burning and fencing  (S. Brown, Ku-ring-gai Council, July 2019, unpublished data).  Unfortunately, however, the timing and location of the burn did not take into account its impact on the flying-fox camp and there was some damage to existing canopy trees. It will be many years before the canopy trees, which are regenerating, will be strong enough to support flying-foxes.

Monitoring from the weather station and data loggers has shown that close to Stoney Creek on a hot day it is typically 2-3° C cooler, and 5-10% higher in humidity, than in the current camp area (pers. comm. Tim Pearson). During heat events the flying-foxes move to this cooler and moister zone, increasing their chances of survival.

Fauna observed other than flying-foxes includes a pair of Wedge-tail Eagle ( Aquila audax plus their juvenile, a nesting Grey Goshawk (Accipiter novaehollandiae) and a Pacific Baza (Aviceda subcristata).  Powerful Owl (Ninox strenua) individuals continue to use the valley. The presence of raptors and owls indicate that the ecosystem processes appear to be functional. Despite the decline of the shrub layer outside fenced areas, the same range of small bird species (as seen prior to 2000) are still seen including migrants such as Rufous Fantail ( Rhipidura rufifrons) which prefers dense, shady vegetation. The first sighting of a Noisy Pitta (Pitta versicolor) was in 2014.  Long-nosed Bandicoot (Perameles nasuta) individuals appear and disappear, while Swamp Wallaby remains plentiful.

Lessons learned and future directions. Climate change is an increasing threat to Pteropus species. On the advice of Dr Eby, Flying-fox Consultant, Council, KBCS and Bushcare Volunteers agreed to retain all vegetation including weeds such as Large-leaved Privet and Small-leaved Privet, patches of the shrub Ochna (Ochna serrulata) and Trad as a moist ground cover in the camp area and areas used by the flying-foxes during heat events.

Building cheap, lightweight fencing can be effective against wallaby impacts, provided it is regularly inspected and repaired after damage caused by falling branches. This style of fencing has the additional advantage of being removable and reusable.  It has been proposed that, to provide understory vegetation to fuel future burns in parts of the reserve away from the flying-fox camp, further such temporary fencing could be installed.

Ku-ring-gai Council has commenced a  program to install permanent monitoring points to annually record changes in the vegetation, consistent with the state-based  Biodiversity Assessment Method.

Stakeholders and Funding bodies. Members of KBCS make donations, volunteer for monthly flyout counts, Bushcare and present educational events with live flying-foxes. KBCS hosts the website www.sydneybats.org.au. Ku-ring-gai Council which is responsible for the Reserve has been active in improving management to benefit both residents and flying-foxes.  Ku-ring-gai Environmental Levy Grants to KBCS have contributed substantially to purchase of fencing materials and the weather station. http://www.kmc.nsw.gov.au/About_Ku-ring-gai/Land_and_surrounds/Local_wildlife/Native_species_profiles/Grey-headed_flying-fox

Thank you to Jacob Sife and Chelsea Hankin at Ku-ring-gai Council for preparing the maps and to volunteer Pierre Vignal for assistance with tree measurements, downloading data loggers and a photo.  Researcher,  Tim Pearson installed the weather station.

Contact information. Nancy Pallin, Management Committee member, Ku-ring-gai Bat Conservation Society Inc.  PO Box 607, Gordon 2072  Tel 61 418748109. Email:  pallinnancy@gmail.com

Monitoring the Wunambal Gaambera Healthy Country Plan, Kimberley, Western Australia – UPDATE of EMR feature

[Update to EMR feature: Moorcroft, Heather, Emma Ignjic, Stuart Cowell, John Goonack, Sylvester Mangolomara, Janet Oobagooma, Regina Karadada, Dianna Williams and Neil Waina (2012) Conservation planning in a cross‐cultural context: the Wunambal Gaambera Healthy Country Project in the Kimberley, Western Australia,  Ecological Management & Restoration, 13:1, 16-25. See https://doi.org/10.1111/j.1442-8903.2011.00629.xk]

Key words: conservation planning, participatory conservation, Indigenous people, Kimberley

Figure 1. Location map of Wunambal Gaambera land and sea country. (Source: WGAC)

Introduction. The development of the Wunambal Gaambera Healthy Country Plan (HCP) was a key enabler for Wunambal Gaambera people to look after country (Fig 1) and occurred at an important time when native title rights to country were being secured. The plan came about through a partnership between Wunambal Gaambera Aboriginal Corporation (WGAC) and Bush Heritage Australia (BHA), who brought the planning approach and supported WGAC to develop a plan that met the needs of Traditional Owners. This plan then became the basis of a long term partnership between the two organisations to support implementation.

Healthy Country Planning, a term coined by this project, adapted the Open Standards for the Practice of Conservation (http://cmp-openstandards.org/ ) to an Indigenous native title community context. The approach has subsequently flourished in Australia, adopted by a further 30 indigenous groups ( see doi: 10.1111/emr.12267).

The unique partnership model established between BHA and WGAC, underpinned by Healthy Country Planning, has also expanded (https://www.bushheritage.org.au/what-we-do/aboriginal-partnerships). The program supports indigenous partners to achieve their community and conservation aspirations articulated through Healthy Country Planning.

Figure 2. Terrick Bin Sali handling a northern quoll (Dasyurus hallucatus). (Photo WGAC)

Conservation planning with a difference. Our experience has been that the Open Standards can be successfully applied to an Indigenous context but some important adaptation is required. For example:

  1. People, culture and country are inseparable in Australian indigenous worldviews. As such, Healthy Country Planning is much wider in scope than mainstream conservation or natural resource management planning. The vision in the HCP typically sets long-term goals that include aspirations for looking after country and achieving health conditions for landscapes, seascapes, plants and animals, as well as for people and culture (Figs 2-4). These outcomes are collectively referred to as “Healthy Country”. An indigenous plan will always recognize and value people in the landscape rather than as separate. Traditional Owners, and/or their culture, become a conservation target alongside species and habitats with ‘key cultural attributes’ established alongside ‘key ecological attributes’. HCPs also have a greater degree of management strategies that relate to people and culture than would be found in mainstream management plans, and culture and Indigenous Knowledge is incorporated into land management activities that could be considered mainstream, such as the inclusion of cultural rules within visitor management.
  2. The Open Standards include approaches and tools for stakeholder participation that lend themselves well to Indigenous peoples, however given that Indigenous lands are communally-owned and governed by unique law and culture systems, participation requirements are higher and more complex. Traditional systems of governance are often recognized under State and Federal Law (such as the Native Title Act) requiring additional process steps. In developing the HCP, WGAC undertook a process of involving all Traditional Owner families in various stages of planning and the plan was authorized at a Traditional Owner meeting.
  3. A Healthy Country Plan typically applies to the whole traditional estate of a Traditional Owner group regardless of tenure, consistent with the concept of “Country-based Planning”. WGAC initially dedicated stage I of the Uunguu Indigenous Protected Area over several aboriginal reserves in 2010, and later added exclusive possession lands following native title determination. The marine environment will also be added to the IPA once agreement is reached with State and Commonwealth Governments, as articulated in the Uunguu Wundaagu Plan.

Figure 3. Traditional Owners undertaking a ‘junba’ traditional dance workshop. (Photo: WGAC)

Monitoring & evaluation since 2012. Aspects of the monitoring and evaluation framework established by WGAC include the establishment of the Uunguu Monitoring & Evaluation Committee (UMEC) and the completion of mid-term evaluation of the HCP (see 2017 review doi:10.1111/emr.12257). The UMEC is composed of Traditional Owners and external experts who undertake key Healthy Country Planning steps and functions. A significant investment of time and money was required to support annual or biennial meetings “on country” (ie. on Wunambal Gaambera lands), however the review showed that the investment has proven worthwhile because WGAC has been able to implement the plan to a high degree.

In 2015 a major mid-term evaluation was undertaken to assess the progress of the HCP. It utilized some standard evaluation tools examining Open Standards process. It also incorporated some new approaches to include the views of the wider Traditional Owner community in the evaluation of the plan to ensure the plan was meeting their needs and following effective process with regard to governance and participation. The review made a number of observations as follows.

  1. Considerable progress had been made in the implementation of fire management strategies in the HCP to the point that the health condition of the “Right Way Fire” target was changed from ‘fair’ to ‘good’. Unmanaged wildfires have significantly reduced in size as a result of increased capabilities of the Uunguu Rangers to undertake burning. At the same time “right way” cultural principles have been incorporated into operations to ensure that Traditional Owner families are making decisions about burning and undertaking fire operations on their family areas.
  2. Significant progress has been made against a visitor management strategy. One of the key concerns of elders when developing the plan was unregulated visitation to important cultural sites by the expedition cruise industry and independent travelers. The Uunguu Visitor Pass, launched in 2017, requires visitors to obtain a permit to access authorized visitor locations as well as generating funds for looking after country. Over 90% of commercial tour operators have now registered for the UVP, with a similar independent traveler compliance, generating funds to support Traditional Owner participation in visitor management and delivering tour products.
  3. Progress was not made, however, in the health of cultural targets in the plan. As a result, the 2015 review recommended further investment and effort in culture strategies. Two important books have been completed to document elders’ knowledge of biodiversity and cultural places. There has been an increase in cultural activities including language and corroboree dance workshops and annual culture camps for school children. Law and culture dictates that visitors to country (indigenous or non-indigenous) need to be accompanied by the right local Traditional Owners when undertaking activities on country. In this way Healthy Country work supports large numbers of Traditional Owners to visit country and guide participation in the implementation of the plan. A number of actions have been undertaken to support Traditional Owners to live on country and remote ranger infrastructure has been developed.

Figure 4. Uunguu Rangers during a cultural fire walk. (Photo WGAC)

Future Directions. The first 8 years of the HCP implementation has focused on building WGAC’s land and sea management capacity and resources, with funding from WGAC,  the Australian Governments Indigenous Protected Area and Indigenous Ranger Programs and from Bush Heritage Australia. Traditional Owners currently hold certificate level roles of rangers, tourism workers and construction workers but further work is now needed to support Traditional Owners to take on roles that require higher levels of training. There is also a need to support the development of a wider range of livelihoods to support Traditional Owners to live and/or work on country.

Contact information. Wunambal Gaambera Aboriginal Corporation, PMB 16 Kalumburu via Wyndham WA 6740, Australia.

Email: info@wunambalgaambera.org.au

Web: www.wunambalgaambera.org.au

Facebook: https://www.facebook.com/uunguulife/

 

 

 

 

 

 

Restoration and conservation in an iconic National Park – UPDATE of EMR feature

David Lindenmayer, Chris MacGregor, Natasha Robinson, Claire Foster, and Nick Dexter

[Update of EMR feature – David B. Lindenmayer, Christopher MacGregor, Nick Dexter, Martin Fortescue and Peter Cochrane (2013)  Booderee National Park Management: Connecting science and management.  Ecological Management & Restoration, 14:1, 2-10. https://onlinelibrary.wiley.com/doi/10.1111/emr.12027]

Keywords: Invasive animal and plant control, reintroduction, monitoring

Introduction. Booderee National Park is an iconic, species-rich, coastal reserve that supports a range of threatened and endangered native animals and plants. Several key management actions have been implemented to promote the conservation of biodiversity in Booderee National Park. These include the control of an exotic predator (the Red Fox Vulpes vulpes), the control of highly invasive Bitou Bush (Chrysanthemoides monilifera subsp. rotundata), the management of fire, and the reintroduction of previously extinct native mammals. A key part of work at Booderee National Park has been a long-term monitoring program that commenced in late 2002 and which has aimed to quantify the effectiveness of major management interventions, including the four listed above. The monitoring program has documented the long-term trajectories of populations of birds, arboreal marsupials, terrestrial mammals, reptiles, frogs and native plants in a range of major vegetation types (from heathland and sedgeland to woodland, forest and rainforest) and in response to fire, and weed and feral predator control. Importantly, the monitoring program has provided a foundational platform from which a suite of post-graduate studies and other research programs have been completed.

Further works undertaken. A key part of the researcher-manager partnership has been to analyse the long-term trajectories of populations of mammals, birds and reptiles in Booderee National Park. The monitoring data indicate that many species of mammals are declining, with some having become recently locally extinct (e.g. Greater Glider Petauroides volans) or close to extinction in the reserve (e.g. Common Ringtail Possum Pseudocheirus peregrinus) . This is despite populations of these species persisting in nearby reserves.  Robust interrogation of the multi-taxa monitoring data has been unable to identify reasons for these declines. Interestingly, the declines observed for mammals have not been observed to date in other vertebrate groups, including birds, reptiles and amphibians. An experimentally-based reintroduction program for the Greater Glider aims to not only re-establish populations of the species in Booderee National Park, but also to identify the reasons for the original decline. That program will be in addition to reintroduction programs already underway for other mammal species, the Long-nosed Potoroo (Potorous tridactylus), the Southern Brown Bandicoot (Isoodon obesulus) and Eastern Quoll (Dasyurus vivverinus) that used to inhabit Booderee National Park but which went extinct many decades earlier.

Additional research being undertaken in Booderee National Park has included: (1) studies of the effectiveness of control efforts for Bitou Bush and associated recovery of native vegetation and native fauna, (2) the interactive effects of fire and browsing on native plants and an array of animal groups, and (3) studies of leaf litter and other fuel dynamics in relation to previous fire history and macropod browsing.

Figure 1. Key area of Booderee National Park showing an area of coastal forest before and after Bitou Bush treatment.

Further results to date. Research and monitoring in the past six years have resulted in many new insights including some of considerable value for informing restoration programs. A small subset of these findings is outlined below.

  • Conventional approaches to the control of invasive Bitou Bush entail spraying ultra-low volume herbicide (Fig. 1), followed by burning of the “cured” dead material, and then respraying of the seedlings that germinate after fire. This spray-burn-spray protocol is both the most ecologically effective and the most cost-effective way of controlling Bitou Bush and, at the same time, facilitates the recovery of native vegetation. More recent analysis has revealed spray frequency as the most important determinant of long-term control. There are mixed effects of control methods on native species; plant species abundance was positively related to Bitou Bush control, while native bird abundance (except for Eastern Bristlebird Dasyornis brachypterus, Fig 2.) and mammal abundance were weakly negatively associated with Bitou control.
  • There can be strong interactions between the occurrence of fire and browsing by macropods on native plants as well as particular groups of animals such as spiders.
  • Reintroduction programs for the Southern Brown Bandicoot and Eastern Quoll have been relatively successful, although the latter species suffers high rates of mortality, particularly as a result of fox predation and collisions with motor vehicles. Nevertheless, populations of both species have survived over multiple years and reproduced successfully.

Figure 2. The Eastern Bristlebird, a species for which Booderee National Park is a stronghold. Notably, the species responds positively to management interventions to control Bitou Bush. (Photo Graeme Chapman)

Lessons learned and future directions. The work at Booderee National Park is a truly collaborative partnership between reserve managers, a university and the local Indigenous community.  A key part of the enduring, long-term success of the project has been that a full-time employee of The Australian National University has been stationed permanently in the Parks Australia office in the Jervis Bay Territory. That person (CM) works on an almost daily basis within Booderee National Park and this provides an ideal way to facilitate communication of new research and monitoring results to managers. It also enables emerging management concerns to be included as part of adaptive monitoring practices.

One of the key lessons learned from the long-term work has been the extent of ecological “surprises” – that is, highly unexpected results, including those which continue to remain unexplained. An example is the rapid loss of the Greater Glider and the major decline in populations of the Common Ringtail Possum. One of the clear benefits of this integrated monitoring-management team has been the rapid response to emerging threats. For example in response to high rates of mortality of reintroduced Eastern Quolls, control of the Red Fox was intensified within the park and greater cross-tenure control efforts with neighbouring private and public land managers have commenced. Regular evaluation of monitoring data and management actions has also enabled careful examination of the kinds of risks that can compromise reintroduction programs. These and other learnings will inform other, future reintroduction and translocation programs that are planned for Booderee National Park such as that for the Greater Glider.

Stakeholders and funding bodies. Ongoing work has been supported by many funding bodies and partners. These include the Wreck Bay Aboriginal Community who are the Traditional Owners of Booderee National Park as well as Parks Australia who co-manage the park with the Wreck Bay Aboriginal Community. Other key funders include the Department of Defence, the Thomas Foundation, The National Environmental Science Program (Threatened Species Recovery Hub), the Australian Research Council, the Margaret Middleton Foundation, and the Norman Wettenhall Foundation. Partnerships with Rewilding Australia, Taronga Conservation Society, WWF Australia, NSW Forestry Corporation and various wildlife sanctuaries have been instrumental to reintroduction programs.

Contact information. David Lindenmayer, Chris MacGregor, Natasha Robinson and Claire Foster are with the National Environmental Science Program (Threatened Species Recovery Hub), Fenner School of Environment and Society, The Australian National University (Canberra, ACT, 2601, david.lindenmayer@anu.edu.au). Nick Dexter is with Parks Australia, Jervis Bay Territory, Australia, 2540.

Recovery of indigenous plants and animals in revegetated areas at ‘The Waterways’, Victoria.

Photo 1.  Aerial view of Waterways from the west

By Damien Cook

 Introduction. Waterways is a 48-hectare restoration project located on Mordialloc Creek in Melbourne’s south- eastern suburbs which combines a housing estate with large areas of restored habitat set aside for indigenous fauna and flora in open space, lakes and other wetlands (see Photo 1).

Prior to restoration the land at Waterways was a property used for grazing horses and supported pasture dominated by exotic species such as Reed Fescue (*Festuca arundinacea) and Toowoomba Canary Grass (*Phalaris aquatica). (Note that an Asterix preceding a scientific name denotes that the species is not indigenous to the local area).

The habitats which are being restored at “The Waterways” reflect those that originally occurred in the Carrum Carrum Swamp, a vast wetland complex which, prior to being extensively drained in the 1870s, stretched from Mordialloc to Kananook and as far inland as Keysborough.

Local reference ecosystems were selected to act as a benchmark for what was to be achieved in each restored habitat in terms of species diversity and cover. Habitat Hectare assessments have been used to monitor the quality of restored vegetation (see Appendix 1).

A total of nine Ecological Vegetation Classes (EVCs, the standard unit of vegetation mapping in Victoria) are being re-established across the site across the following habitats

  • Open water, Submerged Aquatic Herbfields and Exposed Mudflats
  • Densely vegetated marshes
  • Swamp Paperbark Shrubland
  • Tussock Grassland
  • Plains Grassy Woodland

Photo 2. This sequence of photographs, taken over a nine-month period at the Waterways, shows vegetation establishment in a constructed wetland from newly constructed and bare of native species on the left to well vegetated with a high cover of indigenous plants and minimal weeds on the right.

Works undertaken. Restoration of the site commenced in October 2000. Extensive weed control and earthworks were carried out prior to the commencement of revegetation works, which involved planting, by 2003, over 2 million local provenance, indigenous plants.  Grassland species were planted out of hikos at a density of 5 to 6 per square meter into areas that had been treated with both knock-down and pre-emergent herbicide. Ongoing management of the site has included ecological burning and follow up weed control. When started the Waterways was the largest and most complex ecological restoration project ever undertaken in Victoria.

Results

Plants

Open water, Submerged Aquatic Herbfields and Exposed Mudflats.  Deep, open water areas cover an area of about 30 hectares of the site. Vegetation growing in this habitat includes submerged herb-fields of Pondweeds (Potamogeton species), Eel Grass (Vallisneria australis) and Stoneworts (Chara and Nitella species), which were planted over summer 2000/01.

Densely vegetated marshes. This habitat occupies about 10 hectares of the site, occurring where water is less than 1.5 meters deep around the fringes of the lakes and as broad bands across the wetlands. Swards of large sedges including Tall Spike-rush (Eleocharis sphacelata), Jointed Twig-sedge (Baumea articulata), Leafy Twig-sedge (Cladium procerum) and River Club-rush (Schoenoplectus tabernaemontani); aquatic herb-fields of Water Ribbons (Cycnogeton procerum), Upright Water-milfoil (Myriophyllum crispatum) and Running Marsh-flower (Ornduffia reniformis); as well as meadows supporting rushes, sedges and amphibious herbs. Localized areas with high salinity (4000 to 12 000 ppm) have been planted with a halophytic (salt tolerant) community including Sea Rush (Juncus krausii), Australian Salt-grass (Distichlis distichophylla), and Shiny Swamp-mat (Selliera radicans). Planting began in the marshes at the Waterways in October 2000 and vegetation established very rapidly in most areas (see Photo 2). This vegetation type provides habitat for the locally vulnerable Woolly Water-lily (Philydrum lanuginosum).

Swamp Paperbark Shrubland covers about 8 hectares, consisting of a 1ha remnant and additional areas that were planted in spring/summer 2001. As this shrubland habitat matures it is forming a dense canopy of species including Swamp Paperbark (Melaleuca ericifolia), Prickly Moses (Acacia verticillata subsp. verticillata), Manuka (Leptospermum scoparium), Woolly Tea-tree (Leptospermum lanigerum), Tree Everlasting (Ozothamnus ferrugineus) and Golden Spray (Viminerea juncea).

Photo 3. Rare plant species that have been established in restored native grasslands at “Waterways” include Grey Billy-buttons (Craspedia canens), Matted Flax-lily (Dianella amoena) and Pale Swamp Everlasting (Coronidium gunnianum).

Tussock Grassland covers about four hectares at the Waterways between two major wetland areas. About a third of this habitat was planted in spring 2001, with the remainder in spring 2002. The dominant plants of this habitat are tussock-forming grasses including wallaby grasses (Rytidosperma species), Kangaroo Grass (Themeda triandra) and Common Tussock Grass (Poa labillardierei var. labillardierei). A diverse array of native wildflowers occurs amongst these grasses. Rare plant species that have been established in this habitat zone include Grey Billy-buttons (Craspedia canens), Matted Flax-lily (Dianella amoena) and Pale Swamp Everlasting (Coronidium gunnianum, see Photo 3).

Plains Grassy Woodland This habitat type occurs in mosaic with Tussock grassland and differs in that it supportsscattered trees and clumps of shrubs. River Red Gum (Eucalyptus camaldulensis subsp. camaldulensis) and Swamp Gum (Eucalyptus ovata var. ovata) have been planted so that they will eventually form an open woodland structure. Other tree and tall shrub species planted in this habitat include Drooping Sheoak (Allocasuarina verticillata), Blackwood (Acacia melanoxylon) and the tree form of Silver Banksia (Banksia marginata), which is now very uncommon in the local area.

Seasonal Wetlands Small seasonal wetlands occur within Tussock Grassland (see Photo 4). Rare plant species that have been established in this habitat zone include Swamp Billy-buttons (Craspedia paludicola), Woolly Water-lily (Philydrum lanuginosum), Grey Spike-rush (Eleocharis macbarronii), Giant River Buttercup (Ranunculus amplus) and the nationally endangered Swamp Everlasting (Xerochrysum palustre).


Photo 4. Seasonal rain-filled wetland at Waterways

 Animals.

The Waterways is home to 19 rare and threatened fauna species including the nationally endangered Australasian Bittern (Botaurus poiciloptilus), Glossy Grass Skink (Pseudemoia rawlinsoni) and Magpie Goose (Anseranas semipalmata). The successful establishment of diverse vegetation has so far attracted 102 species of native birds, and the wetlands on the site are home to seven species of frogs.

Open water areas support large populations of Black Swans (Cygnus atratus), Ducks (Anas species), Eurasian Coots (Fulica atra), Cormorants (Phalacrocorax and Microcarbo species), Australian Pelicans (Pelecanus conspicillatus) and Australasian Darters (Anhinga novaehollandiae) that either feed on fish and invertebrates or the foliage and fruits of water plants.  As water levels recede over summer areas of mudflat are exposed. These flats provide ideal resting areas for water birds as well as feeding habitat for migratory wading birds including the Sharp-tailed Sandpiper (Calidris acuminata), Red-necked Stint (Calidris ruficollis) and Common Greenshank (Tringa nebularia) that fly from their breeding grounds as far away as Alaska and Siberia to spend the summer in Australia and are protected under special treaties between the Governments of countries through which they travel.

Photo 5. Magpie Geese (Anseranas semipalmata) at Waterways

In 2007 a small group of Magpie Geese (Anseranas semipalmata) became regular visitors to The Waterways (see Photo 5). This species was once extremely abundant in the Carrum Carrum Swamp. However, it was driven to extinction in southern Australia in the early 1900s by hunting and habitat destruction. The Magpie Goose seems to be making a recovery in Victoria, with numbers building up from birds captured in the Northern Territory and released in South Australia that are spreading across to areas where the species formerly occurred.

Seasonal wetlands are important breeding areas for frogs including the Banjo Frog (Limnodynastes dumerilii), Striped Marsh Frog (Limnodynastes peroni) and Spotted Grass Frog (Limnodynastes tasmaniensis) and a range of invertebrates that do not occur in the larger, more permanent storm water treatment wetlands such as Shield Shrimp (Lepidurus apus viridus). Birds which utilize these wetlands for feeding include the White-faced Heron (Egretta novaehollandiae) and Latham’s Snipe (Gallinago hardwickii).

Restored grassland provides an ideal hunting ground for several birds of prey, including the Brown Falcon (Falco berigora), Black-shouldered Kite (Elanus axillaris) and Australian Kestrel (Falco cenchroides). It also provides cover and feeding habitat for insect and seed-eating birds such as the Brown Quail (Coturnix ypsilophora). A flock of about 20 Blue-winged Parrots (Neophema chrysostoma) have been regularly seen in this habitat. These parrots are usually quite uncommon in the Melbourne area. Moist grasslands beside the wetland have been colonised by the vulnerable Glossy Grass Skink (Pseudemoia rawlinsoni) (see Photo 6).

Densely vegetated marshes provide habitat for a diversity of small, secretive birds such as Ballion’s Crake (Porzana pusilla), Little Grassbird (Megalurus gramineus) and Australian Reed Warbler (Acrocephalus australis), which find suitable refuges in the cover provided by dense vegetation. Dense thickets of Swamp Paperbark shrublands provide cover and feeding habitat for Ring-tail Possums (Pseudocheris peregrinus) and bushland birds such the Eastern Yellow Robin (Eopsaltria australis), thornbills (Acanthiza species), Superb Fairy-wren (Malurus cyaneus) and Grey Fantail (Rhipidura albiscapa). As the grassy woodlands mature they are providing structural habitat diversity and accommodating woodland birds such as cuckoos (Cacomantis and Chalcites species) and pardalotes (Pardalotus species).

It will take many years for the River Red Gums to reach a majestic size and stature, and to provide tree hollows which are essential for many species of native fauna. A limited number of tree hollows are provided in the dead trees (stags) that were placed in the Waterways wetlands.

Photo 6. The vulnerable Glossy Grass Skink (Pseudemoia rawlinsoni) at Waterways

The Future. The habitats that have been created at the Waterways are about 18 years old, yet they have already attracted a vast array of native fauna. Waterways is now home to 14 rare and threatened plant species and 19 threatened animal species. There is incredible potential for the area to provide vitally important habitat for an even greater diversity of rare plants and animals as these habitats mature.

If the area is to reach its full potential careful management of weeds and pest animals is required. Ongoing monitoring of flora and fauna is also necessary. These are both areas in which the local community is becoming involved.

Acknowledgements. The high standard of restoration achieved on the Waterways project was due to the project being appropriately funded and because it was managed by ecologists experienced in planning and implementing ecological restoration.  The project was partly funded by Melbourne Water, who are now the managers of the site, and partly by a developer, the Haines Family.  This unique relationship and the generosity and willingness to try something innovative by the developer were important factors in the success of the project.

Contact: Damien Cook (rakali2@outlook.com.au)

Appendix 1. Habitat Hectare results for four quadrats at Waterways, 2006

Stewartdale Nature Refuge koala habitat restoration in South Ripley, south east Queensland

Key Words: reconstruction, assisted regeneration, planning, koalas, conservation

Introduction: The Stewartdale Nature Refuge is located in South Ripley, south east Queensland on private land owned by the Sporting Shooters Association of Australia (SSAA). The 969 ha block contains live shooting ranges, large open areas dominated by pasture grasses, a substantial lagoon frequented by many bird species and extensive natural areas. The area being restored is 211 ha of dry sclerophyll vegetation, containing a number of Regional Ecosystems (REs) being restored through large scale planting (reconstruction) and assisted regeneration approaches. Its conservation value is heightened by the fact that it connects to the Karawatha Flinders Corridor, the largest remaining stretch of open eucalypt forest in south-east Queensland.

Condition ranges from large degraded areas (i.e. pasture) to native vegetation that contains both regrowth and remnant dry sclerophyll. All areas were impacted by varying levels of weed infestation due to previous clearing and ongoing disturbance from cattle grazing. Natural disturbances such as regular fire and periodic floods have also contributed to disturbance at the site. More than 30 weed species impact the project area at varying levels and the species and impacts vary with the condition of the land. Open areas were dominated by pasture grass such as Setaria (Setaria sphacelata) and Rhodes grass (Chloris gayana) in addition to fast growing annuals, although infestations of Leucaena (Leucaena leucocephala), Prickly Pear (Opuntia stricta) and large clumping Bamboo (Bambusa sp.) also required significant control efforts. In more forested areas (and underneath isolated remnant trees) weed species included Lantana (Lantana camara), Creeping Lantana (Lantana montevidensis), Corky Passionfruit (Passiflora suberosa), Easter Cassia (Senna pendula var. glabrata), Siratro (Macroptilium atropurpureum) and exotic grasses, annuals and groundcovers.

The aim of the project is to restore, native plant communities present within the Stewartdale project site to support local koala populations. Our goals are to:

  • Repair native vegetation including the structure, integrity and diversity to support koala populations
  • Strengthen the resilience and regenerative capacity of native vegetation
  • Restore and expand native regrowth vegetation by controlling weeds
  • Maintain the project site so weeds do not negatively impact the development and recovery of native vegetation
  • Protect drainage lines, gullies and slopes from erosion
  • Protect and enhance the water quality of Bundamba Lagoon
  • Construct fauna friendly fencing across the site with the aim of protecting planted trees from herbivory
  • Reduce the risk of fire moving through the site and impacting restoration works by conducting strategic slashing activities to reduce fuel loads.

Planning. A restoration plan was developed after detailed site assessments and negotiations with the landholder, land manager and state government were finalised integrating Nature Refuge conditions and current land use and future management requirements. The site was divided into zones and sub-zones to assist directing works including applying a range of restoration approaches – i.e. assisted regeneration and reconstruction (‘revegetation’) and several planting models and species mosaics to different parts of the site. Detailed maps were produced for each zone and included information such as the location of all tracks, fences, assisted regeneration zones, wildlife corridors, planting areas according to each RE and numbers of species and plants to be installed per zone. The plan also included detailed information on restoration approaches; weed control at all stages of the project; seed collection and propagation; site preparation including the specifications and location of all fencing, tracks, rip lines and areas of concern (i.e. identified hazards across the site); how to carry out all works in each zone; site maintenance requirements for 5-7 years; and monitoring requirements.

PP2b after site preparation.JPG

Fig 2. Preparation for planting  at Stewartdale Nature Refuge.

PP2b after planting Mar 2016

Fig 2. After planting to support local Koala population, Mar 2016.

Works to date. Site preparation commenced with the collection of seed from on and around the wider property and surrounds ensuring that all species to be planted were collected from a minimum of 10 widely spaced parent trees. Primary weed control started with the control of weeds in the 65 ha of assisted regeneration zones and the control of other woody weeds across reconstruction areas in preparation for slashing and other activities. More than 18 km of fauna friendly fencing (i.e. no barbed wire) was installed to protect planted stock from browsing by large herds of macropods and cows. Two large corridors were retained for fauna to reach Bundamba lagoon from different parts of the regional corridor as it is an important resource for many local and migratory fauna. Slashing across open areas was commenced and followed by the installation of rip lines to alleviate soil compaction and assist efficient planting activities. Weeds and pasture grasses were then sprayed out along all rip lines. 114 000 koala food and shelter trees were planted according to the RE for each section and according to the local conditions (i.e. whether it was low lying, on a ridge or near infrastructure). Some additional frost resistant and local Acacia species were also added to particularly frost prone areas to assist the development of a canopy and the protection of developing vegetation.

The 114 000 tubestock were installed over a 7 week period with the last stems being planted in April 2015. All trees were fertilised and watered at the time of planting and where possible, slashed grass spread across the rip lines to assist retaining moisture and slowing weed regrowth. (Follow-up watering was applied to all planted stock between September and October 2015) Nearly 2000 (1 m high) tree mesh guards were installed to protect planted stock in fauna corridors.

Series shot 1.1

Careful spot spraying to reduce weed while protecting natives

Series Shot 1.2

Growth of saplings is improved without competition.

Results to date. As of March 2016, weeds have been significantly reduced across the 65 ha of assisted regeneration areas. Unfortunately a wildfire fire went through approx. a third of the project area after primary and follow up weed control works had been completed. Fortunately the event was prior to planting though the fire did reduce the number of trees regenerating in assisted regeneration patches as many were too young to withstand the fire. New germinations are however occurring and the level of native grasses, groundcovers and other native species have increased due to ongoing weed control efforts.

Despite heavy frosts in winter 2015, a flood event in May 2015 (150 mm of rain fell in 1.5 hours) and now an extended dry period, the planting is developing well with the average height of trees at over a metre tall and mortality under 5%. Weed control is continuing across the project site with efforts currently concentrating on the control of many annual weeds such as Cobbler’s Peg (Bidens pilosa), Balloon Cotton (Gomphocarpus physocarpus) and Stinking Roger (Tagetes minuta) and many exotic grasses such as Setaria (Setaria sphacelata) and Rhodes grass (Chloris gayana) to reduce competition to planted stock. Assisted regeneration areas are being joined up to planting zones wherever possible to further assist the development of the site.

It should also be noted that Birds Australia have recorded 69 bird species on site.

Ongoing works: Regular maintenance continues on the site with the control of weeds particularly along rip lines where weed germination and growth is rapid. Slashing is also regularly done between the rip lines and along tracks and fence lines to assist access around the site and the management of fuel loads and therefore wildfire across the site. It is expected that the time it takes to complete each maintenance rotation will begin to reduce as plants become more established and start to develop a canopy.

Weed control will also continue in all assisted regeneration zones and is also expected to reduce with the development of native vegetation structure and diversity together with the reduction of the weed seed bank. Ongoing slashing, fence maintenance and monitoring will continue for another 3-5 years though the exact time period will be determined by the State government.

Monitoring including soil moisture readings, transects to assist determining survival rates across the site and photographic monitoring is regular and further supports 6 monthly reporting requirements.

Stakeholders and funding bodies: Department of Environment, Heritage and Protection, Queensland State Government; Sporting Shooters Association of Australia (SSAA). Photos: Ecosure.

Contact Information: Jen Ford (Principal Restoration Ecologist, Ecosure TEl: +61 (0)7  3606 1038.

 

Fire as a tool in maintaining diversity and influencing vegetation structure – Grassy Groundcover Restoration Project

Paul Gibson-Roy

Greening Australia’s Grassy Groundcover Restoration Project commenced in 2004 to investigate the feasibility of restoration of grasslands and grassy woodlands (primarily by direct seeding) in the agricultural footprint of Australia. To date the project has achieved the reconstruction of grassy understories in grassland or grassy woodland on near to 100 sites in ex-agricultural land (predominantly across Victoria, but increasingly in southern to central New South Wales and mid-lands Tasmania). Post establishment we use fire in our sites to reduce biomass, particularly to inhibit grass growth which over time become the dominant life form, just like trees can in other communities. Opening the grass canopy allows for the small forbs and sub-dominant grasses to regenerate. Burning in particular can help create these canopy gaps and in a cost-effective way.

Fig 1. Snake Gully CFA burn at Chepstowe.

Fig 1. Snake Gully CFA burn at Chepstowe.

Fig 2. Restored herb-rich grassland on roadside near Wickliffe.

Fig 2. Restored herb-rich grassland on roadside near Wickliffe.

Fig 3. Differential management of Kangaroo Grass at Rokewood Cemetery.

Fig 3. Differential management of Kangaroo Grass at Rokewood Cemetery.

Operational challenges can and often do arise considering sites are located within urban or agricultural footprints where protection of life and property is paramount. This at times prompts us to consider alternative methods of biomass removal such as through grazing (sometimes used as a method for annual weed control) and mowing when burning is deemed inappropriate. These alternative or complimentary biomass reduction methods can also have additional benefits. For example, mowing and producing bales of cut straw, if cut in early spring or autumn, can be used for fodder. This is also the case with grazing. Alternatively, if sites are cut and baled in late spring or summer when grasses contain ripe seed, the hay can be moved and spread at other locations to create a grassland elsewhere.

While the project has carried out various combinations of these approaches at our restored grasslands in recent years, the following list includes a few examples of their use.

  1. Burning at Chepstowe (located to the west of Ballarat, Victoria) to reduce grass biomass and allow forbs to establish and persist. The burn is being conducted by Snake Gully CFA members (Figure 1).
  2. The nationally threatened species – Hoary Sunray (Leucochrysum albicans tricolor) and Button Wrinklewort (Rutidosis leptorrynchoides) were introduced by direct seeding along with many other ground layer species onto a roadside near Wickliffe, Victoria. Following establishment the grassland has been managed with fire by the Wickliffe CFA so that grasses do not dominate and the rare species can recruit and spread. (Figure 2.)
  3. Kangaroo Grass (Themeda triandra) growth has been the focus of differing management techniques within the Rokewood cemetery reserve Victoria (under the Cemetery Trusts grassland management plan). This remnant grassland contains the largest Victorian population of the nationally threatened Button Wrinklewort. To avoid the Kangaroo grass dominating the herb rich areas, it is maintained by fire, whereas in the approaches to the burial area it is kept mown low for function and protection of the memorial infrastructure. (Figure 3).
  4. Similar opening of a restored grassy canopy is achieved at Chatsworth in south western Victoria where a grassland currently dominated by Wallaby Grass (Rytidosperma setaceum) was mown and baled (Figures 4 and 5). This material was used to as fodder by the landholder.
  5. A late autumn burning of herb-rich restored grassland at Hamilton, Victoria, undertaken by the Buckley Swamp CFA (Figure 6).
  6. The aforementioned site at Hamilton taken in the following spring. It shows visitors touring the restoration where Common Everlasting (Chrysocephalum apiculatum) and many other sub-dominant forb species are in full bloom (Figure 7).
  7. Diverse restored grassland located adjacent to a wheat crop at Point Henry, near Geelong, Victoria. This site 16 ha site has been maintained over time by combinations of burning and cutting and baling (Figure 8).
Fig 4. Wallaby grass dominated grassland at Chatsworth pre-baling.

Fig 4. Wallaby grass dominated grassland at Chatsworth pre-baling.

Fig 5. Wallaby grass dominated grassland at Chatsworth post-baling.

Fig 5. Wallaby grass dominated grassland at Chatsworth post-baling.

Fig 6. Buckley Swamp CFA conducting a late autumn burn of restored herb-rich grassland near Hamilton.

Fig 6. Buckley Swamp CFA conducting a late autumn burn of restored herb-rich grassland near Hamilton.

Deciding which method or combination of biomass removal techniques to use, and at what time can be complex and there is no textbook. Good management is about constantly assessing the landscape and prevailing conditions to identify prompts for action. It is also about having the right networks and technical capacity available when required. As a general rule we find that when a site has greater than 70% vegetation cover of the ground surface and dry material is being held above 150 mm, there is enough combustible material to carry a flame. This condition also indicates that that the gaps in the vegetation are starting to close up.

Contact: (Dr) Paul Gibson-Roy. Lead Scientist, Greening Australia.Tel: +61 437591097. Email: PGibson-Roy@greeningaustralia.org.au

[This project summary is a precis of a talk presented to the Nature Conservation Council of NSW’s 10th Biennial Bushfire Conference, ‘Fire and Restoration: Working with Fire for Healthy Lands’ 26-27 May 2015. For full paper see: http://www.nature.org.au/healthy-ecosystems/bushfire-program/conferences/%5D

 Fig 7. Spring and wild flowers are in bloom at Hamilton.


Fig 7. Spring and wild flowers are in bloom at Hamilton.

Fig 8. Species and functionally diverse restored grassland adjoining a wheat crop near Geelong.

Fig 8. Species and functionally diverse restored grassland adjoining a wheat crop near Geelong.

Managing fire for nature conservation in subtropical woodlands

Emma Burgess, Murray Haseler and Martine Maron

Introduction. A study investigating the response of bird assemblages to mosaic burning is being conducted on 60,000 hectares private nature reserve in the Brigalow Belt bioregion of Queensland (Fig 1). The Brigalow Belt has recently experienced high rates of native vegetation clearing, motivating Bush Heritage Australia (BHA) to purchase and protect the property in 2001. The subsequent removal of cattle and horses from Carnarvon Station Reserve has increased grass and herb biomass. The seasonal surge in productivity the property now experiences however, increases the potential for more intense, frequent and extensive fires in hot, dry conditions. The risk of such wildfires needs to be managed, and a common approach to such management is prescribed burning. But how to ensure nature conservation objectives are still met?

Fig 1. Locality map of Carnarvon Station Reserve

Fig 1. Locality map of Carnarvon Station Reserve

In fire ecology, there is a common assumption that if we introduce a range of burn conditions to produce a mosaic of patches with different fire histories (pyrodiversity) – then the resulting diversity in fire histories and the greater representation of successional stages of vegetation is expected to accommodate more species in a given area (Fig. 2). Reducing the spatial scale at which fire history turns over- the “breaking up” of country- is also known as the patch mosaic burning approach.

Fig 2. Diagram of mosaic burning approach

Fig 2. Diagram of mosaic burning approach

Whilst we assume that pyrodiversity will give us increased habitat diversity, and therefore greater animal diversity, there is uncertainty as to the scale (alpha, beta or gamma diversity) at which pyrodiversity might influence biodiversity (Fig. 3). Alpha diversity is the total number of different species within a site or habitat; beta diversity is the difference in species composition between sites or habitats; and gamma diversity is the number of different species across all sites or habitats in the area of interest. At what spatial scale do we see the benefit for birds of mosaic burning (Fig. 3)?

Fig 4. Fire-sensitive semi-evergreen vine-thicket extending into Mountain Coolibah (Eucalyptus orgadophila) woodland, Carnarvon Station Reserve

Fig 4. Fire-sensitive semi-evergreen vine-thicket extending into Mountain Coolibah (Eucalyptus orgadophila) woodland, Carnarvon Station Reserve

Methods: We examine the relative influence of the diversity of fire histories, spatial configuration of these fire histories, spatial extent of particular fire histories and other measures of environmental heterogeneity on:

  1. Aggregated measures of bird species richness at both the landscape- (100 ha) and local-scale (1 ha); and
  2. Response of different bird foraging guilds to mosaic burning, at both the landscape- and local-scale.

 So what did we find? The diversity of fire regimes in the 100-ha landscape did not correlate with average site (alpha) or landscape- (gamma) diversity of birds. Rather, the total area of longer-unburnt vegetation was important for increasing bird richness at the landscape-scale, and sites in longer-unburnt vegetation had more species.

Although areas burnt in prescribed burns supported lower bird diversity compared to long-unburnt areas, prescribed burns are still necessary to reduce the risk of extensive wildfire. Such burns should focus on breaking up areas of high fuel at the beginning of the dry season (Fig. 4). The extent of long-unburnt vegetation that can be maintained with careful fire management is yet to be determined, but its importance as bird habitat is clear.

Acknowledgements: This work could not have been completed without funding and logistical support provided by AndyInc Foundation, Bush Heritage Australia and UQRS. Thanks to Peta Mather and Donna Oliver who assisted with field work. This study was carried out with approval from the Animal Ethics Committee at the University of Queensland (approval no. SGPEM/325/11/UQ).

Fig 4. Fire-sensitive semi-evergreen vine-thicket extending into Mountain Coolibah (Eucalyptus orgadophila) woodland, Carnarvon Station Reserve

Fig 4. Fire-sensitive semi-evergreen vine-thicket extending into Mountain Coolibah (Eucalyptus orgadophila) woodland, Carnarvon Station Reserve

Contact: Dr Emma Burgess University of Queensland, Email: e.burgess4@uq.edu.au

[This project summary is a precis of a talk presented to the Nature Conservation Council of NSW’s 10th Biennial Bushfire Conference, ‘Fire and Restoration: Working with Fire for Healthy Lands’ 26-27 May 2015. For full paper see: http://www.nature.org.au/healthy-ecosystems/bushfire-program/conferences/%5D

Prescribed burning provides opportunities for site restoration via weed management in the Mount Lofty Ranges, South Australia

Andrew Sheath

Introduction. The purpose of much of the prescribed burning work we do in the Mount Lofty Ranges in South Australia fuel reduction to mitigate the risk of bushfire. But we also do a lot of work, including burning, purely for the purpose of biodiversity conservation. Being so close to Adelaide all of our Parks are highly fragmented and have a strong history of disturbance such as mining and grazing.

Within our team we have a very strong focus on weed control and we do this routinely for all of our burns. There are two reasons we have such a focus on weed management and no longer just go in and burn and walk away. The first is to ensure that the vegetation condition does not deteriorate and the second is to ensure that fuels don’t increase due to woody weeds. In many cases this is leading to improvements in quality of the sites.

Methods. Our burns are done under a prescription which specifies certain weather parameters for which the burn can be carried out safely. Our sites are typically between 5 and 200 hectares, often adjacent to built assets (Fig 1). Mapping both before a burn and 4 years after a burn allows us to monitor progress. We map most of our burns on foot, assessing native vegetation condition, weeds present, their distribution and their cover throughout the proposed burn site. We undertake this with a view to gaining a clear picture of what we’ve got to deal with during the burn and post-burn. Our planning begins 6-18 months prior to a burn to give us plenty of time to carry out works that are often seasonally dependent.

Fig 1: Example of a typical Adelaide Hills conservation area on the urban fringe. Red areas show prescribed burns either completed or in the planning phase.

Fig 1.  Example of a typical Adelaide Hills conservation area on the urban fringe. Red areas show prescribed burns either completed or in the planning phase.

Examples and results to date. In most of our situations pre-burn control greatly increases the efficiency of any post-burn work and overall makes our work easier.

Example 1: Figures 2 and 3, shows a significant reduction in the distribution of Gorse (Ulex europaeus) at an otherwise relatively intact site after the burn, improving the condition of the bush in this area.

Fig 2. Gorse distribution and density pre-burn

Fig 2. Gorse distribution and density pre-burn

Fig 3: Gorse distribution and density 3 years post burn after control work

Fig 3. Gorse distribution and density 3 years post burn after control work

Example 2: Figure 4 shows successful tree heath (Erica arborea) control in an otherwise intact woodland in the Adelaide hills. Six months prior to burning we cut and disturbed the stand of Tree Heath on this site to ensure all the biomass would burn; that we wouldn’t have the adults sitting up high above the flame dropping seed onto burnt ground (which often happens when burning under mild conditions); and, to promote juveniles which would then be burnt and killed during burn. The other benefits of this approach are that it also promotes native germination and makes follow up, post-burn easier.

Fig 4: Erica control site showing before being burnt or cut, after being cut and post burn.

Fig 4: Erica control site showing before being burnt or cut, after being cut and post burn.

Fig 5. Erica post control and pre-burn

Fig 5. Erica post control and pre-burn

Fig 6. Erica post-control and post-burn

Fig 6. Erica post-control and post-burn

Example 3: Figure 5 shows a perched swamp in the Adelaide Hills being thickly invaded by Wonnich (Callystachys lanceolata) from Western Australia. Because of location of the site we were unable to burn the swamp at sufficient intensity to consume the Wonnich. So in this situation we burnt the surrounding area in spring in mild conditions within prescription. We later went back in autumn after we had dropped all of the Wonnich on the ground and we burnt that swamp at a very high intensity and consumed all of the biomass. That promoted mass-germination of the weed. We’re then dealing with one age-class and we can go through and hand weed, spot spray, and re-burn areas to control the germination. Joe Quarmby, Threatened Flora Ecologist, was the mastermind behind this burn and continues to drive follow up control work at the site.

Fig 7. Swamp burnt in drier conditions during autumn.

Fig 7. Swamp burnt in drier conditions during autumn (after surrounding area burnt in more mild conditions in an earlier season).

Follow up control work in swamp.

Fig. 8. Follow up control work in swamp.

Lessons learned. Burning can be a very useful tool for weed management and although no site is ever the same we have been able to use a variety of techniques for certain weeds which greatly increase our efficiency. The key point however is that weed control should be and is routine and needs to be thought about pre-burn.

Acknowledgements. Thanks is extended to Joe Quarmby, Threatened Flora Ecologist.

Contact: Andrew Sheath, Department of Environment Water and Natural Resources – South Australia. Tel: +61 0457 512 032, Email: Andrew.Sheath@sa.gov.au

[This project summary is a precis of a talk presented to the Nature Conservation Council of NSW’s 10th Biennial Bushfire Conference, ‘Fire and Restoration: Working with Fire for Healthy Lands’ 26-27 May 2015. For full paper see: http://www.nature.org.au/healthy-ecosystems/bushfire-program/conferences/%5D

Forested wetland regeneration project, The Gap Road Woodburn, NSW

Julie-Anne Coward

Contract bush regeneration works involving fire and weed management commenced in 2011 in 2.5 ha of endangered ecological coastal floodplain communities at the Cowards’ property on the Gap Road, Woodburn in northern NSW (Fig 1). An area of 7.19 ha of the 10ha property had been recently covenanted for conservation by new owners and 2 small grants were gained to convert the previous grazing property back to forested wetland. Remnant vegetation existed on the property and regrowth was already occurring, although extensive areas were dominated by exotic pasture grasses, particularly >1m high swathes of Setaria (Setaria sphacelata).

Works commenced with spraying of the weed with herbicide and regular follow up spot spraying of weed regrowth. However, because the dead Setaria thatch was taking a long time to break down (and high weed regeneration was likely) a burn was carried out to hasten the recovery responses to fit within the 3 year funding cycle. The works were monitored before and at 6 monthly intervals using 6 (9m2) quadrats in each of hot burn, cool burn and unburnt areas (Fig 1).

Fig 1. Works zones at the Gap Road wetland

Figure 1. Works zones at the Gap Road wetland – mapped in April 2013 where the quadrats were laid out. and data recorded prior to and at 6-monthly intervals after treatment.

Works undertaken. A 2-3m wide firebreak was cut around the burn area and a burn was conducted in dry conditions on Oct 19th 2012 (Fig 2) by the landholders, assisted by Minyumai Green Team and with the local fire brigade on standby. The fire burnt approximately 0.5 ha of the Setaria-dominated area, most of which had been previously sprayed (Fig 2).

Results. A more complete (and presumably hotter) burn was achieved in the sprayed areas (Figs 3 and 4). Setaria and Ragweed germinated prolifically, with a few natives and the site was virtually blanket sprayed with glylphosate. By the second follow up natives had started to regenerate so spot-spraying was used thereafter, taking care to protect the natives. Within 5 months quadrats in the sites that burned hotter achieved over 50% native cover, while the unburnt area achieved only half (25%) that cover. Both areas ultimately achieved similar recovery of natives, but markedly higher spot spraying inputs over longer time frames were needed in the unburnt areas compared to the hotter burn areas.

Over the three year contract, unexpectedly high and prolific regeneration occurred of 35 species of native forbs, sedges and grasses (germinating from buried seed banks) and 7 species trees and shrubs (largely from seed rain) (Fig 5). However, weed germination was also prolific, particularly in unburnt areas, and required at least monthly levels of continual suppression.

fig 2. The burn itself (Oct 17, 2015)

Figure 2. The burn itself (Oct 17, 2015)

Figure 3. Sprayed Setaria prior to the burn.

Figure 3. Sprayed Setaria prior to the burn.

Figure 3. Prolific native groundcover and tree regeneration 2 years after the burn and as a result of consistent spot spraying.

Figure 3. Prolific native groundcover and tree regeneration 2 years after the burn and as a result of consistent spot spraying.

Lessons learned. The proximity of remnant vegetation (within 100m) and intact soil profile was important to the native recovery. At least monthly weed control is essential and can achieve results on its own. However, the project involved substantial volunteer time as well as contract labour – and when labour was insufficient new weed populations formed in the disturbed areas that then required more intensive treatment to overcome. Comparing the demand for weed control in burnt and unburnt areas showed that the feasibility of weed control is very much reduced without the use of fire to flush out weed at the outset.

Acknowledgements: The project is dedicated to the memory of Murray Coward who helped initiate the project. Minyumai Green Team (Daniel Gomes, Justin Gomes, Chris Graves and Andrew Johnston) have kept the project on track over the years, with assistance from Tein McDonald. Thanks is due to the EnviTE team, particularly Virginia Seymour, for their work at the site in the first 18 months. The project is covenanted with the Nature Conservation Trust of NSW (NCT) and received some initial funding from NCT. It subsequently gained a $15K Private Land Conservation Grant (funded by Foundation for National Parks and Wildlife and managed through the NCT) and has now gained a second, similar grant to continue and expand the works.

Contact: Julie-Anne Coward, Gap Road Woodburn. Email: mjcets1@bigpond.com