Category Archives: Restoration & management theory

Monitoring the Wunambal Gaambera Healthy Country Plan, Kimberley, Western Australia – UPDATE of EMR feature

[Update to EMR feature: Moorcroft, Heather, Emma Ignjic, Stuart Cowell, John Goonack, Sylvester Mangolomara, Janet Oobagooma, Regina Karadada, Dianna Williams and Neil Waina (2012) Conservation planning in a cross‐cultural context: the Wunambal Gaambera Healthy Country Project in the Kimberley, Western Australia,  Ecological Management & Restoration, 13:1, 16-25. See https://doi.org/10.1111/j.1442-8903.2011.00629.xk]

Key words: conservation planning, participatory conservation, Indigenous people, Kimberley

Figure 1. Location map of Wunambal Gaambera land and sea country. (Source: WGAC)

Introduction. The development of the Wunambal Gaambera Healthy Country Plan (HCP) was a key enabler for Wunambal Gaambera people to look after country (Fig 1) and occurred at an important time when native title rights to country were being secured. The plan came about through a partnership between Wunambal Gaambera Aboriginal Corporation (WGAC) and Bush Heritage Australia (BHA), who brought the planning approach and supported WGAC to develop a plan that met the needs of Traditional Owners. This plan then became the basis of a long term partnership between the two organisations to support implementation.

Healthy Country Planning, a term coined by this project, adapted the Open Standards for the Practice of Conservation (http://cmp-openstandards.org/ ) to an Indigenous native title community context. The approach has subsequently flourished in Australia, adopted by a further 30 indigenous groups ( see doi: 10.1111/emr.12267).

The unique partnership model established between BHA and WGAC, underpinned by Healthy Country Planning, has also expanded (https://www.bushheritage.org.au/what-we-do/aboriginal-partnerships). The program supports indigenous partners to achieve their community and conservation aspirations articulated through Healthy Country Planning.

Figure 2. Terrick Bin Sali handling a northern quoll (Dasyurus hallucatus). (Photo WGAC)

Conservation planning with a difference. Our experience has been that the Open Standards can be successfully applied to an Indigenous context but some important adaptation is required. For example:

  1. People, culture and country are inseparable in Australian indigenous worldviews. As such, Healthy Country Planning is much wider in scope than mainstream conservation or natural resource management planning. The vision in the HCP typically sets long-term goals that include aspirations for looking after country and achieving health conditions for landscapes, seascapes, plants and animals, as well as for people and culture (Figs 2-4). These outcomes are collectively referred to as “Healthy Country”. An indigenous plan will always recognize and value people in the landscape rather than as separate. Traditional Owners, and/or their culture, become a conservation target alongside species and habitats with ‘key cultural attributes’ established alongside ‘key ecological attributes’. HCPs also have a greater degree of management strategies that relate to people and culture than would be found in mainstream management plans, and culture and Indigenous Knowledge is incorporated into land management activities that could be considered mainstream, such as the inclusion of cultural rules within visitor management.
  2. The Open Standards include approaches and tools for stakeholder participation that lend themselves well to Indigenous peoples, however given that Indigenous lands are communally-owned and governed by unique law and culture systems, participation requirements are higher and more complex. Traditional systems of governance are often recognized under State and Federal Law (such as the Native Title Act) requiring additional process steps. In developing the HCP, WGAC undertook a process of involving all Traditional Owner families in various stages of planning and the plan was authorized at a Traditional Owner meeting.
  3. A Healthy Country Plan typically applies to the whole traditional estate of a Traditional Owner group regardless of tenure, consistent with the concept of “Country-based Planning”. WGAC initially dedicated stage I of the Uunguu Indigenous Protected Area over several aboriginal reserves in 2010, and later added exclusive possession lands following native title determination. The marine environment will also be added to the IPA once agreement is reached with State and Commonwealth Governments, as articulated in the Uunguu Wundaagu Plan.

Figure 3. Traditional Owners undertaking a ‘junba’ traditional dance workshop. (Photo: WGAC)

Monitoring & evaluation since 2012. Aspects of the monitoring and evaluation framework established by WGAC include the establishment of the Uunguu Monitoring & Evaluation Committee (UMEC) and the completion of mid-term evaluation of the HCP (see 2017 review doi:10.1111/emr.12257). The UMEC is composed of Traditional Owners and external experts who undertake key Healthy Country Planning steps and functions. A significant investment of time and money was required to support annual or biennial meetings “on country” (ie. on Wunambal Gaambera lands), however the review showed that the investment has proven worthwhile because WGAC has been able to implement the plan to a high degree.

In 2015 a major mid-term evaluation was undertaken to assess the progress of the HCP. It utilized some standard evaluation tools examining Open Standards process. It also incorporated some new approaches to include the views of the wider Traditional Owner community in the evaluation of the plan to ensure the plan was meeting their needs and following effective process with regard to governance and participation. The review made a number of observations as follows.

  1. Considerable progress had been made in the implementation of fire management strategies in the HCP to the point that the health condition of the “Right Way Fire” target was changed from ‘fair’ to ‘good’. Unmanaged wildfires have significantly reduced in size as a result of increased capabilities of the Uunguu Rangers to undertake burning. At the same time “right way” cultural principles have been incorporated into operations to ensure that Traditional Owner families are making decisions about burning and undertaking fire operations on their family areas.
  2. Significant progress has been made against a visitor management strategy. One of the key concerns of elders when developing the plan was unregulated visitation to important cultural sites by the expedition cruise industry and independent travelers. The Uunguu Visitor Pass, launched in 2017, requires visitors to obtain a permit to access authorized visitor locations as well as generating funds for looking after country. Over 90% of commercial tour operators have now registered for the UVP, with a similar independent traveler compliance, generating funds to support Traditional Owner participation in visitor management and delivering tour products.
  3. Progress was not made, however, in the health of cultural targets in the plan. As a result, the 2015 review recommended further investment and effort in culture strategies. Two important books have been completed to document elders’ knowledge of biodiversity and cultural places. There has been an increase in cultural activities including language and corroboree dance workshops and annual culture camps for school children. Law and culture dictates that visitors to country (indigenous or non-indigenous) need to be accompanied by the right local Traditional Owners when undertaking activities on country. In this way Healthy Country work supports large numbers of Traditional Owners to visit country and guide participation in the implementation of the plan. A number of actions have been undertaken to support Traditional Owners to live on country and remote ranger infrastructure has been developed.

Figure 4. Uunguu Rangers during a cultural fire walk. (Photo WGAC)

Future Directions. The first 8 years of the HCP implementation has focused on building WGAC’s land and sea management capacity and resources, with funding from WGAC,  the Australian Governments Indigenous Protected Area and Indigenous Ranger Programs and from Bush Heritage Australia. Traditional Owners currently hold certificate level roles of rangers, tourism workers and construction workers but further work is now needed to support Traditional Owners to take on roles that require higher levels of training. There is also a need to support the development of a wider range of livelihoods to support Traditional Owners to live and/or work on country.

Contact information. Wunambal Gaambera Aboriginal Corporation, PMB 16 Kalumburu via Wyndham WA 6740, Australia.

Email: info@wunambalgaambera.org.au

Web: www.wunambalgaambera.org.au

Facebook: https://www.facebook.com/uunguulife/

 

 

 

 

 

 

Developments in Big Scrub Rainforest Restoration: UPDATE of EMR feature

By Tony Parkes, Mark Dunphy, Georgina Jones and Shannon Greenfields

[Update of EMR feature article: Parkes, Tony, Mike Delaney, Mark Dunphy, Ralph Woodford, Hank Bower, Sue Bower, Darren Bailey, Rosemary Joseph, John Nagle, Tim Roberts, Stephanie Lymburner, Jen Ford and Tein McDonald (2012) Big Scrub: A cleared landscape in transition back to forest? Ecological Management & Restoration 12:3, 212-223. https://doi.org/10.1111/emr.12008]

Key words: Lowland Subtropical Rainforest, ecological restoration, seed production, landholder action, corridors

Figure 1a. Rainforest regenerators undertake camphor injection, leaving bare trees standing creating light and an opportunity for seed in the soil to naturally regenerate. (Photo © Envite Environment)

Figure 1b Aerial photo showing camphor conversion by injection
(Photo © Big Scrub Regeneration Pty. Ltd.)

Introduction. The Big Scrub, on the NSW north coast, was once the largest tract of Lowland Subtropical Rainforest (LSR) in Australia. It was reduced to less than 1% of its original extent by he end of hte 19th century after clearing for agriculture. Big Scrub Landcare (BSL) is a non-profit organisation dedicated to improving the long-term ecological functionality of what remains of this critically endangered ecosystem –  lowland subtropical rainforest.  Our 2012 EMR feature reported on remnant restoration and revegetation works overseen by BSL to 2012. At that time, 68 remnants were identified as significantly affected from the impacts of environmental degradation including weed invasion and cattle access. These remnants had been undergoing treatments, with 20 substantially recovered and on a ‘maintenance’ regime.  Approximately 900,000 trees had been planted to establish 250 ha of young diverse well-structured rainforest.  A comparatively small area of forest dominated by the highly invasive exotic, Camphor Laurel (Cinnamomum camphora) (Camphor), which  has colonised much of the Big Scrub landscape had been converted to early phase LSR by skilled removal of a range of weeds and facilitating natural regeneration. 

Progress since 2012. Substantial progress in restoring critically endangered lowland subtropical rainforest in the Big Scrub has been achieved over the past seven years in the following areas.

  • Assisted regeneration of remnants has continued and become more focused
  • Re-establishment of LSR through plantings has expanded
  • Camphor conversion has developed in scale and techniques
  • Greater security of funding has been achieved
  • Community engagement has greatly improved and expanded
  • Genome science is being applied to produce seed with optimal genetic diversity for rainforest restoration.

Assisted regeneration of remnants. This work continues to be the major focus of on-ground restoration work. About 2000 regenerator days (9 years Full Time Equivalent) of work has been undertaken in 45 remnants. BSL’s remnant restoration program has become more strategic, with more focus on Very High Conservation Value (VHCV) remnants, particularly those in the NSW National Parks Estate, including the VHCV sites in Nightcap National Park (NP) including Big Scrub Flora Reserve, Minyon Falls and Boomerang Falls; Andrew Johnston’s Scrub NR; Snow’s Gully Nature Reserve (NR); Boatharbour NR; Victoria Park NR and Davis Scrub NR, plus the Booyong Flora Reserve. Rehabilitation work at these sites is prioritised in the major new four-year Conservation Co-funding project funded jointly by BSL and the NSW government’s Saving our Species program. Big Scrub Foundation (BSF) funding has enabled BSL to continue maintenance work in remnants that have reached or are approaching the maintenance stage.

Monitoring outcomes has become more rigorous and has demonstrated ongoing improvements in vegetation structure, with decreasing levels of weed invasion and improvements in native species cover.

BSL’s partner Envite Environment, with some assistance from BSL, is creating an important linkage between Nightcap NP and Goonengerry NP by the restoration of rainforest through the progressive removal of weeds that had dominated the 80 ha Wompoo/Wanganui corridor between these two NPs.

 Re-establishment of rainforest by planting. The area of LSR is being re-established by planting on cleared land has also continued to expand.   In the last 7 years  more than 0.5 million rainforest trees have been planted in the Big Scrub region, contributing to the restoration of another 175 ha of LSR, expanding total area of re-established rainforest by another 13%. While landscape-scale landholder driven work is inevitably opportunistic rather than strategic, the establishment of new patches of LSR enhance valuable stepping-stone corridors across the Big Scrub. Since 2012 the number of regenerators working fulltime in the Big Scrub region has increased by approximately 50%.  Another trend that has strengthened in the last 7 years is that larger plantings are now being carried out by well-resourced landowners. This is accounting for about 40% of the annual plantings. Offsets for residential development account for another 40% of trees planted. The remaining 20% is made up by small landowners, cabinet timber plantations, large-scale landscaping, and other planting of Big Scrub species. This is a significant change from the more dominant grant-based small landowner/Landcare group plantings prior to 2012.

 Camphor conversion. Larger areas of Camphor forest are being converted to rainforest, with project areas increasing substantially from less than a hectare to ten and twenty hectares. BSL estimates that more than 150 ha of Camphor forest are currently under conversion. Some landowners underake camphor injection which leaves bare trees standing, creating light and an opportunity for existing native seedlings and seed in the soil (or seed dropped by perching birds) to naturally regenerate (Fig 1). Others are choosing the more expensive option of physically removing the Camphor trees and carefully leaving the rainforest regrowth (Fig 2).  Improved techniques and landholder capacity building continue to progress and camphor conversion is now a significant component of rainforest restoration.

BSL alone is facilitating the conversion of almost 40 ha of Camphor forest to LSR funded by two 3-year grants from the NSW Environmental Trust, together with contributions from the 19 landholders involved in these projects. The ecological outcomes being achieved are significant and less costly than revegetation via plantings.

Figure 2a. Camphor forest under conversion using heavy machinery leaving rainforest regrowth intact (Photo © Big Scrub Landcare)

Figure 2b. Aerial photo showing camphor conversion by removal
(Photo © Big Scrub Landcare)

Greater security of funding. Australian Government funding for biodiversity conservation is at a very low level. Competition for existing NSW state government funding is increasing. BSL therefore has continued to  develop new strategies for fund raising to ensure continuity of its long-term program for the ecological restoration of critically endangered LSR in the Big Scrub and elsewhere. Ongoing funding of at least $150,000 annually is needed to ensure the great progress made  over the past 20 years in rehabilitating remnants is  maintained and expanded to new areas of large remnants. These funds finance weed control and monitoring; weeds will always be a part of the landscape and an ongoing threat to our rainforest remnants.

Establishment of the Big Scrub Foundation in 2016 was a major development in BSL’s fund raising strategy. The Foundation received a donation of AUD $1M to establish a permanent endowment fund that is professionally invested to generate annual income that helps finance BSL’s remnant care program and its other activities. Generous donors are also enabling the Foundation to help finance the Science Saving Rainforest Program.

Figure 3a. Australian gardening celebrity Costa Gregoriou at a Big Scrub community tree planting (part of the 17th annual Big Scrub Rainforest Day) in 2015 (Photo © Big Scrub Landcare)

Figure 3b. Founder of the Australian Greens political party Bob Brown and Dr. Tony Parkes at the 18th annual Big Scrub Rainforest Day in 2016. (Photo © Big Scrub Landcare)

Community engagement. The  Big Scrub Rainforest Day continues to be BSL’s  major annual community engagement event, with the total number of attendees estimated to have exceeded 12,000 over the past 7 years; the 2016 day alone attracted more than 4000 people (Fig 3). Every second year the event is held at Rocky Creek Dam.  A new multi-event format involving many other organisations has been introduced on alternate years.

BSL’s Rainforest Restoration Manual has been updated in the recently published third edition and continues to inform and educate landowners, planners and practitioners.

BSL in partnership with Rous County Council produced a highly-commended book on the social and ecological values of the Big Scrub that has sold over 1000 copies. BSL’s website has had a major upgrade: its Facebook page is updated weekly; its e-newsletter is published every two months. BSL’s greatly improved use of social media is helping to raise its profile and contribute to generating donations from the community, local businesses and philanthropic organisations to fund its growing community education and engagement work and other activities.

Science saving rainforests program. BSL, the Royal Botanic Gardens Sydney, the BSF and their partners have commenced an internationally innovative program to apply the latest DNA sequencing and genome science to establish plantations to produce seed of key species with optimal genetic diversity for the ecological restoration of critically endangered lowland subtropical rainforest. This program will for the first time address the threat posed by fragmentation and isolation resulting from the extreme clearing of Australia’s LSR, which is estimated to have resulted in the destruction of 94% of this richly biodiverse Gondwana-descended rainforest.

Many  key  LSR species are trapped in small populations in  isolated remnants  that  lack the genetic diversity needed to adapt and survive in the long term, particularly faced with climate change Necessary  genetic diversity is also lacking in many key species in the 500 ha of planted and regrowth rainforest. The first stage of the program, already underway, involves collecting leaf samples from approximately 200 individual old growth trees in 35 remnant populations across the ranges of 19 key structural species of the ‘original’ forest. DNA will be extracted from the leaf samples of each species and sequenced. The  latest genome science will be applied to select the 20 individual trees of each species that will be cloned to provide planting stock with optimal genetic diversity for the establishment of a living seed bank in the form of a plantation that will produce seed  for use in restoration plantings. As the individual trees in the restoration plantings reproduce, seed with appropriate genetic diversity and fitness will be distributed across the landscape. The project focuses on key structural species and thus helping the survival of Australia’s critically endangered Lowland Subtropical Rainforest in the long term.

Lessons learned and current and future directions. A key lesson learned some five years ago was that BSL had grown to the point where volunteers could no longer manage the organisation effectively. BSL took a major step forward in 2015 by engaging a part-time Manager, contributing to BSL’s continuing success by expanding the scope, scale and effectiveness of its community engagement activities and improving its day to day management.

The principal lesson learned from BSL’s on-ground restoration program is to focus on rehabilitation of remnants and not to take on large planting projects, but rather support numerous partnered community tree planting events. Large grant-funded multi-site tree planting projects are too difficult to manage and to ensure landholders carry out the necessary maintenance in the medium to long term.

Acknowledgements.  BSL acknowledges our institutional Partners and receipt of funding from the NSW government’s Saving our Species program, NSW Environmental Trust and Big Scrub Foundation.

Contact:  Shannon Greenfields, Manager, Big Scrub Landcare (PO Box 106,  Bangalow NSW 2479 Australia; . Tel: +61 422 204 294; Email: info@bigscrubrainforest.org.au Web: www.bigscrubrainforest.org.au)

Seagrass restoration off the Adelaide coast using seeds and seedlings – UPDATE of EMR feature

[Update of EMR feature article :  Tanner JE, Andrew D. Irving, Milena Fernandes, Doug Fotheringham, Alicia McArdle and  Sue Murray-Jones (2014) Seagrass rehabilitation off metropolitan Adelaide: a case study of loss, action, failure and success.Ecological Restoration & Management 15: 3, 168-179.  https://onlinelibrary.wiley.com/doi/10.1111/emr.12133]

Key words:  Amphibolis, Posidonia, Recruitment facilitation, Seagrass loss

Figure 1: Bag layout for small-scale experiments on Amphibolis recruitment facilitation (top left), Amphibolis seedlings (top right), close-up of basal ‘grappling hook’ that allows seedlings to attach (bottom left), and examples of older style double-layered bags with and without seedlings attached (bottom right).

Introduction: Over the last half century or so, over 6,000 hectares of seagrass has been lost off the Adelaide coast due to anthropogenic nutrient and sediment inputs.  This loss has led to coastal erosion, decreased habitat, loss of carbon storage, and decreased fish abundance.  Recent improvements to wastewater treatment and stormwater runoff have led to some natural recovery, but changes in sand movement resulting from the loss now prevent recolonization of many areas.  Our September 2014 feature article in EMR described how SARDI have been working with other state government agencies and universities to develop a cost-effective technique to restore these areas.  Typical seagrass restoration costs on the order of AUD$1 million per hectare, but by facilitating natural recruitment of Amphibolis, yet over the last 17 years we have developed a technique that only costs a few tens of thousands of dollars.  As described in the feature, this technique uses hessian sand bags (Fig. 1) to provide a stable recruitment substrate while seedlings become established, and has resulted in the re-establishment of small trial patches of seagrass restoration (10-100 m2) which are now over 10 years old (Fig. 2) Importantly, these sites have been colonized by Posidonia and Zostera seagrasses, and provide habitat for faunal assemblages that are similar to those of nearby natural meadows, suggesting potential for small plots to act as ‘starters’ for ecosystem recovery.

Figure 2: Examples of Amphibolis restoration showing progression of establishment from 12 months (top left), 41 months (top right), 58 months (bottom left) and 8 years (bottom right).

Further work undertaken: Since our original article in EMR, we have continued monitoring the 1 hectare trial patches and expanded our focus to include additional species in the restoration, especially Posidonia.  We have also started assessing how bags degrade over time under different storage conditions, as operationalizing this technique will require bags to be stored potentially for a month or more between filling and deployment.  Importantly, the SA Government has now allocated funds for a proof of application, which will involve the deployment of hessian bags over approx. 10 hectares in late autumn 2020.

Further results to date: Two 1 hectare trials were deployed in June 2014, with 1,000 bags in each (Fig. 3).  After 9 months, these bags had an average 6.2 Amphibolis seedlings each, which was typical for bags deployed outside the winter recruitment season in previous years.  After a further 12 months, this increased to 9.2 seedlings per bag, within the range of densities previously seen for small-scale winter deployments (7-23 seedlings per bag).  A further 12 months later, densities had decreased to 3.1 seedlings per bag.  In 2017, a third 1 hectare trial was established with 2,500 bags, although these bags only had 1.2 seedlings each after 9 months. Unfortunately loss of nearly all marker stakes on all three plots due to suspected disturbance by fishing gear meant that further monitoring was not possible.  It should be noted that for the successful small-scale deployments, stem densities between 2 and 5 years were very low, and it was only after 5-7 years that success was evident.

Planting Posidonia seedlings into the bags showed good success over the first 3-4 years, with seedlings becoming established and developing into what appeared to be adult plants with multiple shoots, which did not allow individual seedlings to be identified (Fig. 4).  However, leaf densities declined substantially in the 12 months following the February 2016 survey, and recovery has been slow in the 2 years since.  Trials with different fill types (different sand/clay mixes, different amounts of organic matter added) indicated that this did not influence establishment success or growth, and neither did planting density.  Small and large seeds, however, tended to fare poorly compared to those of intermediate size (10-13 mm).  These results have been supported by short-term tank experiments, which also showed that there is only a short window for collecting fruits (those collected on 28 Dec formed an average 3.3 120 mm long leaves each after 2 ½ months, while those collected 6 days earlier or 3 days later formed < 2 leaves which were no more than 80 mm long).  After collection, fruits that did not release their seedling within 2-3 days performed poorly, and seedlings were best planted within 10 days of release. Whilst earlier Posidonia field experiments were undertaken by divers planting seedlings, which is time consuming and expensive, in 2017 seedlings were planted either onshore or on the boat, and then glued into the bags prior deployment.  This was as successful as planting underwater after 1 and 2 years, with an average 20% seedling survival, and leaf lengths of 20-25 cm, across all treatments.

Bags filled with moist sand rapidly dried out in storage, and did not deteriorate any quicker than those filled with dry sand, although it should be noted that in this experiment all bags had good air circulation around them, which would not be the case if they were stored in bulk.  Bags left outdoors exposed to the elements deteriorated quicker than those stored indoors, and pallet wrapping led to them rapidly becoming mouldy.

Figure 3: Pallets of sand bags ready for deployment (top left), and typical images of deployment

Lessons learned and future directions:  While the hessian bag method has resulted in the successful establishment of small patches of seagrasses that have persisted for around a decade, and which are now functioning like natural patches due to colonization by other marine plants and animals, the development of the technique has not been straightforward.  Refining the technique has required the development of a good understanding of the timing of recruitment, and the willingness to put conventional wisdom to the test.  This work has also required funders to take a long-term view, and to be willing to accept the fact that success cannot be established within a conventional 3-year funding cycle.  In this case, it was only 5-7 years and 2 funding cycles after deployment that we saw our small-scale trials being successful.  Now that we have established the technique at a small-scale, we are experiencing a new set of challenges with scaling up.  The 1 hectare plots have not been as successful as we had hoped.  In part, this may be due to low bag density – our small-scale plots were equivalent of approx. 10,000 bags per hectare, not the 1,000-2,500 that we have used.  Consequently, our next trial with involve a range of bag densities, from 1,000 to 10,000 bags per hectare.  In our previous article, we had indicated that we were looking at developing novel coatings to improve the life of the hessian bags, however, this proved cost prohibitive and reduced the ability of seedlings to attach to the bags.  Instead, we have now commenced a new collaboration with textile scientists to look at alternative natural fibres that might last longer than hessian but still be cheap, effective and biodegradable.

Stakeholders and Funding bodies:   SA Department for Environment & Water, SA Water, Adelaide & Mount Lofty Ranges Natural Resource Management Board, Australian Research Council, South Australian Research & Development Institute, Flinders University

Contact information: A/Prof Jason Tanner, Principal Scientist – Environmental Assessment & Rehabilitation, SARDI Aquatic Sciences, PO Box 120, Henley Beach, SA. 5022. Tel: +61 8 8429 0119. Email: jason.tanner@sa.gov.au

Figure 4: Example of Posidonia rehabilitation at time of planting (left – January 2012), after 2 years (middle – February 2014) and 4 years (right – February 2016).

 

Long-term restoration in the Box Gum Woodlands of south-eastern Australia – UPDATE of EMR feature

David Lindenmayer, Mason Crane, Daniel Florance, David Smith, and Clare Crane

Update to article published in EMR – Murray Catchment habitat restoration: Lessons from landscape level research and monitoring doi: 10.1111/emr.12051

Keywords: Revegetation, biodiversity recovery, monitoring, birds

Figure 1. Revegetated woodland near Wagga Wagga in the South West Slopes of New South Wales. (Photo courtesy of the Sustainable Farms project at The Australian National University. Australia).

Introduction

This project encompasses a major set of large-scale, long-term integrated studies quantifying the response of various groups of biota to replanted woodlands in the Box Gum Grassy Woodlands of south-eastern Australia. The work has been underway since 2002 and contrasts revegetated areas with regrowth woodlands and old growth woodlands on multiple farms nested within landscapes with varying amounts of native vegetation cover (Fig 1.). The responses of birds, arboreal marsupials, terrestrial mammal, reptiles, frogs and native plants to these different kinds of broad vegetation types (and within-site and landscape-level attributes) have been documented over the past 17 years.

Further works undertaken

Since the inception of the original project and associated monitoring, an array of additional studies have been completed (https://www.anu.edu.au/about/strategic-planning/sustainable-farms). These include investigations of the impacts on birds and reptiles of livestock grazing in plantings, the benefits for birds of understorey plantings within old growth woodlands, the impacts of a control program for the Noisy Miner (Manorina melanocephala) on other woodland bird species, and interaction effects between long-term climate, short-term weather and revegetation programs on birds (Figs 2 and 3). Further work aims to quantify the biodiversity and livestock production benefits of enhancing the ecological condition (and associated water quality) of farm dams.

Figure 2. Flame Robin and Rufous Whistler – two bird species of conservation concern that respond positively to revegetated woodland. (Photos by Robin Patrick Kavanagh.)Further results to date

Research and monitoring in the past six years have resulted in a number of key new insights of considerable importance for restoration programs. A small subset of these findings includes:

  • The conservation benefits of replanted areas for bird and reptile biodiversity are undermined by intensive livestock grazing in these revegetated areas.
  • The bird biodiversity values of old growth temperate woodlands can be enhanced by underplantings of shrubs and other non-overstorey plants, although it can take many years for such benefits to manifest. Importantly, the occurrence of hyper-aggressive species such as the Noisy Miner is diminished in woodlands where underplantings have been established.
  • Experimental efforts to reduce populations of the Noisy Miner were largely unsuccessful; sites where this species was culled twice were rapidly recolonized by the Noisy Miner.
  • Replanted woodlands provide critical refugia for woodland birds, especially during prolonged drought periods.

Collectively, these findings indicate that restored woodlands have important conservation values (especially for birds but also reptiles), with restoration being valuable to conduct not only in existing old growth woodland (through establishing underplantings) but also in previously cleared sites. The conservation value of woodlands can be particularly critical during climate extremes such as droughts. Efforts to control the Noisy Miner will likely be most effective through targeted revegetation efforts rather than direct culling of birds. Finally, there is a need to limit grazing pressure in revegetated woodlands and this can require the repair or replacement of fences around replantings, especially when such key infrastructure begins to deteriorate.

Figure 3. Noisy Miner – a reverse keystone species for which experimental culling programs have proven to be ineffective. (Photo by Pete Richman.)

Lessons learned and future directions

The ongoing work has clearly demonstrated the important new insights that are derived from long-term ecological research and monitoring. Indeed, long-term changes in patterns of occupancy of restored areas could not have been quantified without rigorous monitoring of a wide range of sites of different sizes, ages and other attributes. Key manager-researcher partnerships have been fundamental to the ongoing success of the array of projects in this restoration initiative. Indeed, some research and monitoring studies were prompted by  questions posed by natural resource managers (such as if there were vegetation cover thresholds for birds in temperate woodlands). Close working relationships with farmers have also been critical to the persistence of the various projects. Field staff in the project, who are based permanently in rural Australia, are key points of outreach and communication with farmers and other natural resource managers. Their presence has accelerated the rate of knowledge transfer and adoption of new practices (such as widening shelterbelts so that they have multiple production and conservation values).

Stakeholders and funding bodies

Ongoing work has been supported by many funding bodies and partners. These include the owners of more than 250 private properties (whom have allowed access to their land and undertaken major restoration works). Funding for the work has been provided by The National Environmental Science Program (Threatened Species Recovery Hub), the Australian Research Council, Murray Local Land Services, Riverina Local Land Services, Central Tablelands Local Land Services, the Ian Potter Foundation, the Vincent Fairfax Family Foundation, The Australian National University, and the Calvert-Jones Foundation.

Contact information

David Lindenmayer, Sustainable Farms Project, Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, david.lindenmayer@anu.edu.au

Restoration and conservation in an iconic National Park – UPDATE of EMR feature

David Lindenmayer, Chris MacGregor, Natasha Robinson, Claire Foster, and Nick Dexter

[Update of EMR feature – David B. Lindenmayer, Christopher MacGregor, Nick Dexter, Martin Fortescue and Peter Cochrane (2013)  Booderee National Park Management: Connecting science and management.  Ecological Management & Restoration, 14:1, 2-10. https://onlinelibrary.wiley.com/doi/10.1111/emr.12027]

Keywords: Invasive animal and plant control, reintroduction, monitoring

Introduction. Booderee National Park is an iconic, species-rich, coastal reserve that supports a range of threatened and endangered native animals and plants. Several key management actions have been implemented to promote the conservation of biodiversity in Booderee National Park. These include the control of an exotic predator (the Red Fox Vulpes vulpes), the control of highly invasive Bitou Bush (Chrysanthemoides monilifera subsp. rotundata), the management of fire, and the reintroduction of previously extinct native mammals. A key part of work at Booderee National Park has been a long-term monitoring program that commenced in late 2002 and which has aimed to quantify the effectiveness of major management interventions, including the four listed above. The monitoring program has documented the long-term trajectories of populations of birds, arboreal marsupials, terrestrial mammals, reptiles, frogs and native plants in a range of major vegetation types (from heathland and sedgeland to woodland, forest and rainforest) and in response to fire, and weed and feral predator control. Importantly, the monitoring program has provided a foundational platform from which a suite of post-graduate studies and other research programs have been completed.

Further works undertaken. A key part of the researcher-manager partnership has been to analyse the long-term trajectories of populations of mammals, birds and reptiles in Booderee National Park. The monitoring data indicate that many species of mammals are declining, with some having become recently locally extinct (e.g. Greater Glider Petauroides volans) or close to extinction in the reserve (e.g. Common Ringtail Possum Pseudocheirus peregrinus) . This is despite populations of these species persisting in nearby reserves.  Robust interrogation of the multi-taxa monitoring data has been unable to identify reasons for these declines. Interestingly, the declines observed for mammals have not been observed to date in other vertebrate groups, including birds, reptiles and amphibians. An experimentally-based reintroduction program for the Greater Glider aims to not only re-establish populations of the species in Booderee National Park, but also to identify the reasons for the original decline. That program will be in addition to reintroduction programs already underway for other mammal species, the Long-nosed Potoroo (Potorous tridactylus), the Southern Brown Bandicoot (Isoodon obesulus) and Eastern Quoll (Dasyurus vivverinus) that used to inhabit Booderee National Park but which went extinct many decades earlier.

Additional research being undertaken in Booderee National Park has included: (1) studies of the effectiveness of control efforts for Bitou Bush and associated recovery of native vegetation and native fauna, (2) the interactive effects of fire and browsing on native plants and an array of animal groups, and (3) studies of leaf litter and other fuel dynamics in relation to previous fire history and macropod browsing.

Figure 1. Key area of Booderee National Park showing an area of coastal forest before and after Bitou Bush treatment.

Further results to date. Research and monitoring in the past six years have resulted in many new insights including some of considerable value for informing restoration programs. A small subset of these findings is outlined below.

  • Conventional approaches to the control of invasive Bitou Bush entail spraying ultra-low volume herbicide (Fig. 1), followed by burning of the “cured” dead material, and then respraying of the seedlings that germinate after fire. This spray-burn-spray protocol is both the most ecologically effective and the most cost-effective way of controlling Bitou Bush and, at the same time, facilitates the recovery of native vegetation. More recent analysis has revealed spray frequency as the most important determinant of long-term control. There are mixed effects of control methods on native species; plant species abundance was positively related to Bitou Bush control, while native bird abundance (except for Eastern Bristlebird Dasyornis brachypterus, Fig 2.) and mammal abundance were weakly negatively associated with Bitou control.
  • There can be strong interactions between the occurrence of fire and browsing by macropods on native plants as well as particular groups of animals such as spiders.
  • Reintroduction programs for the Southern Brown Bandicoot and Eastern Quoll have been relatively successful, although the latter species suffers high rates of mortality, particularly as a result of fox predation and collisions with motor vehicles. Nevertheless, populations of both species have survived over multiple years and reproduced successfully.

Figure 2. The Eastern Bristlebird, a species for which Booderee National Park is a stronghold. Notably, the species responds positively to management interventions to control Bitou Bush. (Photo Graeme Chapman)

Lessons learned and future directions. The work at Booderee National Park is a truly collaborative partnership between reserve managers, a university and the local Indigenous community.  A key part of the enduring, long-term success of the project has been that a full-time employee of The Australian National University has been stationed permanently in the Parks Australia office in the Jervis Bay Territory. That person (CM) works on an almost daily basis within Booderee National Park and this provides an ideal way to facilitate communication of new research and monitoring results to managers. It also enables emerging management concerns to be included as part of adaptive monitoring practices.

One of the key lessons learned from the long-term work has been the extent of ecological “surprises” – that is, highly unexpected results, including those which continue to remain unexplained. An example is the rapid loss of the Greater Glider and the major decline in populations of the Common Ringtail Possum. One of the clear benefits of this integrated monitoring-management team has been the rapid response to emerging threats. For example in response to high rates of mortality of reintroduced Eastern Quolls, control of the Red Fox was intensified within the park and greater cross-tenure control efforts with neighbouring private and public land managers have commenced. Regular evaluation of monitoring data and management actions has also enabled careful examination of the kinds of risks that can compromise reintroduction programs. These and other learnings will inform other, future reintroduction and translocation programs that are planned for Booderee National Park such as that for the Greater Glider.

Stakeholders and funding bodies. Ongoing work has been supported by many funding bodies and partners. These include the Wreck Bay Aboriginal Community who are the Traditional Owners of Booderee National Park as well as Parks Australia who co-manage the park with the Wreck Bay Aboriginal Community. Other key funders include the Department of Defence, the Thomas Foundation, The National Environmental Science Program (Threatened Species Recovery Hub), the Australian Research Council, the Margaret Middleton Foundation, and the Norman Wettenhall Foundation. Partnerships with Rewilding Australia, Taronga Conservation Society, WWF Australia, NSW Forestry Corporation and various wildlife sanctuaries have been instrumental to reintroduction programs.

Contact information. David Lindenmayer, Chris MacGregor, Natasha Robinson and Claire Foster are with the National Environmental Science Program (Threatened Species Recovery Hub), Fenner School of Environment and Society, The Australian National University (Canberra, ACT, 2601, david.lindenmayer@anu.edu.au). Nick Dexter is with Parks Australia, Jervis Bay Territory, Australia, 2540.

Re-establishing cryptogamic crust at The Waterways, Mordialloc

By Damien Cook

Photo 1.  Crytogamic crust consisting of mosses, lichens and liverworts in inter-tussock space in restored grassland at Waterways. These spaces provide recruitment opportunities for herbaceous species such as Wahlenbergia multicaulis and Brachyscome parvula

Introduction:  The Waterways is a unique urban development on the Mordialloc Creek, in Melbourne’s south eastern suburbs, which combines a housing estate with 48 hectares of restored habitat set aside for indigenous fauna and flora in open space, lakes and other wetlands. (See EMR Project summary ‘The Waterways‘.)

The revegetation of 4 hectares of native grassland and 7 hectares of swamp scrub provided the opportunity to trial the re-establishment of non-vascular plant species, as well as the higher plants which are normally the focus of restoration efforts.

Method. A diversity of cryptogams including Thuidiopsis furfurosa, Hypnum cuppressiforme, Triquetrella papillata and some Rosulabryum and lichen species were collected in the field from nearby remnants of native vegetation threatened with imminent destruction by freeway construction and new housing estates. These were placed in a blender and made into a 2 litre, thick slurry and the slurry was then diluted into a 20 litre a firefighting backpack. The diluted slurry was then applied to bare soils in the revegetated areas at the Waterways in August 2002; some areas were left untreated as a control.

Results. It was not until the wet winter of 2016 that it became apparent how successful this technique had been. There are now quite large areas with a good cover of cryptogams, particularly in the restored grassland and swamp scrub areas. There are some cryptogams in the untreated areas, but the species richness and cover are much lower. Cryptogamic crust cover appears to suppress weed germination, reducing the need for herbicide application, yet provides recruitment opportunities for native forbs (see Photos 1-3).

Acknowledgements. Thanks are due to the Haines family who were the developers of “The Waterways”, and in particular Stephen Haines, for involving us in the revegetation of the site and allowing us scope to trial different ecological restoration techniques. 

Contact: Damien Cook (rakali2@outlook.com.au)

Photo 2. Swamp Scrub at Waterways. Note the dense layer of mosses in the understory, particularly Thuidiopsis furfurosa

Photo 3. Fruiting capsules of a species of Bryum in restored native grassland at Waterways

A water point design to facilitate seed dispersal into revegetation or pasture sites

Amanda N. D. Freeman

Introduction. Although perches have been shown to enhance seed dispersal into revegetation sites, the efficacy of providing a water source to attract seed dispersers is largely untested.  In a Griffith University-led study aimed at “kick-starting” conversion of pasture to forest www.wettropics.gov.au/cfoc , bird-attracting structures that included a perch and water trough at the base were shown to enhance frugivore-assisted seed dispersal.  A complementary study in the same sites has identified the seeds of over 40 bird dispersed species deposited in the water troughs (Amanda Freeman; The School for Field Studies, Centre for Rainforest Studies (SFS-CRS) and Griffith University; 2012-2014, unpublished data).  Although the water troughs demonstrably attracted frugivorous birds, most notably Pied Currawongs (Strepera graculina ) using the water to regurgitate, any seeds regurgitated into troughs would be unavailable to germinate (Fig 1.).

Figure 1. A Pied Currawong at a water trough in a “Kickstart” pasture conversion plot. [See Elgar, A.T., Freebody, K., Pohlman, C.P., Shoo, L.P. & Catterall, C.P. (2014) Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Frontiers in Plant Science 5: 200. http://dx.doi.org/10.3389/fpls.2014.00200]

Figure 1. A Pied Currawong at a water trough in a “Kickstart” pasture conversion plot. [See Elgar, A.T., Freebody, K., Pohlman, C.P., Shoo, L.P. & Catterall, C.P. (2014) Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Frontiers in Plant Science 5: 200. http://dx.doi.org/10.3389/fpls.2014.00200%5D

Preliminary trial. Using a commercially available automatic waterer used for poultry, we designed a water point with a water dispenser that is too small for birds to regurgitate or defecate into, allowing expelled seed to fall to the ground.  The device is also simple and relatively cheap to build (<$100 Australian).  Once installed, the device requires little attention because the water remains cool and evaporation is minimal so the water may last several months without replenishing. The waterer, a plastic container which distributes water to a small dish by the action of a float, sits on a sturdy metal base 1.5m high.  The base has a perch allowing birds of different sizes to access the water from several angles and an attachment for a camera to enable bird visits to be monitored.  We envisage that the water point may facilitate seed dispersal by attracting frugivorous birds that will regurgitate and/or defecate at or near the water point.

We conducted an initial trial at a revegetation site at SFS-CRS in February 2016.  For this trial we baited the water point with Kiwi Fruit (Actinidia sp.) but this was soon consumed by insects. During the trial we recorded two species of fruit-dispersing bird, Pied Currawong and Lewin’s Honeyeater (Meliphaga lewinii) using our prototype water point within one month of its installation in (Fig 2.).

figure-2

Figure 2. A Pied Currawong drinking from a water point (kiwi fruit bait in foreground).

Design of second trial. In July 2016 we established a small trial at SFS-CRS to test the relative efficacy of perches alone versus perches coupled with our water point device in facilitating seed dispersal into cleared sites that lack remnant or planted trees.  We have nine fenced 3m2 plots in ungrazed former pasture, 15m from the edge of primary rainforest (Fig 3.).  Six plots have a perch, 3-4m high, cut to standard form from Sarsaparilla (Alphitonia petriei) trees.  Three of these plots also have a water point placed close to the base of the perch and a camera monitoring visits to the water.  Three plots have no structures.

Grass in all plots will be suppressed by herbicide spray (on an ‘as needed’ basis) and seedling recruitment in the plots will be monitored. In the first three months, no birds have been recorded using the water points in the trial plots.

Figure 3. Perch and water device trial plots, September 2016.

Figure 3. Perch and water device trial plots, September 2016.

Contact: Amanda Freeman, Centre Director, The School for Field Studies, Centre for Rainforest Studies, PO Box 141, Yungaburra, QLD 4884, Tel: +61 (7) 40953656; Email:  afreeman@fieldstudies.org

 

 

 

Defining reference communities for ecological restoration of Monjebup North Reserve in Gondwana Link

Justin Jonson

Key words: reconstruction; reference ecosystem; planning; ecosystem assemblage; monitoring

Introduction. Bush Heritage Australia’s (BHA) Monjebup North Reserve is a property that directly contributes to the conservation, restoration and connectivity objectives of Gondwana Link – one of Australia’s leading landscape scale restoration initiatives. Building on a solid history of revegetation projects implemented by collaborators from Greening Australia and individual practioners, the BHA management team initiated and funded a $40K Ecological Restoration Planning Project for 400 hectares of marginal farmland in need of restoration.

The specific aim of the Monjebup North Ecological Restoration Project was to 1) plan and 2) implement a ‘five star’ ecological restoration project as defined by the Gondwana Link Restoration Standards. Overarching goals included the re-establishment of vegetation assemblages consistent with the surrounding mosaic of plant communities, with a specific focus on local fauna and the restoration of habitat conditions to support their populations.

Figure 1: Map showing GPS locations of soil auger sampling locations.

Figure 1: Map showing GPS locations of soil auger sampling locations.

Planning and identification of reference communities for restoration of cleared land. The Monjebup North Ecological Restoration Project began with a third party consultancy contract to develop the Monjebup North Ecological Restoration Plan. This work began with the collection of detailed field data, including 120 soil survey pits collected to define the extent and boundaries between different soil-landform units occurring on the site (Fig.1). In the absence of previously defined and/or published information on local plant communities, an additional vegetation survey and report, The Vegetation of Monjebup North, was developed, which included 36 vegetation survey sites widely distributed across the surrounding vegetation (Fig.2). A total of 10 primary vegetation associations were defined within remnant vegetation on and around the site from this work (Fig.3). Additional soil survey pits were established within these defined plant communities to develop relationships between observed vegetation associations and soil-landform units. Cross referencing this information to the 400 hectare area of cleared land resulted in the delineation of seven core reference communities to guide the restoration project. These restoration communities ranged from Banksia media and Eucalyptus pluricaulis Mallee Scrub associations on spongelitic clay soils, to Eucalyptus occidentalis (Yate) Swamp Woodland associations located in low-lying areas where perched ephemeral swamps exist.

Figure 2: Map showing GPS locations of flora survey sampling sites.

Figure 2: Map showing GPS locations of flora survey sampling sites.

Figure 3: Output map of dominant vegetation associations at Monjebup North Reserve.

Figure 3: Output map of dominant vegetation associations at Monjebup North Reserve.

Figure 4: Mosaic of plant communities replanted at Monjebup North in 2012 using direct seeding and hand planted seedlings. A tractor fitted with GPS unit enables real time seeding passes, as shown on the map.

Figure 4: Mosaic of plant communities replanted at Monjebup North in 2012 using direct seeding and hand planted seedlings. A tractor fitted with GPS unit enables real time seeding passes, as shown on the map.

Figure 5: Mosaic of plant communities replanted at Monjebup North in 2013 using direct seeding and hand planted seedlings. A tractor fitted with GPS unit enables real time seeding passes, as shown on the map.

Figure 5: Mosaic of plant communities replanted at Monjebup North in 2013 using direct seeding and hand planted seedlings. A tractor fitted with GPS unit enables real time seeding passes, as shown on the map.

Seed sourcing. Seed from approximately 119 species were collected on and around the site for the restoration works. Seed collections for some species were collected from a number of geographically separate sub-populations, however these were never located further than 10 kilometers from site. Collections were made from at least 20 individuals for each species, and preference was made in collecting from populations which had 200+ individuals.

The primary on-ground works were initiated across four years from 2012 to 2015, starting with a 100 ha project area in 2012 (Fig.4), and a 140 ha area in the following year (Fig.5), both by Threshold Environmental Pty Ltd. A combination of direct seeding and hand planted seedlings treatments were employed, where seed mixes were developed to achieve the bulk of plant recruitment across each of the soil-land form units, and nursery grown seedlings were planted by hand for species found to be difficult to establish from direct seeding or for which stocking densities were to be more closely controlled. This work involved 13 communities and 148 species.

A number of innovative operational treatments were employed. These included grading 5 kilometers of contour banks and spreading chipped vegetation and seed pods, and 180 in situ burning patches where branch and seed material from fire-responsive serotinous species were piled and burned (Fig.6 before, Fig.7 after). Seedlings for rare, high nectar producing plant species were also planted in 203 discrete ‘node’ configurations. Habitat debris piles made of on-site stone and large branch materials were also constructed at 16 locations across the 2012 project areas.

Fig.6 In situ burning of serotinous branch and seed material

Figure 7: Photo of Dryandra nervosa juvenile plants establishing from one of the in situ burn pile locations. Other species used for this technique included Dryandra cirsioides, Dryandra drummondii, Hakea pandanicarpa, Isopogon buxifolius, and Hakea corymbosa.

Figure 7: Photo of Dryandra nervosa juvenile plants establishing from one of the in situ burn pile locations. Other species used for this technique included Dryandra cirsioides, Dryandra drummondii, Hakea pandanicarpa, Isopogon buxifolius, and Hakea corymbosa.

Monitoring. Monitoring plots were established to evaluate the direct seeded revegetation, as presented in the Project Planting and Monitoring Report 2012-2013. Fauna monitoring has also been undertaken by BHA using pit fall traps, LFA soil records, and bird minute surveys.

Results to date. Monitoring collected from post establishment plots in from the 2012 and 2013 areas (2 years after seeding) showed initial establishment of 2.4 million trees and shrubs from the direct seeding (Fig.8 and Fig.9). Results of faunal monitoring are yet to be reported, but monitoring at the site for vegetation and faunal is ongoing.

Figure 8: Graphic representation of monitoring results from 2012 and 2013 operational programs showing scaled up plant counts across the plant community systems targeted for reconstruction.

Figure 8: Graphic representation of monitoring results from 2012 and 2013 operational programs showing scaled up plant counts across the plant community systems targeted for reconstruction.

Figure 9: Photo showing 3 year old establishment and growth of a Banksia media/Eucalyptus falcata Mallee shrub plant community with granitic soil influence from the 2012 Monjebup North restoration project.

Figure 9: Photo showing 3 year old establishment and growth of a Banksia media/Eucalyptus falcata Mallee shrub plant community with granitic soil influence from the 2012 Monjebup North restoration project.

Lessons learned and future directions. The decision to develop a restoration plan in advance of undertaking any on-ground works was a key component contributing to the success of the project to date. Sufficient lead time for contracted restoration practioners to prepare (>12 months) was also a key contributor to the success of the delivery. Direct collaboration with seed collectors with extensive local knowledge also greatly benefited project inputs and outcomes.

Stakeholders and Funding bodies. Major funding for the project was provided by Southcoast Natural Resource Management Inc., via the Federal Government’s National Landcare Program and the Biodiversity Fund. Of note is also Bush Heritage Australia’s significant investment in the initial purchase of the property, without which the project would not have been possible.

Contact information. Justin Jonson, Managing Director, Threshold Environmental, PO BOX 1124, ALBANY WA 6330 +61 427 190 465; jjonson@thresholdenvironmental.com.au

See also EMR summary Peniup

 Watch video: Justin Jonson 2014 AABR presentation

Subtropical rainforest restoration at the Rous Water Rainforest Reserve, Rocky Creek Dam, 1983 – 2016

Key words: Lowland subtropical rainforest, ecosystem reconstruction, drinking water catchment, continual improvement process.

Introduction. Rous Water is actively engaged in ecosystem reconstruction within the drinking water catchment areas it manages on behalf of the community. The aim of these activities is to improve the functioning of essential natural processes that sustain water quality. The methodology used for rainforest restoration by Rous Water has evolved over time through an ‘adaptive management’ process at Rocky Creek Dam. This adaptive management approach has demonstrated that effective large scale sub-tropical regeneration at Rocky Creek Dam is achieved through complete removal of competing plants. The technique has become known as the Woodford Method and is now being applied at other Rous Water restoration sites.

The Rous Water Rainforest Reserve at Rocky Creek Dam is set in the northern headwaters of the Richmond River catchment, on the southern rim of the Tweed shield volcano. Basalt flows from the volcano have produced nutrient rich Red Ferrosol that supported diverse sub-tropical rainforest ecosystems across the region, until the rainforest was largely cleared for agriculture in the late 19th century. The Rocky Creek Dam site is adjacent to the Big Scrub Flora Reserve, the largest remaining remnant subtropical rainforest in the region. This reserve acts as a reference site for the restoration project (Fig 1).

Figure 1. Detail of the regeneration areas at Rocky Creek Dam, showing the areas treated and the year of the initial works

Figure 1. Detail of the regeneration areas at Rocky Creek Dam, showing the areas treated and the year of the initial works

Clearing of land in the vicinity of Rocky Creek Dam by early settlers commenced in the 1890s, with the cleared lands used for the establishment of dairy farms and a sawmill. In 1949, following acquisition of the site by Rous County Council (now Rous Water) for the construction of a water supply dam, this former farmland had reverted to weedy regrowth characterised by a mosaic of native/exotic grass, Lantana (Lantana camara) and Camphor Laurel (Cinnamomum camphora) which supressed any expansion or recovery of scattered rainforest remnants. Transformation of the site commenced in 1983 when Rous Water became actively engaged in ecosystem recovery by systematically removing weeds that suppressed rainforest regeneration, a practice that continues today.

Rainforest restoration methods. The practices and management tools used in rainforest restoration at the site have been previously described by Woodford (2000) and Sanger et al. (2008). The work method typically involves the systematic poisoning and slashing of weeds to promote recruitment of rainforest plants from the soil seed bank and then to facilitate the growth of suppressed rainforest plants, providing a structural framework for further seed dispersal by wind and, particularly, flying frugivores and thus further colonisation by later phase rainforest trees.

Since 1983, an area of approximately 70 ha has been progressively treated in 1-2 ha blocks using this methodology (refer Fig 1), with progressively diminishing amounts of follow-up treatment needing to be conducted in the treated areas over subsequent years to secure successional progression of the rainforest species.

Use of this method means that, due to recruitment from the seed bank and the use of stags (from dead camphor laurel) as perches for seed dispersing birds, very limited planting has been required on the site. This has preserved the genetic integrity of the Big Scrub in this location.

Results. A total of approximately 70 hectares of weed dominated regrowth has been treated at the Rous Water Rainforest Reserve since commencement in 1983 (Figure 1). This is approximately 35 ha since the report previously published in 2000 and represents approximately 30 % of the Rous Water property at Rocky Creek Dam.

This progressive treatment of compartments of weedy regrowth at Rocky Creek Dam has continued to lead to rapid canopy closure by shorter lived pioneer and early secondary tree species, with a gradual progression to higher proportions of later secondary and primary species with increasing time since treatment. All tree species that are listed as occurring in the reference site are not only now present in the restoration area, but informal observations suggest that most, if not all, are increasing in abundance over time (Figs 2-6)

Figure 2. Treated regrowth at the Rous Water Rainforest Reserve, Rocky Creek Dam After 1 year (foreground)

Figure 2. Typical regeneration of rainforest species 1 year after Lantana removal at the Rous Water Rainforest Reserve, Rocky Creek Dam (foreground).

Figure 3. Same photopoint after 6 years

Figure 3. Typical recovery after 6 years

Figure 4. Same photopoint after 12 years

Figure 4. Typical recovery after 12 years

Figure 5. Same scenario after 20 years

Figure 5. typical recovery after 20 years

Figure 6. After 30 years

Figure 6. Typical recovery after 30 years

The structure of the older treated regrowth areas sites appears to be converging on rainforest conditions, as noted by Kanowski & Catterall (2007). Thackway & Specht (2015) depict how 25 ha of systematically treated compartments that were covered almost entirely with lantana are progressing back towards the original Lowland Subtropical Rainforest’s composition, structure and ecological function (Fig 7). Overall the vegetation status in this area was assessed at between 85% and 90% of its pre-clearing status.

This process is, at its oldest 33 years old and in some locations much younger. So it is clear that the development of the subtropical vegetation still has many decades, possibly centuries, to go, before it approaches the composition, structural and habitat characteristics of a primary forest. Notwithstanding the large areas of natural regrowth that are yet to be worked, it is evident that a large proportion of the assisted regeneration areas progressively worked by Rous over the past 33 years now requires only a low level of ongoing maintenance. This shows that these sites are maturing over time and have largely reached a self-organising state, and in the fullness of time will achieve a high degree of similarity to the reference state.  (A recovery wheel for one subsite is shown in Fig 8)

Fig 7, Thackway fig rocky creek dam1

Figure 7. Assessment of change in indicators of vegetation condition in a 25 ha area. This depicts the degree of recoveery of Lowland Subtropical Rainforest found at Rocky Creek Dam, Big Scrub, NSW against a pre-clearing reference. (Graph reproduced with permission. The method used to generate the graph is described in Thackway, R. and Specht, A., (2015). Synthesising the effects of land use on natural and managed landscapes. Science of the Total Environment. 526:136–152 doi:10.1016/j.scitotenv.2015.04.070. ) Condition indices for transition Phase 4 were derived from prior reports including Sanger et al. 2008 and Woodford 2000. Metadata can be viewed at http://portal.tern.org.au/big-scrub-rocky-queensland-brisbane/16908 .

Lessons learned. Using this method of harnessing the natural resilience processes of the rainforest, we have been able to progress the recovery of an important water catchment area, restoring very high biodiversity conservation values in a landscape where rainforest was, and remains, in serious decline., The ability of the high resilience sites at Rocky Creek Dam to respond to the Woodford Method is clearly demonstrated, but there is ample evidence that application of this and similar resilience-based rainforest restoration methods can harnessed resilience at other sites in the Big Scrub that are at greater distances from remnants.

Figure 8. Distribution of management intensity classes across the Rous Water Rainforest Reserve at Rocky Creek Dam.

Figure 8. Distribution of management intensity classes across the Rous Water Rainforest Reserve at Rocky Creek Dam. (Legend for this map is in Appendix 1)

Current work and future directions. Work continues at the site and management is supportive of-site evaluation to assess the extent to which the treated areas are undergoing successional development using a range of available assessment tools.

To assist future planning, and in order to address the issue of how to best estimate and plan for restoration works and associated costs, Rous Water has adapted the methodology developed on the Tweed-Byron Bush Futures Project, where each restoration site/area was assigned a Management Intensity Class (MIC) based on a generalised assessment of site condition, weed composition and cover and other management requirements. (Fig 8) The MIC describes the frequency of restoration work required to restore the site to a minimal maintenance level and how many years this would take to achieve. The MIC aims to describe the extent of management intervention necessary to restore the site to a minimal maintenance level. For this analysis this equates to the establishment of a self sustaining sub-tropical rainforest buffer zone. Each management intensity class is associated with a particular restoration trajectory/cost per hectare, based on visitation frequency by a standard 3 person team and expressed in terms of number of visits required to control / manage weeds. Appendix 1 below shows details of the MIC classification, showing for each class, relevant site criteria, and the estimated level of bush regeneration resources required to bring each class to a low maintenance level.

Contact: Anthony Acret, Catchment Assets Manager,  Rous Water. Tel: +61 (0) 2 6623 3800, Email: anthony.acret@rouswater.nsw.gov.au

Rocky Creek Dam recovery wheel adjacent to Forest Edge

Appendix 1. Legend for Management intensity classes used in Fig 8. (From Tweed-Byron Bush Futures)

Appendix 1. Legend for Management intensity classes used in Fig 8.

Brush pack experiment in restoration: How small changes can avoid leakage of resources and underpin larger scale improvements for restoration and rehabilitation

David Tongway and John Ludwig

Key words: Landscape Function Analysis, biological foci, water harvesting, desertification, erosion

The following experiment illustrates how relatively small changes to redirect water flow can capture water and other biological resources at a restoration site. However the process occurs not only at the micro scale but cumulates to site and landscape scales, making it a primary underpinning principles of a method of site analysis, Landscape Function Analysis (LFA) that has been applied across Australia and other countries to assist land managers counter desertification by redesigning processes that regulate the flow of resources, minimise losses and foster cycling. See http://members.iinet.net.au/~lfa_procedures/

The LFA mindset and methodology involve a purposeful change of focus from listing the biota/ species present or absent at a site, to an examination of the degree to which biophysical processes deal with vital resources with respect to stresses arising from management and climatic events.

Fig 1 before

Fig. 1. Before: bare, crusted, low OC soil, erosion, and high water runoff mainitained by low but persistent, set-stock grazing by sheep and kangaroos.

Fig 2. after treatment

Fig. 2. The restoration treatment was simply to build brush-packs across the contour to trap water, soil and plant litter, slowing overland outflow. This also prevented the grazing down to ~1cm. Grass plants were able to maintain about 10cm of photosynthetic tissue.

Fig 4

Fig 3. After 7 years. Clearly the soil properties have improved the ‘habitat quality’ for the target vegetation.

Fig 5 14 years after

Figure 4. After 14 years, native vegetation re-established.

Fig 3. detail of bushpack after 3 years.

Fig 5. Detail of the brushpack after 3 years showing micro-structures capable of slowing water and accumulating resources.

1. tongway table

ANOTHER KEY OBSERVATION RELEVANT TO RESTORATION AND REHABILITATION

Where resources are not captured or leak out of a system, patchiness will become evident as resources self-organise around foci of accumulation – creating ‘patches’ where resources accumulate and ‘interpatches’ from which they ‘leak’.

The Golden Rule for rehabilitation is: “Restore/replace missing or ineffective processes in the landscape in order to improve the soil habitat quality for desired biota.”

Fig 6. Grassy sward healthy

Fig. 6. A grassy sward patch where the grass plants are close enough together that the water run-off is unable to generate enough energy to redistribute the grassy litter, which is evenly distributed. (The slope is from top to bottom in the image.)

There is also no evidence of sediment transport (not visible in this image). This is because of the tortuous path and short inter-grass distance. It would be possible to derive the critical grass plant spacing for “sward” function in any landscape, taking into account slope, aspect and soil texture.

Fig 7. Grassland in patch-interpatch mode, due to exceeding the critical runoff length for erosion initiation. (Slope is from top to bottom.)

Note that litter and sediment have both been washed off the inter-patch and have been arrested by a down-slope grass patch. Note the orientation of the grassy litter strands.