Category Archives: Threatened species & communities

The Tiromoana Bush restoration project, Canterbury, New Zealand

Key words: Lowland temperate forest, animal pest control, weed control, restoration plantings, public access, cultural values, farmland restoration

Introduction. Commencing in 2004, the 407 ha Tiromoana Bush restoration project arose as part of the mitigation for the establishment of the Canterbury Regional Landfill at Kate Valley, New Zealand. The site lies one hour’s drive north of Christchurch City in North Canterbury coastal hill country (Motunau Ecological District, 43° 06’ S, 172° 51’ E, 0 – 360 m a.s.l.) and is located on a former sheep and beef farm.

Soils are derived from tertiary limestones and mudstones and the site experiences an annual rainfall of 920mm, largely falling in winter. The current vegetation is a mix of Kānuka (Kunzea robusta) and mixed-species shrubland and low forest, restoration plantings, wetlands, Gorse (Ulex europaeus) and European Broom (Cytisus scoparius) shrubland and abandoned pasture. Historically the area would have been forest, which was likely cleared 500-700 years ago as a result of early Māori settlement fires. A total of 177 native vascular plant and 22 native bird species have been recorded, including four nationally threatened species and several regionally rare species.

Before and after photo pair (2005-2018). showing extensive infilling of native woody vegetation on hill slopes opposite, restoration plantings in the central valley, and successional change from small-leaved shrubs to canopy forming trees in the left foreground. (Photos David Norton.)

 

Project aims. The long-term vision for this project sees Tiromoana Bush, in 300 years, restored to a: “Predominantly forest ecosystem (including coastal broadleaved, mixed podocarp-broadleaved and black beech forests) where dynamic natural processes occur with minimal human intervention, where the plants and animals typical of the Motunau Ecological District persist without threat of extinction, and where people visit for recreation and to appreciate the restored natural environment.”

Thirty-five year outcomes have been identified that, if achieved, will indicate that restoration is proceeding towards the vision – these are:

  1. Vigorous regeneration is occurring within the existing areas of shrubland and forest sufficient to ensure that natural successional processes are leading towards the development of mature lowland forest.
  2. The existing Korimako (Bellbird Anthornis melanura) population has expanded and Kereru (Native Pigeon Hemiphaga novaeseelandiae) are now residing within the area, and the species richness and abundance of native water birds have been enhanced.
  3. The area of Black Beech (Fuscospora solandri) forest has increased with at least one additional Black Beech population established.
  4. Restoration plantings and natural regeneration have enhanced connectivity between existing forest patches.
  5. Restoration plantings have re-established locally rare vegetation types.
  6. The area is being actively used for recreational, educational and scientific purposes.

Day-to-day management is guided by a five-year management plan and annual work plans. The management plan provides an overview of the approach that is being taken to restoration, while annual work plans provide detail on the specific management actions that will be undertaken to implement the management plan.

Forest restoration plantings connecting two areas of regenerating Kānuka forest. Photo David Norton.

 

Restoration approach and outcomes to date. The main management actions taken and outcomes achieved have included:

  • An Open Space Covenant was gazetted on the title of the property in July 2006 through the QEII National Trust, providing in-perpetuity protection of the site irrespective of future ownership.
  • Browsing by cattle and sheep was excluded at the outset of the project through upgrading existing fences and construction of new fences. A 16 km deer fence has been built which together with intensive animal control work by ground-based hunters has eradicated Red Deer (Cervus elaphus) and helped reduce damage caused by feral pigs (Sus scrofa domesticus).
  • Strategic restoration plantings have been undertaken annually to increase the area of native woody and wetland vegetation, as well as providing food and nesting resources for native birds. A key focus of these has been on enhancing linkages between existing areas of regenerating forest and re-establishing rare ecosystem types (e.g. wetland and coastal forest).
  • Annual weed control is undertaken focusing on species that are likely to alter successional development (e.g. wilding conifers, mainly Pinus radiata, and willows Salix cinerea and fragilis) or that have the potential to smother native regeneration (e.g. Old Man’s Beard Clematis vitalba). Gorse and European Broom are not controlled as they act as a nurse for native forest regeneration and the cost and collateral damage associated with their control will outweigh biodiversity benefits.
  • Establishment of a public walking track was undertaken early in the project and in 2017/2018 this was enhanced and extended, with new interpretation included. Public access has been seen as a core component of the project from the outset so the public can enjoy the restoration project and access a section of the coastline that is otherwise relatively inaccessible.
  • Part of the walkway upgrade included working closely with the local Māori tribe, Ngāi Tūāhuriri, who have mana whenua (customary ownership) over the area. They were commissioned to produce a pou whenua (land marker) at the walkway’s coastal lookout. The carvings on the pou reflect cultural values and relate to the importance of the area to Ngāi Tūāhuriri and especially values associated with mahinga kai (the resources that come from the area).
  • Regular monitoring has included birds, vegetation and landscape, with additional one-off assessments of invertebrates and animal pests. Tiromoana Bush has been used as the basis for several undergraduate and postgraduate student research projects from the two local universities.
Vigorous regeneration of Mahoe under the Kānuka canopy following exclusion of grazing animals. Photo David Norton.

 

Lessons learned. Important lessons learned over the 15-years have both shaped the approach to management at this site and have implications for the management of other projects:

  • Control of browsing mammals, both domestic and feral, has been essential to the success of this project. While domestic livestock were excluded at the outset of the project, feral Red Deer and pigs have the potential to seriously compromise restoration outcomes and these species have required additional management inputs (fencing and culling).
  • Since removal of grazing, the dominant exotic pasture grasses, especially Cocksfoot (Dactylis gomerata), now form tall dense swards. These swards severely restrict the ability of native woody plants to establish and herbicide control is used both pre- and post-planting to overcome this. During dry summers (which are common) the grass sward is also a significant fuel source and the walkway is closed during periods of high fire risk to avoid accidental fires which would decimate the restoration project.
  • Regular monitoring is important for assessing the biodiversity response to management. Annual photo-monitoring now spanning 15-years is highlighting significant changes in land cover across the site, while more detailed monitoring of plants and birds is strongly informing management actions. For example, seven-years of bird monitoring has indicated an ongoing decline in some native birds that is most likely due to predation (by cats, mustelids, rodents, hedgehogs). As a result, a predator control programme is commencing in 2019.
  • Simply removing grazing pressure from areas of existing regenerating native woody vegetation cannot be expected to result in the return of the pre-human forest because of the absence of seed sources. Permanent plots suggest that Kānuka is likely to be replaced by Mahoe (Melicytus ramiflorus), with few other tree species present. Gap creation and enrichment planting is therefore being used to speed up the development of a more diverse podocarp-angiosperm forest canopy.
Kate Pond on the Tiromoana Bush walkway. The pond and surrounding wetland provides habitat for several native water birds. Photo Jo Stilwell.
The pou whenua on the coastal lookout platform looking north up the coastline. Photo David Norton.

 

Looking to the future. Considerable progress in restoring native biodiversity at Tiromoana Bush has been achieved over the last 15 years and it seems likely that the project will continue to move towards achieving its 35-year outcomes and eventually realising the long-term vision. To help guide management, the following goals have been proposed for the next ten-years and their achievement would further help guarantee the success of this project:

  • The main valley floor is dominated by regenerating Kahikatea (Dacrycarpus dacrydioides) forest and wetland, and the lower valley is dominated by regenerating coastal vegetation.
  • At least one locally extinct native bird species has been reintroduced.
  • Tiromoana Bush is managed as part of a wider Motunau conservation project.
  • The restoration project is used regularly as a key educational resource by local schools.
  • The walkway is regarded as an outstanding recreational experience and marketed by others as such.
  • Tiromoana Bush is highly valued by Ngāi Tūāhuriri.
Kereru, one of the native birds that restoration aims to help increase in abundance. Photo David Norton.

 

Stakeholders and funding. The project is funded by Transwaste Canterbury Ltd., a public-private partnership company who own the landfill and have been active in their public support for the restoration project and in promoting a broader conservation initiative in the wider area. Shareholders of the partnership company are Waste Management NZ Ltd, Christchurch City Council and Waimakariri, Hurunui, Selwyn and Ashburton District Councils.

Contact Information. Professor David Norton, Project Coordinator, School of Forestry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand. Phone +64 (027) 201-7794. Email david.norton@canterbury.ac.nz

Lord Howe Island biodiversity restoration and protection programs, NSW, Australia

Hank Bower

Key words: Pest species management, weed control, community engagement.

Figure 1. Weeding teams apply search effort across near 80% of island terrain, their effort monitored through record of GPS track logs across designated weed management blocks. Target weeds on LHI are mostly bird dispersed requiring landscape scale for sustainable and long-term protection from weeds. The remaining 20% of island is subject to surveillance and with investigation of new technical approaches in weed detection using drones.

Introduction: Lord Howe Island (LHI) is located in the Tasman Sea 760 km northeast of Sydney and 570 km east of Port Macquarie. In 1982 the island was inscribed on the World Heritage (WH) List under the United Nations’ World Heritage Convention in recognition of its superlative natural phenomena and its rich terrestrial and marine biodiversity as an outstanding example of an island ecosystem developed from submarine volcanic activity.

The island supports at least 80% cover of native vegetation, broadly described as Oceanic Rainforest with Oceanic Cloud Forest on the mountain summits.  LHI vegetation comprises 239 native vascular plant species with 47% being endemic. Forest ecosystems on LHI are largely intact, but at threat from invasive species and climate change. About 75% of the terrestrial part of the WH property is recognised as a Permanent Park Preserve (PPP) managed on behalf of the New South Wales government by the Lord Howe Island Board on the basis of a holistic conservation and restoration plan (Lord Howe Island Biodiversity Management Plan LHI BMP 2007).

Since settlement of the island in 1834, introduced and invasive plant and animal species have been affecting the Lord Howe Island environment, causing declines in biodiversity and ecosystem health. There have been 11 known extinctions and severe declines in numbers of fauna species including the flightless Lord Howe Woodhen (Hypotaenidia sylvestris), once regarded as one of the rarest birds in the world.  The Lord Howe Island Phasmid (Dryococelus australis), the world’s largest stick insect was feared extinct until the rediscovery of live specimens on Balls Pyramid in 2001. Some 29 species of introduced vertebrates and about 271 species of introduced plant species have naturalised on the island. At least 68 species are the focus for eradication (Fig 1), with 10 main invasive species having colonised extensive areas of the settlement and the PPP, posing a serious threat to island habitats. One of the most serious weeds, Ground Asparagus (Asparagus aethiopicus), for example, was so prolific in the forest understory it completely overwhelmed native vegetation and bird breeding grounds. Weeds are prioritised for eradication following a Weed Risk Assessment and are typically species that are at low density, are localised and/or are limited to gardens, and species with known weed characteristics (e.g. wind or bird dispersed seeds) that have yet to express their weed potential. Identifying species for early intervention is important to prevent their establishment and expansion, particularly post rodent eradication. For example, the removal of 25 individual Cats Claw Creeper in 2006 (which have not been detected since) supports the case for proactive weed management.

The islands limited size and isolation provides great opportunities to achieve complete removal and eradication of key invasive species.  Therefore particular strategies identified in the LHI BMP to effect ecosystem recovery include the management and eradication of invasive weeds, rodents, tramp ants and protection from plant diseases and pathogens.  All projects are delivered at an island wide scale, which incorporates a permanent population of 350 residents and a tourist bed limit of 400.

Works undertaken   Progressive programs to eradicate feral animals commenced in 1979 with the eradication of pig Sus scrofa, cat Felus catus in 1982, goat Capra hircus in 1999 and African Big-headed Ant Pheidole megacephala in 2018. Threatened fauna recovery programs include the captive breeding of Lord Howe Woodhen following the eradication of cats, establishing a captive breeding and management program for the Lord Howe Island Phasmid and the planning and gaining of approvals to implement the eradication program for Black Rat Rattus rattus, House Mouse Mus musculus and introduced Masked Owl Tyto novehollandiae commencing in 2019.

The island wide strategic Weed Eradication Program commenced in 2004, building on earlier years of ad-hoc control effort.  Over 2.4 million weeds have been removed through more than 170,000 hours of grid search method.  Now, near mid-way point of a 30-year LHI Weed Eradication Project (LHIWEP), teams have reduced weed infestations (of all life stages) by 80%.  Ten year program results of the LHIWEP are summarised (LHIB 2016 – Breaking Bad) http://www.cabi.org/isc/abstract/20163360302, which clearly shows the significance of multi-invasive species management to achieve ecosystem recovery.

With the spread of Myrtle Rust Austropuccinia psidii to the Australian mainland in 2010 the LHI Board has been on high alert.  With five endemic plants at risk to this pathogen the LHIB provided training and information to the community on the threats to the island and food plants. The LHIB prepared a Rapid Response Plan and a Rapid Response Kit (fungicides and Personal Protective Equipment). In October 2016 Myrtle Rust was detected on exotic Myrtaceae species, from three leases and subsequently treated in November 2016. This also resulted in the eradication of three highly susceptible exotic myrtaceous plant species from the island.

The root fungus Phytophthora cinnamomi is known from one lease and has been quarantined and treated with granular fungicide quarterly. Periodic monitoring has shown the infestation to be reducing with the eventual aim of eradication. Boot sanitization stations located at all track heads applies effort to prevent introduction of root rot fungus and other soil borne pathogens from users of the walking track system in the PPP.

The LHI Board has carried out a range of local community engagement and visitor education programs to raise awareness of the risks and threats to the island environment and of the LHIB environmental restoration and protection programs. These include a LHI User Guide for visitors to the island and a citizen science program with the LHI Museum, establishing the LHI Conservation Volunteer program to help improve awareness of the importance of LHI conservation programs to both tourists and tourism business. Since 2005, over 150 volunteers supported by the LHIB and external grants have been engaged through the weed eradication project. Increasingly, LHI residents are volunteering to gain experience and to improve employment opportunities in restoring their island. Another long-term partner, Friends of Lord Howe Island, provide invaluable volunteer assistance with their Weeding Ecotours, contributing more than 24,000 hours of weeding building valuable networks.

Biosecurity awareness is critical to protect the investment in conservation programs and the environment to future threats. The LHI Board provide information regarding biosecurity risks to the community, stevedores and restaurateurs. The LHIB now hold two biosecurity detection dogs and handlers on island (Figure 3) whom work with Qantas and freight flights and shipping staff to ensure they are aware of biosecurity risks and plan for appropriate responses.

Results to date.  Achievements include the successful eradication of over 10 weed species, cat, pig, goat, African Big-headed Ant and Myrtle Rust. A further 20+ weeds are considered on the verge of being able to be declared eradicated in coming years with an 80% reduction in weed density island wide and a 90% reduction in the presence of mature weeds. Weed Risk Assessments will be applied to determine the impact or new and emerging weeds and appropriate management actions.

As a result of the eradication of feral pigs and cats and an on-island captive breeding program, the endangered Lord Howe Island Woodhen has recovered to an average of 250 birds. The other eradications, along with the significant reduction in dense and widespread weed invasions, has aided the recovery and protection of numerous endemic and threatened species and their habitats. The program’s significant outcomes have been recognised through the IUCN Conservation Outlook which in 2017 scored the Lord Howe Island Group’s outlook as good, primarily due to the success of projects that have, are being and are planned to be implemented to restore and protect the islands unique World Heritage values. In late 2018 the program received awards for excellence from the Society for Ecological Restoration Australasia (SERA), Green Globe and Banksia Foundations, acknowledging the sustained effort from the Board and Island community in working to restore and protect the island.

Lessons learned and future directions:  The main keys to success has been obtaining expert scientific and management input and actively working with, educating and involving the community (lease holders and local businesses) to help achieve the solution to mitigate and remove invasive species.

The Rodent Eradication Program scheduled for winter 2019 will result in less browsing pressure on both native and invasive plants species, as well as the removal of two domestic pests. Prior to the program the LHIB has targeted the control of introduced plants, currently in low numbers, that may spread after rodent eradication. Monitoring programs are in place to measure ecosystem response with a particular focus on the Endangered Ecological Community Gnarled Mossy Cloud Forest on the summit of Mt Gower. Should the project be successful, consideration can be given to the reintroduction of captive bred individuals of the Lord Howe Island Phasmid as well as other species confined to offshore islands (e.g. Lord Howe Wood Feeding Roach Panesthia lata) or ecological equivalent species on other islands (Norfolk Boobook Owl Ninox novaeseelandiae, Norfolk Parakeet Cyanoramphus cookii, Norfolk Island Grey Fantail Rhipidura albiscapa and Island Warbler Gerygone igata).

Stakeholders and Funding bodies:  The Program is managed by the Lord Howe Island Board and the NSW Department of Environment and Heritage, in collaboration with the local LHI community.

The LHI Board acknowledge the generations of islander stewardship, teams on ground, researchers, the funding and support agencies, all who made it happen. These include but are not limited to NSW Environmental Trust, Caring for Our Country, National Landcare Program, North Coast Local Land Services, Zoos Victoria, Taronga Zoo, Australian Museum, CSIRO, Friends of LHI, the Norman Wettenhall Foundation and Churchill Trust.

Contact: Hank Bower, Manager Environment/World Heritage, Lord Howe Island Board, PO Box 5, LORD HOWE ISLAND, NSW 2898, Tel: +61 2 65632066 (ext 23), Fax: 02 65632127, hank.bower@lhib.nsw.gov.au

Video conference presentation: https://www.aabr.org.au/portfolio-items/protecting-paradise-restoring-the-flora-and-fauna-of-world-heritage-listed-lord-howe-island-hank-bower-and-sue-bower-lhi-board-aabr-forum-2016/

Recovery of indigenous plants and animals in revegetated areas at ‘The Waterways’, Victoria.

Photo 1.  Aerial view of Waterways from the west

By Damien Cook

 Introduction. Waterways is a 48-hectare restoration project located on Mordialloc Creek in Melbourne’s south- eastern suburbs which combines a housing estate with large areas of restored habitat set aside for indigenous fauna and flora in open space, lakes and other wetlands (see Photo 1).

Prior to restoration the land at Waterways was a property used for grazing horses and supported pasture dominated by exotic species such as Reed Fescue (*Festuca arundinacea) and Toowoomba Canary Grass (*Phalaris aquatica). (Note that an Asterix preceding a scientific name denotes that the species is not indigenous to the local area).

The habitats which are being restored at “The Waterways” reflect those that originally occurred in the Carrum Carrum Swamp, a vast wetland complex which, prior to being extensively drained in the 1870s, stretched from Mordialloc to Kananook and as far inland as Keysborough.

Local reference ecosystems were selected to act as a benchmark for what was to be achieved in each restored habitat in terms of species diversity and cover. Habitat Hectare assessments have been used to monitor the quality of restored vegetation (see Appendix 1).

A total of nine Ecological Vegetation Classes (EVCs, the standard unit of vegetation mapping in Victoria) are being re-established across the site across the following habitats

  • Open water, Submerged Aquatic Herbfields and Exposed Mudflats
  • Densely vegetated marshes
  • Swamp Paperbark Shrubland
  • Tussock Grassland
  • Plains Grassy Woodland

Photo 2. This sequence of photographs, taken over a nine-month period at the Waterways, shows vegetation establishment in a constructed wetland from newly constructed and bare of native species on the left to well vegetated with a high cover of indigenous plants and minimal weeds on the right.

Works undertaken. Restoration of the site commenced in October 2000. Extensive weed control and earthworks were carried out prior to the commencement of revegetation works, which involved planting, by 2003, over 2 million local provenance, indigenous plants.  Grassland species were planted out of hikos at a density of 5 to 6 per square meter into areas that had been treated with both knock-down and pre-emergent herbicide. Ongoing management of the site has included ecological burning and follow up weed control. When started the Waterways was the largest and most complex ecological restoration project ever undertaken in Victoria.

Results

Plants

Open water, Submerged Aquatic Herbfields and Exposed Mudflats.  Deep, open water areas cover an area of about 30 hectares of the site. Vegetation growing in this habitat includes submerged herb-fields of Pondweeds (Potamogeton species), Eel Grass (Vallisneria australis) and Stoneworts (Chara and Nitella species), which were planted over summer 2000/01.

Densely vegetated marshes. This habitat occupies about 10 hectares of the site, occurring where water is less than 1.5 meters deep around the fringes of the lakes and as broad bands across the wetlands. Swards of large sedges including Tall Spike-rush (Eleocharis sphacelata), Jointed Twig-sedge (Baumea articulata), Leafy Twig-sedge (Cladium procerum) and River Club-rush (Schoenoplectus tabernaemontani); aquatic herb-fields of Water Ribbons (Cycnogeton procerum), Upright Water-milfoil (Myriophyllum crispatum) and Running Marsh-flower (Ornduffia reniformis); as well as meadows supporting rushes, sedges and amphibious herbs. Localized areas with high salinity (4000 to 12 000 ppm) have been planted with a halophytic (salt tolerant) community including Sea Rush (Juncus krausii), Australian Salt-grass (Distichlis distichophylla), and Shiny Swamp-mat (Selliera radicans). Planting began in the marshes at the Waterways in October 2000 and vegetation established very rapidly in most areas (see Photo 2). This vegetation type provides habitat for the locally vulnerable Woolly Water-lily (Philydrum lanuginosum).

Swamp Paperbark Shrubland covers about 8 hectares, consisting of a 1ha remnant and additional areas that were planted in spring/summer 2001. As this shrubland habitat matures it is forming a dense canopy of species including Swamp Paperbark (Melaleuca ericifolia), Prickly Moses (Acacia verticillata subsp. verticillata), Manuka (Leptospermum scoparium), Woolly Tea-tree (Leptospermum lanigerum), Tree Everlasting (Ozothamnus ferrugineus) and Golden Spray (Viminerea juncea).

Photo 3. Rare plant species that have been established in restored native grasslands at “Waterways” include Grey Billy-buttons (Craspedia canens), Matted Flax-lily (Dianella amoena) and Pale Swamp Everlasting (Coronidium gunnianum).

Tussock Grassland covers about four hectares at the Waterways between two major wetland areas. About a third of this habitat was planted in spring 2001, with the remainder in spring 2002. The dominant plants of this habitat are tussock-forming grasses including wallaby grasses (Rytidosperma species), Kangaroo Grass (Themeda triandra) and Common Tussock Grass (Poa labillardierei var. labillardierei). A diverse array of native wildflowers occurs amongst these grasses. Rare plant species that have been established in this habitat zone include Grey Billy-buttons (Craspedia canens), Matted Flax-lily (Dianella amoena) and Pale Swamp Everlasting (Coronidium gunnianum, see Photo 3).

Plains Grassy Woodland This habitat type occurs in mosaic with Tussock grassland and differs in that it supportsscattered trees and clumps of shrubs. River Red Gum (Eucalyptus camaldulensis subsp. camaldulensis) and Swamp Gum (Eucalyptus ovata var. ovata) have been planted so that they will eventually form an open woodland structure. Other tree and tall shrub species planted in this habitat include Drooping Sheoak (Allocasuarina verticillata), Blackwood (Acacia melanoxylon) and the tree form of Silver Banksia (Banksia marginata), which is now very uncommon in the local area.

Seasonal Wetlands Small seasonal wetlands occur within Tussock Grassland (see Photo 4). Rare plant species that have been established in this habitat zone include Swamp Billy-buttons (Craspedia paludicola), Woolly Water-lily (Philydrum lanuginosum), Grey Spike-rush (Eleocharis macbarronii), Giant River Buttercup (Ranunculus amplus) and the nationally endangered Swamp Everlasting (Xerochrysum palustre).


Photo 4. Seasonal rain-filled wetland at Waterways

 Animals.

The Waterways is home to 19 rare and threatened fauna species including the nationally endangered Australasian Bittern (Botaurus poiciloptilus), Glossy Grass Skink (Pseudemoia rawlinsoni) and Magpie Goose (Anseranas semipalmata). The successful establishment of diverse vegetation has so far attracted 102 species of native birds, and the wetlands on the site are home to seven species of frogs.

Open water areas support large populations of Black Swans (Cygnus atratus), Ducks (Anas species), Eurasian Coots (Fulica atra), Cormorants (Phalacrocorax and Microcarbo species), Australian Pelicans (Pelecanus conspicillatus) and Australasian Darters (Anhinga novaehollandiae) that either feed on fish and invertebrates or the foliage and fruits of water plants.  As water levels recede over summer areas of mudflat are exposed. These flats provide ideal resting areas for water birds as well as feeding habitat for migratory wading birds including the Sharp-tailed Sandpiper (Calidris acuminata), Red-necked Stint (Calidris ruficollis) and Common Greenshank (Tringa nebularia) that fly from their breeding grounds as far away as Alaska and Siberia to spend the summer in Australia and are protected under special treaties between the Governments of countries through which they travel.

Photo 5. Magpie Geese (Anseranas semipalmata) at Waterways

In 2007 a small group of Magpie Geese (Anseranas semipalmata) became regular visitors to The Waterways (see Photo 5). This species was once extremely abundant in the Carrum Carrum Swamp. However, it was driven to extinction in southern Australia in the early 1900s by hunting and habitat destruction. The Magpie Goose seems to be making a recovery in Victoria, with numbers building up from birds captured in the Northern Territory and released in South Australia that are spreading across to areas where the species formerly occurred.

Seasonal wetlands are important breeding areas for frogs including the Banjo Frog (Limnodynastes dumerilii), Striped Marsh Frog (Limnodynastes peroni) and Spotted Grass Frog (Limnodynastes tasmaniensis) and a range of invertebrates that do not occur in the larger, more permanent storm water treatment wetlands such as Shield Shrimp (Lepidurus apus viridus). Birds which utilize these wetlands for feeding include the White-faced Heron (Egretta novaehollandiae) and Latham’s Snipe (Gallinago hardwickii).

Restored grassland provides an ideal hunting ground for several birds of prey, including the Brown Falcon (Falco berigora), Black-shouldered Kite (Elanus axillaris) and Australian Kestrel (Falco cenchroides). It also provides cover and feeding habitat for insect and seed-eating birds such as the Brown Quail (Coturnix ypsilophora). A flock of about 20 Blue-winged Parrots (Neophema chrysostoma) have been regularly seen in this habitat. These parrots are usually quite uncommon in the Melbourne area. Moist grasslands beside the wetland have been colonised by the vulnerable Glossy Grass Skink (Pseudemoia rawlinsoni) (see Photo 6).

Densely vegetated marshes provide habitat for a diversity of small, secretive birds such as Ballion’s Crake (Porzana pusilla), Little Grassbird (Megalurus gramineus) and Australian Reed Warbler (Acrocephalus australis), which find suitable refuges in the cover provided by dense vegetation. Dense thickets of Swamp Paperbark shrublands provide cover and feeding habitat for Ring-tail Possums (Pseudocheris peregrinus) and bushland birds such the Eastern Yellow Robin (Eopsaltria australis), thornbills (Acanthiza species), Superb Fairy-wren (Malurus cyaneus) and Grey Fantail (Rhipidura albiscapa). As the grassy woodlands mature they are providing structural habitat diversity and accommodating woodland birds such as cuckoos (Cacomantis and Chalcites species) and pardalotes (Pardalotus species).

It will take many years for the River Red Gums to reach a majestic size and stature, and to provide tree hollows which are essential for many species of native fauna. A limited number of tree hollows are provided in the dead trees (stags) that were placed in the Waterways wetlands.

Photo 6. The vulnerable Glossy Grass Skink (Pseudemoia rawlinsoni) at Waterways

The Future. The habitats that have been created at the Waterways are about 18 years old, yet they have already attracted a vast array of native fauna. Waterways is now home to 14 rare and threatened plant species and 19 threatened animal species. There is incredible potential for the area to provide vitally important habitat for an even greater diversity of rare plants and animals as these habitats mature.

If the area is to reach its full potential careful management of weeds and pest animals is required. Ongoing monitoring of flora and fauna is also necessary. These are both areas in which the local community is becoming involved.

Acknowledgements. The high standard of restoration achieved on the Waterways project was due to the project being appropriately funded and because it was managed by ecologists experienced in planning and implementing ecological restoration.  The project was partly funded by Melbourne Water, who are now the managers of the site, and partly by a developer, the Haines Family.  This unique relationship and the generosity and willingness to try something innovative by the developer were important factors in the success of the project.

Contact: Damien Cook (rakali2@outlook.com.au)

Appendix 1. Habitat Hectare results for four quadrats at Waterways, 2006

The ecological restoration of Te Motu Tapu a Taikehu, Hauraki Gulf, New Zealand

The Motutapu Restoration Trust 

Introduction. Te Motu Tapu a Taikehu (Motutapu Island, 1509 ha) is located in the Hauraki Gulf Marine Park, situated on the east coast of the north of New  Zealand’s North Island. It lies immediately adjacent to Rangitoto Island which is a volcano that last erupted approximately 500-550 years ago. This, and previous eruptions would have regularly devastated the forest and wetland ecosystems on Motutapu.

After a history of Maori settlement, European clearing and farming and use for military purposes during WWII, the Island was transferred to what is now the Department of Conservation (DOC) in 1970. The island is now designated a recreation reserve, open to the public.

Pollen records suggest that after the Rangitoto eruptions ceased around AD 1500, Motutapu recovered to be covered by a patchwork of lowland podocarp/broadleaf forest typical of that found in the Auckland region, and presumably was habitat to birds, reptiles, bats, fish and invertebrates similar to those on other Northland islands and the mainland.

Habitat loss through anthropogenic disturbances including fire, clearing for farming, and the introduction of mammalian predators saw many species of native bird, reptile and plants extirpated. Prior to restoration started in 1994, Motutapu was almost entirely covered by pastoral grassland dominated by exotic species, except for a few, very small forest remnants, and a depauperate native faunal communities.

Motutapu Island is a 40-minute ferry journey from Auckland City. Map: Department of Conservation

Restoration project

Planning of the ecological restoration program is undertaken by the Natural Heritage Committee of the Trust, a group of some 15 volunteers who meet monthly to plan, and discuss implementation. Members are highly qualified, skilled and enthusiastic practitioners. Together the committee  brings sound ecological theory and practice to the  restoration of flora and fauna. Published plans they work from include the 1994 Motutapu Restoration Working Plan and subsequent 2010 audit.

The objective is to return the island forest and wetland ecosystems to a post-eruption state, with a goal of reaching 500 ha of restored forest and wetland over coming decades. Although this area is far less than the full area of the island, it allows the conservation of cultural and archaeological sites, such as pā, WWII infrastructure, and farming landscapes. The post-eruption state can be described as lowland mixed broadleaf/podocarp forest, with a suite of seabirds, waders, forest birds, reptiles, bats and invertebrates interacting with each other so that natural evolutionary processes can once more resume for these taxa on the island.

Implementation of the ecological restoration of Motutapu has been underway for 23 years, since the formation of the Motutapu Restoration Trust (MRT) in 1994. To date,  in excess of 100 ha of pasture has been converted  to pioneer forest representing an estimated 450,000+ trees  planted. Volunteer hours total 21,462 between  2005 and 2015, and is currently in excess of 3,200 hours annually.

The major activities of the ecological restoration are:

  • Seed collecting from the island and wider Auckland region
  • Plant propagation in the island nursery – year round
  • Planting in the winter months
  • Weeding year round
  • Fauna translocation and monitoring (birds, reptiles, fish and crustacea) in conjunction with DOC

Planters in action: Photo: MRT

15,136 plants went into Hospital B paddock; one of the most difficult planting sites on the island.
Photo: MRT

Home Bay forest, with Motuihe Island and the Auckland mainland in the background. Photo: MRT

Revegetation. The original strategy (1994 – 2009) was to initiate successional processes by planting pioneer phase species, which would later give way to mature phase species dispersed naturally by birds. However, it was realized that mature phase species would be slow to arrive, as the island is isolated from native forests on nearby islands and seed dispersal from them is unlikely. If seed is dispersed from its own remnant forests, any new forest will continue to reflect the depauperate nature of these remnants.

In 2010, the planting strategy was updated to include enrichment planting of mature phase forest species into the forests planted up to 15 years earlier. Seeds for this were eco-sourced from the wider Auckland region, within boundaries agreed with DOC, and brought to the island nursery for propagation. This was an opportunity to return species to the island that are currently absent, including Swamp Maire (Syzygium maire), Tree  Fuchsia (Fuchsia excorticata),  Pigeonwood (Hedycarya  arborea), White Maire (Nestegis lanceolata), Black Maire (N. cunninghamii), Turepo (Streblus  banksii) and a number  of podocarps including Matai (Prumnopitys taxifolia), Miro (P. ferruginea) and Rimu (Dacrydium cupressinum).

The project has a large nursery, operated by one full time volunteer and supported by other volunteers during the week and weekends. The nursery provides all the plants for the planting programme. Seed is collected by a small team of collectors who travel Auckland’s and the Island’s forest remnants for seeds all year round. Growing media is supplied pro bono by Daltons and Living Earth and delivered by DOC boat. The risk of importing the introduced pests Rainbow Skink (Lampropholis delicata) as eggs and Argentine Ant (Linepithema humile) precludes bringing potted plants onto the island.

Weeds such as Woolly Nightshade (Solanum mauritianum),  Moth  Vine (Araujia  sericifera), Evergreen  Buckthorn (Rhamnus alaternus), Apple of Sodom (Solanum linnaeanum), pampas (Cortaderia  spp.), and Boneseed (Chrysanthemoides monilifera) have been  present on the  island for many years, and in pasture had been kept in check by grazing. However, when pasture is retired, populations of these weeds  explode and threaten the plantings on not only Motutapu  Island, but also by dispersal to neighbouring Hauraki Gulf Islands. In particular, Rangitoto Island is threatened by invasion of weeds from Motutapu.

Weeding of the planted forests takes place in a strategic and planned way year round. Volunteers routinely grid search the plantations and control the infestations (using the hip chain method). Sources of reinfestation on other parts of the island are addressed by contractors who have the training to get at inaccessible weeds (e.g., cliff faces). New drone technology is in the process of being recruited to  identify infestations of weeds  from the  air, where they cannot be seen from the ground, or where access is particularly hazardous (e.g., cliff faces).

Pest species management. The suite of mammalian predators and herbivores on the Island prior to 2009 were detrimental to both flora and fauna, and their continued presence would have meant that neither locally extinct bird and plant species could be reintroduced, nor palatable plant species thrive.  These pests included: rats (Rattus rattus,  R. norvegicus, R. exulans); House Mouse (Mus musculus); Stoat (Mustela erminea); feral Cat (Felis catus); Hedgehog  (Erinaceus  europaeus occidentalis) and the European Rabbit (Oryctolagus cuniculus).

The successful eradication of pests from Motutapu and Rangitoto Islands was undertaken by DOC in 2009 using helicopters to disperse broadifacoum. DOC employs a biosecurity ranger on the island who responds to any new rat, stoat or other incursions.

Recent arrivals of North Island brown kiwi bring the total to 26, closer to the target of 40 required for a founder population. Photo: MRT

Further releases of takahē will bring the breeding
pairs to a total of 20, the largest total outside Fiordland. Photo: MRT

Faunal translocations. A major milestone was the declaration in 2011 of pest-free status for the Island, and the subsequent re-introductions of birds and aquatic taxa that this allowed.

The island’s pest-free status gives safe refuge to some of New Zealand’s rarest bird species. Since it became pest-free, the following rare, endangered and non-threatened species have been translocated:

  • Coromandel Brown Kiwi (Apteryx mantelli)
  • Takahē (Porphyrio hochstetteri)
  • Tīeke (Philesturnus rufusater)
  • Shore Plover (Thinornis  novaeseelandiae)
  • Whitehead (Mohoua albicilla)
  • Pāteke (Anas chlorotis)
  • Redfin bully (Gobiomorphus huttoni)
  • Koura (Paranephrops planifrons)

Survey and Monitoring.  Annual surveys of terrestrial birds and shorebirds by the Ornithological Society of New Zealand have been undertaken since 2007. As well,  a survey of seabirds nesting on the island is underway, and monitoring of translocated birds by MRT volunteers in association with DOC is ongoing. Stream fauna and reptiles are surveyed and reported on annually by DOC.

The Island’s native and exotic plants are also being surveyed to ascertain progress of the recovery over time, and plant survival rates have been monitored informally via regular tours of the plantings to assess what is working and what is not.

Evidence that recovery processes are securely occurring on the island

It is clear that the 100ha of restored vegetation has resulted in natural processes of vegetation recovery occurring, with natural regeneration evident for many species. Once the fruiting forest is fully established on Motutapu Island we envisage that it will be fully self-sustaining via seed dispersal by frugivorous birds.

Populations of fauna, with four exceptions, appear to be self-sustainable on Island. Many of the reintroduced bird species are clearly reproducing on the island and populations are growing without human intervention as evidenced by our bird surveys. The exceptions are Shore plover and Pāteke which naturally disperse away from the Island, necessitating several translocations to ensure the populations build to create a resident population, and are viable. Kiwi and Takahē populations are still being built up to founder population size.

 Bird species (terrestrial diurnal including waders):

  • an increase from 50 species in 2010 to 60 in 2015
  • Re-introduced populations expanding: Takahē, Whitehead,  Tīeke
  • Self-introduced or now detectable: Kākāriki (Cyanoramphus novaezelandiae), Bellbird (Anthornis melanura), Spotless Crake (Porzana tabuensis), Little Blue Penguin (Eudyptula minor), Banded Rail (Gallirallus phillipensis), Grey-faced Storm Petrel (Pterodroma macroptera  gouldi).

Reptiles: Population and range expansions of the four native and one introduced species. The following are the natives:

  • Common Gecko (Woodworthia maculatus): up to ten-fold at some sites since 2008
  • Suter’s Skink (Oligosoma suteri): up to a hundred-fold at some sites since 2008 baseline
  • Copper Skink (Cyclodina aeneum): up to ten-fold at some sites since 2008 baseline
  • Moko Skink (Oligosoma moco): up to ten-fold at some sites since 2008

Fish:

  • Giant kokopu (Galaxius argenteus) now

Secure engagement with local  stakeholders.

There are a number of stakeholders that are fully engaged in the project through the MRT,  including:

  • Department of Conservation – MRT’s partner since the inception of the Trust in 1994, which has been responsible for some of our biggest milestones, such as the eradication of mammalian predators 2009-2011.
  • Motutapu Farms Ltd – leases the pasture from DOC to farm beef and sheep, becoming Auckland’s largest Another long-standing partner, helping the ecology of the island and wider Hauraki Gulf by farming organically.
  • Ngāi Tai ki Tamaki – the iwi who have mana whenua on the island and give their blessing to reintroduced fauna
  • Ngāti Paoa & Ngāti Tamaterā – Coromandel iwi who are kaitiaki of the North Island Brown Kiwi (Coromandel  subspecies) on
  • Motutapu Outdoor Education Centre (MOEC)  – use the island for accommodation of school groups gaining outdoor
  • Pāteke recovery
  • Takahē recovery group
  • Auckland Zoo – monitoring the populations of Redfin Bully ( Gobiomorphus huttoni) and Koura (Paranephrops planifrons).

Contact : Liz Brooks, Manager, Motutapu Restoration Trust, Newmarket, Auckland 1149, New Zealand.  Tel: +64 9 455 9634; PO Box 99 827; Email:  liz@motutapu.org.nz

Motuora Restoration Project, New Zealand

Key Words: Ecological restoration, reintroductions, island restoration, community engagement, Motuora Restoration Society

Motuora Restoration Society (http://motuora.org.nz) is recognised by the New Zealand Department of Conservation as the lead community agency for the restoration of Motuora, an 80 ha island in the Hauraki Gulf, New Zealand.  Since 2003 the Society has taken responsibility for the Island’s day-to-day management as well as developing and implementing the Island’s long term restoration strategy. Our aspiration is summed up in our  statement “It is our dream that future generations will enjoy a forest alive with native birds, reptiles and insects”.

Figure 1 – Aerial view of the Island before planting began. Area to bottom left has been sprayed in preparation for planting (Photo from cover of 2007 Motuora Native Species Restoration Plan).

Figure 1 – Aerial view of the Island before planting began. Area to bottom left has been sprayed in preparation for planting (Photo from cover of 2007 Motuora Native Species Restoration Plan).

 Figure 2 – Aerial view of the Island after completion of the pioneer planting. (Photo by Toby Shanley)


Figure 2 – Aerial view of the Island after completion of the pioneer planting. (Photo by Toby Shanley)

Background. Motuora is located on the east coast of New Zealand’s North Island near Auckland City. Motuora would once have been tree-covered and have hosted a wide range of native plants, invertebrates, reptiles and birds, particularly burrow-nesting seabirds. It was visited by early Polynesian settlers, later Māori, who would have initially camped, but later lived more permanently on the Island raising crops and harvesting fish, shellfish and presumably seabird eggs, chicks and adults. European settlers later occupied the Island, burning off most of the bush to encourage growth of grasses for their grazing livestock.

Towards the end of the farming period in the 1980s most of the Island’s native flora and fauna were gone. Interestingly however, there were never breeding populations of introduced mammalian pests on the Island so the remnant ecosystem had not been impacted by mice, rats, mustelids, hedgehogs, possums, goats, pigs or deer.

From about 1987 onwards both Government and members of the public began to take an interest in the Island and to promote the idea of adopting it as a predator-free bird habitat. Discussions continued over the next few years and by 1992 a sub-committee of the mid-North Royal Forest and Bird Protection Society had been formed and, in partnership with the Department of Conservation, drew up the first ‘strategy plan’ for the Island. Work parties began seed collecting, trial tree planting, weeding and fencing upgrades. By 1995 it had become apparent that the project could best proceed by way of an independent group dedicated to the task and the Motuora Restoration Society was formed.

The work on Motuora was designed to be a true restoration project combining firm ideas about the model ecosystem desired and a ‘bottom-up’ approach (vegetation-invertebrates-reptiles-birds) timing planting and introductions in a logical sequence. The historical presence of species on Motuora was inferred from comparisons with other less modified islands off the north east of the North Island, and particularly those from within the Rodney and Inner Gulf Ecological Districts, and using paleological information collected from the adjacent mainland.  Motuora Restoration Society has resisted the temptation to add iconic attractive species not originally present on the Island which might have raised the profile of the project.

Works carried out. The Society and its volunteers have contributed many thousands of hours to the restoration of the Island since 1995, raising and planting more than 300,000 native seedlings. This was particularly challenging with the logistics of working on an island without a regular ferry service or wharf. The project also included seabird and other species translocations, monitoring, weeding and track maintenance as well as fundraising.

The framework adopted began with reforestation so that appropriate habitat could be reinstated. A nursery was set up and seeds were collected from the Island, from nearby islands and, when necessary, from the mainland. With the exception of some areas of higher ground providing panoramic views from the Island, the land area was prepared (by weed-killing rampant kikuyu grass) and planted with hardy, wind and salt tolerant tree species. Once the trees were established, the canopy closed and sufficient shelter available, less hardy species and those requiring lower light levels were planted among the pioneers.  Today the planting of 400,000 trees of pioneer species is all but complete; and the raising and planting of ‘canopy’ and less hardy species continues.

In terms of fauna, invertebrate populations were surveyed and have been monitored as the forest has matured. One species, Wētāpunga (Deinacrida heteracantha) has been introduced.   Four reptiles have been introduced: Shore Skink (Oligosoma smithi), Duvaucel’s Gecko (Hoplodactylus duvaucelii),  Raukawa Gecko (Woodworthia maculata) and Pacific Gecko (Dactylocnemis pacificus).  One small land bird – Whitehead (Mohoua albicilla) has been translocated with 40 individuals moved to the Island.  Four seabird species have been attracted or translocated to the Island including the Common Diving Petrel (Pelecanoides urinatrix), and Pycroft’s Petrel (Pterodroma pycrofti).

Results. The project has restored Motuora from a pastoral farm (dominated by introduced grasses, weeds and only a small remnant fringe of naturally regenerating native forest) to a functioning native ecosystem, predominantly covered in early succession native forest with an intact canopy.

Initially the population of invertebrates was dominated by grassland species but the range and population size of forest dwellers has now much improved and the invertebrate fauna is now rich and plentiful (although rarer and endangered species are still to be added).  An initial suite of populations of flightless invertebrates remain depauperate.  Whitehead, an insectivorous bird species, has flourished with a current population of several hundred. At this early stage in the introduction of native fauna it is possible to report successful breeding and, for the most part, sufficient survival of initial colonisers of the species introduced to suggest that new populations will be established.  Sound attraction systems have led to initial breeding of Fluttering Shearwater (Puffinus gavia) and Australasian Gannet (Morus serrator).

Partnerships. Management of the Island is shared with the Department of Conservation (DOC) who administer the site on behalf of the Crown. DOC has legal commitments to engage with and act on behalf of the general public and particularly with iwi (Māori) who have generally expressed strong support for the restoration project and are expected to have co-management rights over the Island in the future.

Over the years the combined efforts of DOC staff, University researchers, the committee, thousands of volunteers and a host of donors and sponsors have worked hard to bring the Island to its present state.

Future directions. A sustained effort will continue to be required each year on biosecurity and weeding programmes. It will be many more decades before the forest matures and seabird and reptile populations reach capacity levels and a substantial workload is anticipated in managing and monitoring the emerging ecosystem for many years to come.

Acknowledgements: The success of the project is reinforced by the fact that the Society has maintained a close collaboration with a range of scientists and have inspired the active support and engagement of so many volunteers.  We thank all our inspiring volunteers and the following participating academics and researchers who have contributed to the project over the past ten years: Plants: Shelley Heiss Dunlop, Helen Lindsay (contractor). Reptiles: Marleen Baling (Massey University), Dylan van Winkel (consultant), Su Sinclair (Auckland Council), Manuela Barry (Massey University). Invertebrates: Chris Green (DOC), Robin Gardner-Gee (Auckland University), Jacqueline Beggs (Auckland University), Stephen Wallace (Auckland University). Birds: Robin Gardner-Gee (Auckland University), Jacqueline Beggs (Auckland University), Kevin Parker (Massey University), Richard Griffiths (DOC), Graeme Taylor (DOC), Helen Gummer (DOC contractor). The restoration project has been supported financially though grant aid received from a wide range of funders.

Contact: Secretary, Motuora Restoration Society, Email: secretary@motuora.org.nz; www: http://motuora.org.nz/

A novel multispecies approach for assessing threatened swamp communities

Hannah McPherson and Maurizio Rossetto,

Key words:   Swamp conservation, chloroplast DNA, genetic diversity, landscape connectivity

Introduction. Little is known about the historical or present-day connectivity of Temperate Highland Peat Swamps on Sandstone (THPSS) in the Sydney Basin (NSW). Recent technological advances have enabled exploration of genetic complexity at both species and community levels.  By focusing on multiple plant species and populations, and investigating intraspecific gene-flow across multiple swamps, we can begin to make generalisations about how species and communities respond to change, thereby providing a solid scientific basis from which appropriate conservation and restoration strategies can be developed.

The study area comprised eight swamps distributed across four sites along an altitudinal gradient: Newnes (1200m); Leura (900m); Budderoo (600m); and Woronora (400m), see figure 1.

Map of the Sydney Basin region showing four study sites and eight swamps. Greyscale shows altitude gradient.

Map of the Sydney Basin region showing four study sites and eight swamps. Greyscale shows altitude gradient.

The aims were:

  • To assess the relative genomic diversity among target species representing a range of life-history traits. This was achieved by sequencing chloroplast DNA and detecting variants in pooled samples from 25 species commonly occurring in swamps.
  • To explore geographic patterns of diversity among swamps and across multiple species by designing targeted genomic markers and screening variants among populations within and between sites (for ten species occurring in up to 8 swamps).
  • To develop a set of simple, effective and standardised tools for assessing diversity, connectivity and resilience of swamps to threats (from mining to climate change).
Fig 2. Broad Swamp, Newnes Plateau (Maurizio Rossetto)

Fig 2. Broad Swamp, Newnes Plateau (Maurizio Rossetto)

Our study comprises three main components:

1. Species-level assessment of genetic variation of swamp species

We have taken advantage of new available methods and technologies (McPherson et al. 2013 and The Organelle Assembler at http://pythonhosted.org/ORG.asm/) to sequence and assemble full chloroplast genomes of 20 plant species from swamps in the Sydney Basin and detect within and between-population variation. This enabled a rapid assessment of diversity among representatives of 12 families and a broad range of life-history traits – e.g. table 1. We are currently finalising our bioinformatic sampling of the data to ensure even coverage of chloroplast data across the species, however these preliminary data show that relative estimates are not a product of different amounts of chloroplast data retrieved (e.g. for the seven species with sequence length greater than 100,000 base pairs variation ranges from absent to high).

2. Swamp-level assessment of variation and connectivity using three target species – Baeckea linifolia (high diversity), Lepidosperma limicola (low diversity) and Boronia deanei subsp. deanei (restricted and threatened species).

From the initial species-level study we selected three very different species for detailed population-level studies. We designed markers to screen for variation within and among sites and explore landscape-level connectivity. We identified the Woronora Plateau as a possible refugium and we have uncovered interesting patterns of gene-flow on the Newnes Plateau. Two species, Lepidosperma limicola and Baeckea linifolia seem able to disperse over long distances while Boronia deanei subsp. deanei showed unexpected high levels of diversity despite very limited seed-mediated gene-flow between populations. Its current conservation status was supported by our findings. A unique pattern was found for each species, highlighting the need for a multispecies approach for understanding dynamics of this system in order to make informed decisions about, and plans for, conservation management.

3. Multi-species approach to assessing swamp community population dynamics

Since the population study approach proved successful we expanded our study to include population studies for a further ten species. This required development of new Next Generation Sequencing (NGS) approaches applicable to a wide range of study systems. This kind of approach will allow us to make informed generalisations about swamp communities for conservation management planning.

Fig 3. Paddy’s Swamp, Newnes Plateau (Anthea Brescianini)

Fig 3. Paddy’s Swamp, Newnes Plateau (Anthea Brescianini)

Table 1. Preliminary results showing relative chloroplast variation among 25 swamp species. Sequence length is in base pairs (bp) and relative level of variation was calculated as sequence length divided by number of variants to obtain an estimate of number of SNPs per base pair.  Relative variation was then categorised as: High (one SNP every <1,000 bp); Moderate (one SNP every 1,000 – <5,000 bp); Low (one SNP every 5,000 – <10,000 bp); Very low (one SNP every >10,000 bp); or absent (no SNPs).

table

Fig 4. Banksia ericifolia (Maurizio Rossetto)

Fig 4. Banksia ericifolia (Maurizio Rossetto)

Results to date. We have assembled partial chloroplast genomes of 20 plant species from THPSS in the Sydney Basin and categorised relative measurements of diversity. Preliminary data from the three target species highlighted the need for multispecies studies and we are now finalizing our results from an expanded study (including 13 species) in order to better understand connectivity and resilience of THPSS and provide data critical for more informed conservation planning. We have produced unique, simple methods for assessing genetic diversity and understanding dynamics at both the species and site levels.

Lessons learned and future directions. We found that individual species have unique patterns of genetic variation that do not necessarily correspond with phylogeny or functional traits and thereby highlight the benefit of multispecies studies. We have developed a unique, simple method for screening for genetic variation across whole assemblages which can be applied to many study systems. Since our data capture and analysis methods are standardised it will be possible in the future to scale this work up to include more species and/or more geographic areas and analyse the datasets together to address increasingly complex research questions about the resilience of swamps in a changing landscape.

Stakeholders and Funding bodies. The following people have contributed to many aspects of this research, including design, fieldwork and data generation and analysis: Doug Benson and Joel Cohen (Royal Botanic Gardens and Domain Trust), Anthea Brescianini and Glenda Wardle (University of Sydney), David Keith (Office of Environment and Heritage).

This research was funded through the Temperate Highland Peat Swamps on Sandstone Research Program (THPSS Research Program). This Program was funded through an enforceable undertaking as per section 486A of the Environment Protection and Biodiversity Conservation Act 1999 between the Minister for the Environment, Springvale Coal Pty Ltd and Centennial Angus Place Pty Ltd. Further information on the enforceable undertaking and the terms of the THPSS Research Program can be found at www.environment.gov.au/news/2011/10/21/centennial-coal-fund-145-million-research-program.

Contact. Hannah McPherson, Biodiversity Research Officer, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney 2000; Tel: +61292318181 Email: hannah.mcpherson@rbgsyd.nsw.gov.au

Hydrology of Woronora Plateau Temperate Highland Peat Swamps on Sandstone

William C Glamore and Duncan S Rayner

Key words: water balance, groundwater, soil, subsidence, under mining

Introduction. The Temperate Highland Peat Swamps on Sandstone (THPSS) ecological community consists of both temporary and permanent swamps developed in peat overlying Triassic Sandstone formations at high elevations, generally between 400 and 1200 m above sea level on the south-east coast of Australia. THPSS are listed as an endangered ecological community (EEC), threatened by habitat destruction and modification of groundwater and hydrology. The primary impact of longwall mining is to swamp hydrology, influencing long-term surface and groundwater regimes. This, in turn, can have a devastating impact on swamp ecology including many important habitats for protected flora and fauna. While the ecological value of THPSS is well understood, our current understanding of the hydrology of THPSS is limited. THPSS have been found to be dependent on groundwater, and subsequently the impact of modifying groundwater interactions can be significant. Recent research has concluded that a thorough understanding of the impact of longwall mining on the surface waterways and groundwater system is necessary before any remediation options to reduce loss of water into subsurface routes and minimise impact on water quality are considered.

Aims. To address this major knowledge gap, research into the fundamental hydrology of THPSS was undertaken. The purpose of this investigation was to understand the role of surface water and groundwater inputs and losses in maintaining swamp hydrology, providing a base level foundation from which the impacts of long-wall mining on ecology can be determined and guide future remediation efforts. To undertake on-ground research, multiple locations where data collection in peat swamps was being undertaken were utilised to form a foundation from which to expand swamp investigations and target site data gaps. Two swamps were selected for further detailed investigations, both located on the Woronora Plateau, approximately 80km south of Sydney, Australia. One site was within the Woronora Nature Reserve, where vegetation has been monitored regularly for 30+ years and basic climate monitoring for the past 5 years, and another swamp within the Sydney Metropolitan Catchment Management Area where climate monitoring, groundwater levels and swamp discharge has been monitored for the previous 5 years.  Extensive on-ground investigations were undertaken (and continue to be monitored) at these sites, providing fundamental scientific information for further assessment.

Methods. A series of groundbreaking on-ground investigations were undertaken to characterize the swamp hydrogeology and surface hydrology.  Detailed surveys of peat depth were initially undertaken using a push rod and RTK-GPS to determine digital elevation models (DEM) of surface topography and subsurface sandstone. Depth to underlying sandstone was found to be variable throughout the swamps (Figure 1). This survey guided the location and density of soil profiles and piezometer installations to characterize sediment characteristics, monitor water level fluctuations and assess water and soil chemistry.  A total of 17 piezometers were installed to bed rock, including logging soil stratigraphy and soil grab samples. Slotted 50mm diameter PVC was installed with a water level logger deployed near the bedrock. Soil samples were analysed for pH, EC, moisture, organic matter and a suite of analytes via ion chromatography. Hydraulic conductivity of the upper peat layer was also tested in-situ. Collected field data and site characterization surveys were combined to construct a three-dimensional numerical hydrological groundwater model to assist in determining the swamp water balance, hydrodynamics and to refine future sampling/analysis.

Figure 1: Example swamp depth survey and piezometer locations with conceptual groundwater flow paths

Figure 1: Example swamp depth survey and piezometer locations with conceptual groundwater flow paths

Findings. Findings include fundamental swamp hydrogeolgical characteristics, water balance summaries and analysis of degrees of freedom.  Swamp sediments were observed to vary both within swamps and between swamps. Sediment depths were found to range between 0.5 m to 2.6 m deep, with typical peat depths ranging between 30 cm – 100 cm of a dense organic layer in various stages of decomposition. The organic layer is underlain by grey sandy clay with clay content decreasing with depth (Figure 2). Sand and gravel was observed in the 10 cm to 30 cm range above bedrock.  Soil acidity was observed to be relatively uniform over depth with an average pH 5.7, however electrical conductivity and chloride decreased with depth; suggesting evapo-concentration of salts within the upper layers of the swamp. Soil moisture by weight and organic content were measured to decrease with depth, indicating decreasing porosity. Specific yield of swamp surface soils (0 m to 0.2 m) ranged between 15-20%, with deeper sediments (0.2 m to 0.4 m) approximately 10% greater.

Analysis of the water levels across the swamps, in conjunction with preliminary water balance modelling, indicates that despite the current data collection program, significant degrees of freedom remain unaccounted. Key factors such as transpiration, runoff, infiltration, interflow and groundwater losses are currently unknown and present seven sources of uncertainty within the water balance model. To reduce the uncertainty and close the water balance of peat swamps, further long term monitoring and site specific measurements are required. With the addition of soil core samples, soil hydraulic conductivity, long term water level data and further swamp geometry data, eight out of a total of nine water balance quantities will be known for the swamp, enabling increased reliability to assess the impacts of climate change, changes in land use, and undermining on long-term swamp ecology.  The findings from this study provide fundamental information that forms the basis for ongoing investigations critical for understanding peat swamp hydrology.

Figure 2: Typical swamp lithology

Figure 2: Typical swamp lithology

Acknowledgements. This research was funded through the Temperate Highland Peat Swamps on Sandstone Research Program (THPSS Research Program). This Program was funded through an enforceable undertaking as per section 486A of the Environment Protection and Biodiversity Conservation Act 1999 between the Minister for the Environment, Springvale Coal Pty Ltd and Centennial Angus Place Pty Ltd.  Further information on the enforceable undertaking and the terms of the THPSS Research Program can be found at www.environment.gov.au/news/2011/10/21/centennial-coal-fund-145-million-research-program.

Contact. William C Glamore and Duncan S Rayner, Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Australia (110 King St, Manly Vale, NSW 2093, Australia, Tel: +61/ 2 8071 9868. Email: w.glamore@wrl.unsw.edu.au ).

Conservation of an endangered swamp lizard

Key words:         Eulamprus leuraensis, fire impacts, disturbance ecology, habitat requirements, Scincidae

The Blue Mountains Water Skink is known from less than 60 isolated swamps in the Blue Mountains and Newnes Plateau of southeastern Australia (Fig 1). Understanding the species’ ecology, notably its vulnerability to threatening processes such as fire and hydrological disturbance, is essential if we are to retain viable populations of this endangered reptile.

Fig 1. Swamps containing Eulamprus leuraensis used in our baseline surveys (from Gorissen et al., 2015)

Fig 1. Swamps containing Eulamprus leuraensis used in our baseline surveys (from Gorissen et al., 2015)

Design: We surveyed swamps across the species’ known range to identify critical habitat requirements, and to examine responses both of habitat features (vegetation) and lizard populations to fire regimes and other anthropogenic disturbances. Our analyses of fire impacts included both detailed studies post-fire, and GIS-based analyses of correlations between lizard abundance and fire history.

Results to date: Blue Mountains Water Skinks appear to persist wherever suitable swamp habitat is maintained, although lizard numbers decline after frequent fires, hydrological disturbance or urbanization. However, the lizards (especially, adults) rarely venture out from the core swamp habitat into the surrounding woodland matrix. The “fast” life-history of this species (rapid growth, early maturation, high reproductive output) enables populations to recover from local disturbances, but very low vagility means that re-colonisation of a swamp after extirpation of a population is likely to be very slow (if it occurs at all).

Fig 2. Blue Mountains Water Skink within its swamp habitat (Photo: S. Dubey)

Fig 2. Blue Mountains Water Skink within its swamp habitat (Photo: S. Dubey)

Fig 3. Sarsha Gorissen checks a trap for lizards in a Newnes Plateau swamp (Photo: N. Belmer)

Fig 3. Sarsha Gorissen checks a trap for lizards in a Newnes Plateau swamp (Photo: N. Belmer)

Lessons learned and future directions: The suitability of a montane swamp for Blue Mountains Water Skinks can be readily assessed from soil-moisture levels and vegetation characteristics. Effective conservation of this endangered reptile species should focus on conserving habitat quality in swamps, rather than targeting the lizards themselves. If healthy swamps can be maintained, the lizards are unlikely to face extinction. Given high levels of genetic divergence among lizard populations (even from adjacent swamps), we need to maintain as many swamps as possible.

Stakeholders and Funding bodies: This research was funded through the Temperate Highland Peat Swamps on Sandstone Research Program (THPSS Research Program). This Program was funded through an enforceable undertaking as per section 486A of the Environment Protection and Biodiversity Conservation Act 1999 between the Minister for the Environment, Springvale Coal Pty Ltd and Centennial Angus Place Pty Ltd.  Further information on the enforceable undertaking and the terms of the THPSS Research Program can be found at www.environment.gov.au/news/2011/10/21/centennial-coal-fund-145-million-research-program.

Contact information: Prof Richard Shine, School of Life and Environmental Sciences, Heydon-Laurence Building A08, University of Sydney, NSW 2006 Australia. Phone: (61) 2-9351-3772; Email: rick.shine@sydney.edu.au

The spatial distribution and physical characteristics of Temperate Highland Peat Swamps on Sandstone (THPSS)

Key words: wetlands, upland swamp, geomorphology, mapping, Sydney Basin

Effective conservation and management of natural resources requires that we have an understanding of the spatial distribution and physical characteristics of the systems of concern. The results of the THPSS mapping project summarised here provide an essential physical (geomorphological) template atop which a range of other biophysical information on swamp structure, function and condition can be collated and interpreted.

Design. Using a 25 m Digital Elevation Modal (DEM) coupled with orthorectified aerial photography, the THPSS of the Sydney Basin were mapped in ArcGIS. Only valley-bottom swamps were mapped. Hanging swamps or hillslope drapes were excluded. In ArcGIS, the physical attributes of the swamps were attributed and measured. This included swamp area, elevation above sea level, swamp slope, catchment area, swamp and catchment elongation ratio, swamp length and distance to coast.

Figure 1: Regions in which THPSS occur in the Sydney Basin

Figure 1: Regions in which THPSS occur in the Sydney Basin

Results. Five regions of THPSS were mapped (Figure 1); Newnes (Figure 2), Blue Mountains (Figure 3), Budderoo (Figure 4), Woronora (Figure 5) and Gosford (Figure 6). Across these regions there is a total of 3208 individual THPSS. The combined area of these swamps is 101 km2 (10,100 ha) and the combined catchment areas that contain them cover 789 km2. They occur at a median distance of 57 km from the coast, but this is highly varied, ranging from 0.4 – 96 km.

The swamps occur in areas with an average annual rainfall of 1505 mm/year and average annual temperature is 15oC. They occur at a wide range of elevations. Those closer to the coast occur on elevations as low as 160 m ASL, and those further from the coast on plateau country can occur at elevations up to 1172 m ASL. The bulk of these systems occur at median elevations of 634 m ASL. The swamps are elongate in shape, having a median elongation ratio of 0.46. This makes the majority of these systems relatively long (median length is 216 m) and narrow. They occur in relatively elongate catchments with median elongation ratios of 0.61 and median catchment lengths of 488 m. Almost all these valleys terminate at their downstream ends at a valley constriction or bedrock step, making the valleys ‘funnel-shaped’.

Catchment areas draining into the swamps are, on average, 0.25 km2. This means these systems tend to occur in the very headwaters of most catchments in first or second order drainage lines. Each swamp is, on average, 31,537 m2 in area (3.1 ha). These swamps form on deceptively steep slopes. Median minimum swamp slope is 6.2%. The funnel-shaped valleys produce effective constrictions behind which alluvial materials and peat can accumulate, resulting in valley fills forming on relatively steep slopes.

 Stakeholders and Funding bodies. This research was funded through the Temperate Highland Peat Swamps on Sandstone Research Program (THPSS Research Program). This Program was funded through an enforceable undertaking as per section 486A of the Environment Protection and Biodiversity Conservation Act 1999 between the Minister for the Environment, Springvale Coal Pty Ltd and Centennial Angus Place Pty Ltd.  Further information on the enforceable undertaking and the terms of the THPSS Research Program can be found at www.environment.gov.au/news/2011/10/21/centennial-coal-fund-145-million-research-program. This project was also partly funded by an ARC Linkage Grant (LP130100120) awarded to A/Prof. Kirstie Fryirs and A/Prof. Grant Hose at Macquarie University. We thank Will Farebrother for working on this project. We thank the NSW Land and Property Information for the orthorectified aerial photographs that are used under a research-only license agreement.

Contact information. A/Prof. Kirstie Fryirs, Department of Environmental Sciences, Macquarie University, North Ryde, NSW 2109; +61298508367; kirstie.fryirs@mq.edu.au  A/Prof. Grant Hose, Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109; +61298508367; grant.hose@mq.edu.au

Figure 2: THPSS of the Newnes region

Figure 2: THPSS of the Newnes region

Figure 3: THPSS of the Blue Mountains region

Figure 3: THPSS of the Blue Mountains region

Figure 4: THPSS of the Budderoo region

Figure 4: THPSS of the Budderoo region

Figure 5: THPSS of the Woronora region

Figure 5: THPSS of the Woronora region

Fig 6 - Gosford swamps map

Figure 6: THPSS of the Gosford region

Project Eden: Fauna reintroductions, Francois Peron National Park, Western Australia

Per Christensen, Colleen Sims and Bruce G. Ward

Key words. Ecological restoration, pest fauna control, captive breeding, foxes, cats.

Figure 1. The Peron Peninsula divides the two major bays of the Shark Bay World Heritage Area, Western Australia.

Figure 1. The Peron Peninsula divides the two major bays of the Shark Bay World Heritage Area, Western Australia.

Introduction. In 1801, 23 species of native mammals were present in what is now Francois Peron National Park. By 1990 fewer than half that number remained (Fig 1.). Predation by introduced foxes and cats, habitat destruction by stock and rabbits had driven many native animals to local extinction.

Project Eden was a bold conservation project launched by the WA government’s Department of Conservation and Land Management (CALM -now Dept of Parks and Wildlife) that aimed to reverse extinction and ecological destruction in the Shark Bay World Heritage Area.

The site and program. Works commenced in Peron Peninsula – an approx. 80 km long and 20 km wide peninsula on the semi-arid mid-west coast of Western Australia (25° 50′S 113°33′E) (Fig 1). In the early 1990s, removal of pest animals commenced with the removal of sheep, cattle and goats and continued with the control of feral predators. A fence was erected across the 3km ‘bottleneck’ at the bottom of the peninsula where it joins the rest of Australia (Fig 2) to create an area where pest predators were reduced to very low numbers.

Figure 2. The feral proof fence was erected at the narrow point where Peron Peninsula joins the mainland.

Figure 2. The feral proof fence was erected at the narrow point where Peron Peninsula joins the mainland.

Once European Red Fox (Vulpes vulpes) (estimated at 2500 animals) was controlled and feral Cat (Felis catus) reduced to about 1 cat per 100 km of monitored track, sequential reintroductions of five locally extinct native animals were undertaken (Figs 3 and 4).  These included: Woylie (Bettongia penicillata – first introduced in 1997), Malleefowl (Leipoa ocellata – 1997), Bilby (Macrotis lagotis – 2000), Rufous Hare-wallaby (Lagorchestes hirsutus – 2001), Banded Hare-wallaby (Lagostrophus fasciatus -2001), Southern Brown Bandicoot (Isoodon obesulus – 2006) and Chuditch (Dasyurus geoffroi geoffroi -2011?)

Methods. Cat baiting involved Eradicat® cat baits, which were applied annually during March–April at a density of 10 to 50 baits/km2. Cat baiting continued for over 10 years, supplemented with a trapping program, carried out year round over a 8 -year period. Cat trapping involved rolling 10 day sessions of leghold trapping along all track systems within the area, using Victor Softcatch No. 3 traps and a variety of lures (predominantly olfactory and auditory).Tens of thousands of trap nights resulted in the trapping of up to 3456 animals. Fox baiting involved dispersal of dried meat baits containing 1080 poison by hand or dropped from aircraft across the whole peninsula. Baiting of the peninsula continues to occur annually, and removes any new foxes that may migrate into the protected area and is likely to regularly impact young inexperienced cats in the population, with occasional significant reductions in the mature cat population when environmental conditions are favourable.

Malleefowl were raised at the Peron Captive Breeding Centre from eggs collected from active mounds in the midwest of Western Australia. Woylies were reintroduced from animals caught in the wild from sites in the southwest of Western Australia, with Bilbies sourced from the Peron Captive Breeding Centre, established by CALM in 1996 to provide sufficient animals for the reintroductions. The centre has since bred more than 300 animals from five species

Monitoring for native mammals involved radio-tracking of Bilbies, Woylies, Banded Hare Wallabies, Rufous Hare-Wallabies, Southern Brown Bandicoots, Chuditch and Malleefowl at release, cage trapping with medium Sheffield cage traps and medium Eliots, as well as pitfall trapping of small mammals. The survey method for cats utilized a passive track count survey technique along an 80 km transect through the long axis of the peninsula. The gut contents of all trapped cats were examined.

Fig. 3. Woylies were first introduced in 1997 from animals caught in the wild at sites in southwest Western Australia.

Figure 3. Once foxes were controlled and cats reduced to about 1 cat per 100 km of monitored track, sequential reintroductions of five locally extinct native animals were undertaken. Woylies were first introduced in 1997 from animals caught in the wild at sites in southwest Western Australia.

Once European Red Fox (Vulpes vulpes) (estimated at 2500 animals) was controlled and feral Cat (Felis catus) reduced to about 1 cat per 100 km of monitored track, sequential reintroductions of five locally extinct native animals were undertaken.

Figure 4. Tail tag being fitted to a Bilby. (Bilbies were re-introduced to the Peron Peninsula in 2000, from animals bred in the Peron Captive Breeding Centre.)

Results. Monitoring has shown that two of the reintroduced species – the Malleefowl and Bilby – have now been successfully established. These species are still quite rare but they have been breeding on the peninsula for several years The Woylie population may still be present in very low numbers, but despite initial success and recruitment for six or seven years, has gradually declined due to prolonged drought and low level predation on a small population. Although the released Rufous Hare-wallabies and the Banded Hare-wallabies survived for 10 months and were surviving and breeding well, they disappeared because of a high susceptibility to cat predation and other natural predators like wedge-tailed eagles. Although some predation of Southern Brown Bandicoot has occurred and the reintroduction is still in the early stages, this species has been breeding and persisting and it is hoped that they will establish themselves in the thicker scrub of the peninsula.

Lessons learned. We found that the susceptibility to predation by cats and foxes varies considerably between species. Malleefowl are very susceptible to fox predation because the foxes will find their mound nests, dig up their eggs up and eat them – consequently wiping them out over a period of time. As cats can’t dig, Malleefowl can actually exist with a fairly high level of cats. Bilbies live in their burrows and are very alert so they can persist despite a certain level of cats. But the Rufous Hare-wallaby and the Banded Hare-wallaby are very susceptible to cat predation and fox predation due to their size and habits.

Examination of the period of time when species disappeared from the Australian mainland showed that there was a sequence of extirpations, reflecting the degree to which the species were vulnerable to pest predators. The ones that survived longest are those that are less vulnerable. This suggests that if complete control of predators is not possible (considering cat control is extremely difficult), it is preferable to focus on those animals that are least vulnerable. While it could be argued that reintroductions should be delayed until such time as all the cats and foxes have been removed, such a delay (which might take us 10, 20 or even 100 years) is likely to exceed the period of time many of these species will survive without some sort of assistance. It is likely to be preferable to proceed with reintroductions although we might be losing some animals.

Future directions. As with the majority of mainland reintroduction projects, level of predator control is the key to successful establishment of reintroduced fauna. The Project is currently under a maintenance strategy and future releases, which included the Western Barred Bandicoot (Perameles bougainville), Shark Bay Mouse (Pseudomys fieldi), geoffroi), Greater Stick-nest Rat (Leporillus conditor) and Red-tailed Phascogale (Phascogale calura) are on hold until improved cat control techniques are available. Despite the uncertain future for reintroductions of these smaller species, ongoing feral animal control activities and previous reintroductions have resulted in improved conditions and recovery for remnant small native vertebrates (including thick billed grass wrens, woma pythons and native mice), and new populations of several of the area’s threatened species which are once again flourishing in their original habitats.

Acknowledgements: the program was carried out by Western Australia’s Department of Parks and Wildlife and we thank the many Departmental employees, including District and Regional officers for their assistance over the years, and the many, many other people that have volunteered their time and been a part of the Project over the years, for which we are very grateful.

Contact: Colleen Sims, Research Scientist, Department of Parks and Wildlife (Science and Conservation Division, Wildlife Research, Wildlife Place, Woodvale, WA 6026, Australia, Tel: +61 8 94055100; Email: colleen.sims@dpaw.wa.gov.au). Also visit: http://www.sharkbay.org.au/project-eden-introduction.aspx

Further detail and other work in WA:

Per E. S. Christensen, Bruce G. Ward and Colleen Sims (2013) Predicting bait uptake by feral cats, Felis catus, in semi-arid environments. Ecological Management & Restoration 14:1, 47-53.

Per Christensen and Tein McDonald (2013) Reintroductions and controlling feral predators: Interview with Per Christensen. Ecological Management & Restoration, 14:2 93–100.