Long-term restoration in the Box Gum Woodlands of south-eastern Australia – UPDATE of EMR feature

David Lindenmayer, Mason Crane, Daniel Florance, David Smith, and Clare Crane

Update to article published in EMR – Murray Catchment habitat restoration: Lessons from landscape level research and monitoring doi: 10.1111/emr.12051

Keywords: Revegetation, biodiversity recovery, monitoring, birds

Figure 1. Revegetated woodland near Wagga Wagga in the South West Slopes of New South Wales. (Photo courtesy of the Sustainable Farms project at The Australian National University. Australia).

Introduction

This project encompasses a major set of large-scale, long-term integrated studies quantifying the response of various groups of biota to replanted woodlands in the Box Gum Grassy Woodlands of south-eastern Australia. The work has been underway since 2002 and contrasts revegetated areas with regrowth woodlands and old growth woodlands on multiple farms nested within landscapes with varying amounts of native vegetation cover (Fig 1.). The responses of birds, arboreal marsupials, terrestrial mammal, reptiles, frogs and native plants to these different kinds of broad vegetation types (and within-site and landscape-level attributes) have been documented over the past 17 years.

Further works undertaken

Since the inception of the original project and associated monitoring, an array of additional studies have been completed (https://www.anu.edu.au/about/strategic-planning/sustainable-farms). These include investigations of the impacts on birds and reptiles of livestock grazing in plantings, the benefits for birds of understorey plantings within old growth woodlands, the impacts of a control program for the Noisy Miner (Manorina melanocephala) on other woodland bird species, and interaction effects between long-term climate, short-term weather and revegetation programs on birds (Figs 2 and 3). Further work aims to quantify the biodiversity and livestock production benefits of enhancing the ecological condition (and associated water quality) of farm dams.

Figure 2. Flame Robin and Rufous Whistler – two bird species of conservation concern that respond positively to revegetated woodland. (Photos by Robin Patrick Kavanagh.)Further results to date

Research and monitoring in the past six years have resulted in a number of key new insights of considerable importance for restoration programs. A small subset of these findings includes:

  • The conservation benefits of replanted areas for bird and reptile biodiversity are undermined by intensive livestock grazing in these revegetated areas.
  • The bird biodiversity values of old growth temperate woodlands can be enhanced by underplantings of shrubs and other non-overstorey plants, although it can take many years for such benefits to manifest. Importantly, the occurrence of hyper-aggressive species such as the Noisy Miner is diminished in woodlands where underplantings have been established.
  • Experimental efforts to reduce populations of the Noisy Miner were largely unsuccessful; sites where this species was culled twice were rapidly recolonized by the Noisy Miner.
  • Replanted woodlands provide critical refugia for woodland birds, especially during prolonged drought periods.

Collectively, these findings indicate that restored woodlands have important conservation values (especially for birds but also reptiles), with restoration being valuable to conduct not only in existing old growth woodland (through establishing underplantings) but also in previously cleared sites. The conservation value of woodlands can be particularly critical during climate extremes such as droughts. Efforts to control the Noisy Miner will likely be most effective through targeted revegetation efforts rather than direct culling of birds. Finally, there is a need to limit grazing pressure in revegetated woodlands and this can require the repair or replacement of fences around replantings, especially when such key infrastructure begins to deteriorate.

Figure 3. Noisy Miner – a reverse keystone species for which experimental culling programs have proven to be ineffective. (Photo by Pete Richman.)

Lessons learned and future directions

The ongoing work has clearly demonstrated the important new insights that are derived from long-term ecological research and monitoring. Indeed, long-term changes in patterns of occupancy of restored areas could not have been quantified without rigorous monitoring of a wide range of sites of different sizes, ages and other attributes. Key manager-researcher partnerships have been fundamental to the ongoing success of the array of projects in this restoration initiative. Indeed, some research and monitoring studies were prompted by  questions posed by natural resource managers (such as if there were vegetation cover thresholds for birds in temperate woodlands). Close working relationships with farmers have also been critical to the persistence of the various projects. Field staff in the project, who are based permanently in rural Australia, are key points of outreach and communication with farmers and other natural resource managers. Their presence has accelerated the rate of knowledge transfer and adoption of new practices (such as widening shelterbelts so that they have multiple production and conservation values).

Stakeholders and funding bodies

Ongoing work has been supported by many funding bodies and partners. These include the owners of more than 250 private properties (whom have allowed access to their land and undertaken major restoration works). Funding for the work has been provided by The National Environmental Science Program (Threatened Species Recovery Hub), the Australian Research Council, Murray Local Land Services, Riverina Local Land Services, Central Tablelands Local Land Services, the Ian Potter Foundation, the Vincent Fairfax Family Foundation, The Australian National University, and the Calvert-Jones Foundation.

Contact information

David Lindenmayer, Sustainable Farms Project, Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, david.lindenmayer@anu.edu.au

Restoration and conservation in an iconic National Park – UPDATE of EMR feature

David Lindenmayer, Chris MacGregor, Natasha Robinson, Claire Foster, and Nick Dexter

Update to article published in EMR – Booderee National Park Management: Connecting science and management – doi: 10.1111/emr.12027

Keywords: Invasive animal and plant control, reintroduction, monitoring

Introduction

Booderee National Park is an iconic, species-rich, coastal reserve that supports a range of threatened and endangered native animals and plants. Several key management actions have been implemented to promote the conservation of biodiversity in Booderee National Park. These include the control of an exotic predator (the Red Fox Vulpes vulpes), the control of highly invasive Bitou Bush (Chrysanthemoides monilifera subsp. rotundata), the management of fire, and the reintroduction of previously extinct native mammals. A key part of work at Booderee National Park has been a long-term monitoring program that commenced in late 2002 and which has aimed to quantify the effectiveness of major management interventions, including the four listed above. The monitoring program has documented the long-term trajectories of populations of birds, arboreal marsupials, terrestrial mammals, reptiles, frogs and native plants in a range of major vegetation types (from heathland and sedgeland to woodland, forest and rainforest) and in response to fire, and weed and feral predator control. Importantly, the monitoring program has provided a foundational platform from which a suite of post-graduate studies and other research programs have been completed.

Further works undertaken

A key part of the researcher-manager partnership has been to analyse the long-term trajectories of populations of mammals, birds and reptiles in Booderee National Park. The monitoring data indicate that many species of mammals are declining, with some having become recently locally extinct (e.g. Greater Glider Petauroides volans) or close to extinction in the reserve (e.g. Common Ringtail Possum Pseudocheirus peregrinus) . This is despite populations of these species persisting in nearby reserves.  Robust interrogation of the multi-taxa monitoring data has been unable to identify reasons for these declines. Interestingly, the declines observed for mammals have not been observed to date in other vertebrate groups, including birds, reptiles and amphibians. An experimentally-based reintroduction program for the Greater Glider aims to not only re-establish populations of the species in Booderee National Park, but also to identify the reasons for the original decline. That program will be in addition to reintroduction programs already underway for other mammal species, the Long-nosed Potoroo (Potorous tridactylus), the Southern Brown Bandicoot (Isoodon obesulus) and Eastern Quoll (Dasyurus vivverinus) that used to inhabit Booderee National Park but which went extinct many decades earlier.

Additional research being undertaken in Booderee National Park has included: (1) studies of the effectiveness of control efforts for Bitou Bush and associated recovery of native vegetation and native fauna, (2) the interactive effects of fire and browsing on native plants and an array of animal groups, and (3) studies of leaf litter and other fuel dynamics in relation to previous fire history and macropod browsing.

Figure 1. Key area of Booderee National Park showing an area of coastal forest before and after Bitou Bush treatment.

Further results to date

Research and monitoring in the past six years have resulted in many new insights including some of considerable value for informing restoration programs. A small subset of these findings is outlined below.

  • Conventional approaches to the control of invasive Bitou Bush entail spraying ultra-low volume herbicide (Fig. 1), followed by burning of the “cured” dead material, and then respraying of the seedlings that germinate after fire. This spray-burn-spray protocol is both the most ecologically effective and the most cost-effective way of controlling Bitou Bush and, at the same time, facilitates the recovery of native vegetation. More recent analysis has revealed spray frequency as the most important determinant of long-term control. There are mixed effects of control methods on native species; plant species abundance was positively related to Bitou Bush control, while native bird abundance (except for Eastern Bristlebird Dasyornis brachypterus, Fig 2.) and mammal abundance were weakly negatively associated with Bitou control.
  • There can be strong interactions between the occurrence of fire and browsing by macropods on native plants as well as particular groups of animals such as spiders.
  • Reintroduction programs for the Southern Brown Bandicoot and Eastern Quoll have been relatively successful, although the latter species suffers high rates of mortality, particularly as a result of fox predation and collisions with motor vehicles. Nevertheless, populations of both species have survived over multiple years and reproduced successfully.

Figure 2. The Eastern Bristlebird, a species for which Booderee National Park is a stronghold. Notably, the species responds positively to management interventions to control Bitou Bush. (Photo Graeme Chapman)

Lessons learned and future directions

The work at Booderee National Park is a truly collaborative partnership between reserve managers, a university and the local Indigenous community.  A key part of the enduring, long-term success of the project has been that a full-time employee of The Australian National University has been stationed permanently in the Parks Australia office in the Jervis Bay Territory. That person (CM) works on an almost daily basis within Booderee National Park and this provides an ideal way to facilitate communication of new research and monitoring results to managers. It also enables emerging management concerns to be included as part of adaptive monitoring practices.

One of the key lessons learned from the long-term work has been the extent of ecological “surprises” – that is, highly unexpected results, including those which continue to remain unexplained. An example is the rapid loss of the Greater Glider and the major decline in populations of the Common Ringtail Possum. One of the clear benefits of this integrated monitoring-management team has been the rapid response to emerging threats. For example in response to high rates of mortality of reintroduced Eastern Quolls, control of the Red Fox was intensified within the park and greater cross-tenure control efforts with neighbouring private and public land managers have commenced. Regular evaluation of monitoring data and management actions has also enabled careful examination of the kinds of risks that can compromise reintroduction programs. These and other learnings will inform other, future reintroduction and translocation programs that are planned for Booderee National Park such as that for the Greater Glider.

Stakeholders and funding bodies

Ongoing work has been supported by many funding bodies and partners. These include the Wreck Bay Aboriginal Community who are the Traditional Owners of Booderee National Park as well as Parks Australia who co-manage the park with the Wreck Bay Aboriginal Community. Other key funders include the Department of Defence, the Thomas Foundation, The National Environmental Science Program (Threatened Species Recovery Hub), the Australian Research Council, the Margaret Middleton Foundation, and the Norman Wettenhall Foundation. Partnerships with Rewilding Australia, Taronga Conservation Society, WWF Australia, NSW Forestry Corporation and various wildlife sanctuaries have been instrumental to reintroduction programs.

Contact information

David Lindenmayer, Chris MacGregor, Natasha Robinson and Claire Foster are with the National Environmental Science Program (Threatened Species Recovery Hub), Fenner School of Environment and Society, The Australian National University (Canberra, ACT, 2601, david.lindenmayer@anu.edu.au). Nick Dexter is with Parks Australia, Jervis Bay Territory, Australia, 2540.

The Tiromoana Bush restoration project, Canterbury, New Zealand

Key words: Lowland temperate forest, animal pest control, weed control, restoration plantings, public access, cultural values, farmland restoration

Introduction. Commencing in 2004, the 407 ha Tiromoana Bush restoration project arose as part of the mitigation for the establishment of the Canterbury Regional Landfill at Kate Valley, New Zealand. The site lies one hour’s drive north of Christchurch City in North Canterbury coastal hill country (Motunau Ecological District, 43° 06’ S, 172° 51’ E, 0 – 360 m a.s.l.) and is located on a former sheep and beef farm.

Soils are derived from tertiary limestones and mudstones and the site experiences an annual rainfall of 920mm, largely falling in winter. The current vegetation is a mix of Kānuka (Kunzea robusta) and mixed-species shrubland and low forest, restoration plantings, wetlands, Gorse (Ulex europaeus) and European Broom (Cytisus scoparius) shrubland and abandoned pasture. Historically the area would have been forest, which was likely cleared 500-700 years ago as a result of early Māori settlement fires. A total of 177 native vascular plant and 22 native bird species have been recorded, including four nationally threatened species and several regionally rare species.

Before and after photo pair (2005-2018). showing extensive infilling of native woody vegetation on hill slopes opposite, restoration plantings in the central valley, and successional change from small-leaved shrubs to canopy forming trees in the left foreground. (Photos David Norton.)

 

Project aims. The long-term vision for this project sees Tiromoana Bush, in 300 years, restored to a: “Predominantly forest ecosystem (including coastal broadleaved, mixed podocarp-broadleaved and black beech forests) where dynamic natural processes occur with minimal human intervention, where the plants and animals typical of the Motunau Ecological District persist without threat of extinction, and where people visit for recreation and to appreciate the restored natural environment.”

Thirty-five year outcomes have been identified that, if achieved, will indicate that restoration is proceeding towards the vision – these are:

  1. Vigorous regeneration is occurring within the existing areas of shrubland and forest sufficient to ensure that natural successional processes are leading towards the development of mature lowland forest.
  2. The existing Korimako (Bellbird Anthornis melanura) population has expanded and Kereru (Native Pigeon Hemiphaga novaeseelandiae) are now residing within the area, and the species richness and abundance of native water birds have been enhanced.
  3. The area of Black Beech (Fuscospora solandri) forest has increased with at least one additional Black Beech population established.
  4. Restoration plantings and natural regeneration have enhanced connectivity between existing forest patches.
  5. Restoration plantings have re-established locally rare vegetation types.
  6. The area is being actively used for recreational, educational and scientific purposes.

Day-to-day management is guided by a five-year management plan and annual work plans. The management plan provides an overview of the approach that is being taken to restoration, while annual work plans provide detail on the specific management actions that will be undertaken to implement the management plan.

Forest restoration plantings connecting two areas of regenerating Kānuka forest. Photo David Norton.

 

Restoration approach and outcomes to date. The main management actions taken and outcomes achieved have included:

  • An Open Space Covenant was gazetted on the title of the property in July 2006 through the QEII National Trust, providing in-perpetuity protection of the site irrespective of future ownership.
  • Browsing by cattle and sheep was excluded at the outset of the project through upgrading existing fences and construction of new fences. A 16 km deer fence has been built which together with intensive animal control work by ground-based hunters has eradicated Red Deer (Cervus elaphus) and helped reduce damage caused by feral pigs (Sus scrofa domesticus).
  • Strategic restoration plantings have been undertaken annually to increase the area of native woody and wetland vegetation, as well as providing food and nesting resources for native birds. A key focus of these has been on enhancing linkages between existing areas of regenerating forest and re-establishing rare ecosystem types (e.g. wetland and coastal forest).
  • Annual weed control is undertaken focusing on species that are likely to alter successional development (e.g. wilding conifers, mainly Pinus radiata, and willows Salix cinerea and fragilis) or that have the potential to smother native regeneration (e.g. Old Man’s Beard Clematis vitalba). Gorse and European Broom are not controlled as they act as a nurse for native forest regeneration and the cost and collateral damage associated with their control will outweigh biodiversity benefits.
  • Establishment of a public walking track was undertaken early in the project and in 2017/2018 this was enhanced and extended, with new interpretation included. Public access has been seen as a core component of the project from the outset so the public can enjoy the restoration project and access a section of the coastline that is otherwise relatively inaccessible.
  • Part of the walkway upgrade included working closely with the local Māori tribe, Ngāi Tūāhuriri, who have mana whenua (customary ownership) over the area. They were commissioned to produce a pou whenua (land marker) at the walkway’s coastal lookout. The carvings on the pou reflect cultural values and relate to the importance of the area to Ngāi Tūāhuriri and especially values associated with mahinga kai (the resources that come from the area).
  • Regular monitoring has included birds, vegetation and landscape, with additional one-off assessments of invertebrates and animal pests. Tiromoana Bush has been used as the basis for several undergraduate and postgraduate student research projects from the two local universities.
Vigorous regeneration of Mahoe under the Kānuka canopy following exclusion of grazing animals. Photo David Norton.

 

Lessons learned. Important lessons learned over the 15-years have both shaped the approach to management at this site and have implications for the management of other projects:

  • Control of browsing mammals, both domestic and feral, has been essential to the success of this project. While domestic livestock were excluded at the outset of the project, feral Red Deer and pigs have the potential to seriously compromise restoration outcomes and these species have required additional management inputs (fencing and culling).
  • Since removal of grazing, the dominant exotic pasture grasses, especially Cocksfoot (Dactylis gomerata), now form tall dense swards. These swards severely restrict the ability of native woody plants to establish and herbicide control is used both pre- and post-planting to overcome this. During dry summers (which are common) the grass sward is also a significant fuel source and the walkway is closed during periods of high fire risk to avoid accidental fires which would decimate the restoration project.
  • Regular monitoring is important for assessing the biodiversity response to management. Annual photo-monitoring now spanning 15-years is highlighting significant changes in land cover across the site, while more detailed monitoring of plants and birds is strongly informing management actions. For example, seven-years of bird monitoring has indicated an ongoing decline in some native birds that is most likely due to predation (by cats, mustelids, rodents, hedgehogs). As a result, a predator control programme is commencing in 2019.
  • Simply removing grazing pressure from areas of existing regenerating native woody vegetation cannot be expected to result in the return of the pre-human forest because of the absence of seed sources. Permanent plots suggest that Kānuka is likely to be replaced by Mahoe (Melicytus ramiflorus), with few other tree species present. Gap creation and enrichment planting is therefore being used to speed up the development of a more diverse podocarp-angiosperm forest canopy.
Kate Pond on the Tiromoana Bush walkway. The pond and surrounding wetland provides habitat for several native water birds. Photo Jo Stilwell.
The pou whenua on the coastal lookout platform looking north up the coastline. Photo David Norton.

 

Looking to the future. Considerable progress in restoring native biodiversity at Tiromoana Bush has been achieved over the last 15 years and it seems likely that the project will continue to move towards achieving its 35-year outcomes and eventually realising the long-term vision. To help guide management, the following goals have been proposed for the next ten-years and their achievement would further help guarantee the success of this project:

  • The main valley floor is dominated by regenerating Kahikatea (Dacrycarpus dacrydioides) forest and wetland, and the lower valley is dominated by regenerating coastal vegetation.
  • At least one locally extinct native bird species has been reintroduced.
  • Tiromoana Bush is managed as part of a wider Motunau conservation project.
  • The restoration project is used regularly as a key educational resource by local schools.
  • The walkway is regarded as an outstanding recreational experience and marketed by others as such.
  • Tiromoana Bush is highly valued by Ngāi Tūāhuriri.
Kereru, one of the native birds that restoration aims to help increase in abundance. Photo David Norton.

 

Stakeholders and funding. The project is funded by Transwaste Canterbury Ltd., a public-private partnership company who own the landfill and have been active in their public support for the restoration project and in promoting a broader conservation initiative in the wider area. Shareholders of the partnership company are Waste Management NZ Ltd, Christchurch City Council and Waimakariri, Hurunui, Selwyn and Ashburton District Councils.

Contact Information. Professor David Norton, Project Coordinator, School of Forestry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand. Phone +64 (027) 201-7794. Email david.norton@canterbury.ac.nz

Lord Howe Island biodiversity restoration and protection programs, NSW, Australia

Hank Bower

Key words: Pest species management, weed control, community engagement.

Figure 1. Weeding teams apply search effort across near 80% of island terrain, their effort monitored through record of GPS track logs across designated weed management blocks. Target weeds on LHI are mostly bird dispersed requiring landscape scale for sustainable and long-term protection from weeds. The remaining 20% of island is subject to surveillance and with investigation of new technical approaches in weed detection using drones.

Introduction: Lord Howe Island (LHI) is located in the Tasman Sea 760 km northeast of Sydney and 570 km east of Port Macquarie. In 1982 the island was inscribed on the World Heritage (WH) List under the United Nations’ World Heritage Convention in recognition of its superlative natural phenomena and its rich terrestrial and marine biodiversity as an outstanding example of an island ecosystem developed from submarine volcanic activity.

The island supports at least 80% cover of native vegetation, broadly described as Oceanic Rainforest with Oceanic Cloud Forest on the mountain summits.  LHI vegetation comprises 239 native vascular plant species with 47% being endemic. Forest ecosystems on LHI are largely intact, but at threat from invasive species and climate change. About 75% of the terrestrial part of the WH property is recognised as a Permanent Park Preserve (PPP) managed on behalf of the New South Wales government by the Lord Howe Island Board on the basis of a holistic conservation and restoration plan (Lord Howe Island Biodiversity Management Plan LHI BMP 2007).

Since settlement of the island in 1834, introduced and invasive plant and animal species have been affecting the Lord Howe Island environment, causing declines in biodiversity and ecosystem health. There have been 11 known extinctions and severe declines in numbers of fauna species including the flightless Lord Howe Woodhen (Hypotaenidia sylvestris), once regarded as one of the rarest birds in the world.  The Lord Howe Island Phasmid (Dryococelus australis), the world’s largest stick insect was feared extinct until the rediscovery of live specimens on Balls Pyramid in 2001. Some 29 species of introduced vertebrates and about 271 species of introduced plant species have naturalised on the island. At least 68 species are the focus for eradication (Fig 1), with 10 main invasive species having colonised extensive areas of the settlement and the PPP, posing a serious threat to island habitats. One of the most serious weeds, Ground Asparagus (Asparagus aethiopicus), for example, was so prolific in the forest understory it completely overwhelmed native vegetation and bird breeding grounds. Weeds are prioritised for eradication following a Weed Risk Assessment and are typically species that are at low density, are localised and/or are limited to gardens, and species with known weed characteristics (e.g. wind or bird dispersed seeds) that have yet to express their weed potential. Identifying species for early intervention is important to prevent their establishment and expansion, particularly post rodent eradication. For example, the removal of 25 individual Cats Claw Creeper in 2006 (which have not been detected since) supports the case for proactive weed management.

The islands limited size and isolation provides great opportunities to achieve complete removal and eradication of key invasive species.  Therefore particular strategies identified in the LHI BMP to effect ecosystem recovery include the management and eradication of invasive weeds, rodents, tramp ants and protection from plant diseases and pathogens.  All projects are delivered at an island wide scale, which incorporates a permanent population of 350 residents and a tourist bed limit of 400.

Works undertaken   Progressive programs to eradicate feral animals commenced in 1979 with the eradication of pig Sus scrofa, cat Felus catus in 1982, goat Capra hircus in 1999 and African Big-headed Ant Pheidole megacephala in 2018. Threatened fauna recovery programs include the captive breeding of Lord Howe Woodhen following the eradication of cats, establishing a captive breeding and management program for the Lord Howe Island Phasmid and the planning and gaining of approvals to implement the eradication program for Black Rat Rattus rattus, House Mouse Mus musculus and introduced Masked Owl Tyto novehollandiae commencing in 2019.

The island wide strategic Weed Eradication Program commenced in 2004, building on earlier years of ad-hoc control effort.  Over 2.4 million weeds have been removed through more than 170,000 hours of grid search method.  Now, near mid-way point of a 30-year LHI Weed Eradication Project (LHIWEP), teams have reduced weed infestations (of all life stages) by 80%.  Ten year program results of the LHIWEP are summarised (LHIB 2016 – Breaking Bad) http://www.cabi.org/isc/abstract/20163360302, which clearly shows the significance of multi-invasive species management to achieve ecosystem recovery.

With the spread of Myrtle Rust Austropuccinia psidii to the Australian mainland in 2010 the LHI Board has been on high alert.  With five endemic plants at risk to this pathogen the LHIB provided training and information to the community on the threats to the island and food plants. The LHIB prepared a Rapid Response Plan and a Rapid Response Kit (fungicides and Personal Protective Equipment). In October 2016 Myrtle Rust was detected on exotic Myrtaceae species, from three leases and subsequently treated in November 2016. This also resulted in the eradication of three highly susceptible exotic myrtaceous plant species from the island.

The root fungus Phytophthora cinnamomi is known from one lease and has been quarantined and treated with granular fungicide quarterly. Periodic monitoring has shown the infestation to be reducing with the eventual aim of eradication. Boot sanitization stations located at all track heads applies effort to prevent introduction of root rot fungus and other soil borne pathogens from users of the walking track system in the PPP.

The LHI Board has carried out a range of local community engagement and visitor education programs to raise awareness of the risks and threats to the island environment and of the LHIB environmental restoration and protection programs. These include a LHI User Guide for visitors to the island and a citizen science program with the LHI Museum, establishing the LHI Conservation Volunteer program to help improve awareness of the importance of LHI conservation programs to both tourists and tourism business. Since 2005, over 150 volunteers supported by the LHIB and external grants have been engaged through the weed eradication project. Increasingly, LHI residents are volunteering to gain experience and to improve employment opportunities in restoring their island. Another long-term partner, Friends of Lord Howe Island, provide invaluable volunteer assistance with their Weeding Ecotours, contributing more than 24,000 hours of weeding building valuable networks.

Biosecurity awareness is critical to protect the investment in conservation programs and the environment to future threats. The LHI Board provide information regarding biosecurity risks to the community, stevedores and restaurateurs. The LHIB now hold two biosecurity detection dogs and handlers on island (Figure 3) whom work with Qantas and freight flights and shipping staff to ensure they are aware of biosecurity risks and plan for appropriate responses.

Results to date.  Achievements include the successful eradication of over 10 weed species, cat, pig, goat, African Big-headed Ant and Myrtle Rust. A further 20+ weeds are considered on the verge of being able to be declared eradicated in coming years with an 80% reduction in weed density island wide and a 90% reduction in the presence of mature weeds. Weed Risk Assessments will be applied to determine the impact or new and emerging weeds and appropriate management actions.

As a result of the eradication of feral pigs and cats and an on-island captive breeding program, the endangered Lord Howe Island Woodhen has recovered to an average of 250 birds. The other eradications, along with the significant reduction in dense and widespread weed invasions, has aided the recovery and protection of numerous endemic and threatened species and their habitats. The program’s significant outcomes have been recognised through the IUCN Conservation Outlook which in 2017 scored the Lord Howe Island Group’s outlook as good, primarily due to the success of projects that have, are being and are planned to be implemented to restore and protect the islands unique World Heritage values. In late 2018 the program received awards for excellence from the Society for Ecological Restoration Australasia (SERA), Green Globe and Banksia Foundations, acknowledging the sustained effort from the Board and Island community in working to restore and protect the island.

Lessons learned and future directions:  The main keys to success has been obtaining expert scientific and management input and actively working with, educating and involving the community (lease holders and local businesses) to help achieve the solution to mitigate and remove invasive species.

The Rodent Eradication Program scheduled for winter 2019 will result in less browsing pressure on both native and invasive plants species, as well as the removal of two domestic pests. Prior to the program the LHIB has targeted the control of introduced plants, currently in low numbers, that may spread after rodent eradication. Monitoring programs are in place to measure ecosystem response with a particular focus on the Endangered Ecological Community Gnarled Mossy Cloud Forest on the summit of Mt Gower. Should the project be successful, consideration can be given to the reintroduction of captive bred individuals of the Lord Howe Island Phasmid as well as other species confined to offshore islands (e.g. Lord Howe Wood Feeding Roach Panesthia lata) or ecological equivalent species on other islands (Norfolk Boobook Owl Ninox novaeseelandiae, Norfolk Parakeet Cyanoramphus cookii, Norfolk Island Grey Fantail Rhipidura albiscapa and Island Warbler Gerygone igata).

Stakeholders and Funding bodies:  The Program is managed by the Lord Howe Island Board and the NSW Department of Environment and Heritage, in collaboration with the local LHI community.

The LHI Board acknowledge the generations of islander stewardship, teams on ground, researchers, the funding and support agencies, all who made it happen. These include but are not limited to NSW Environmental Trust, Caring for Our Country, National Landcare Program, North Coast Local Land Services, Zoos Victoria, Taronga Zoo, Australian Museum, CSIRO, Friends of LHI, the Norman Wettenhall Foundation and Churchill Trust.

Contact: Hank Bower, Manager Environment/World Heritage, Lord Howe Island Board, PO Box 5, LORD HOWE ISLAND, NSW 2898, Tel: +61 2 65632066 (ext 23), Fax: 02 65632127, hank.bower@lhib.nsw.gov.au

Video conference presentation: https://www.aabr.org.au/portfolio-items/protecting-paradise-restoring-the-flora-and-fauna-of-world-heritage-listed-lord-howe-island-hank-bower-and-sue-bower-lhi-board-aabr-forum-2016/

Re-establishing cryptogamic crust at The Waterways, Mordialloc

By Damien Cook

Photo 1.  Crytogamic crust consisting of mosses, lichens and liverworts in inter-tussock space in restored grassland at Waterways. These spaces provide recruitment opportunities for herbaceous species such as Wahlenbergia multicaulis and Brachyscome parvula

Introduction:  The Waterways is a unique urban development on the Mordialloc Creek, in Melbourne’s south eastern suburbs, which combines a housing estate with 48 hectares of restored habitat set aside for indigenous fauna and flora in open space, lakes and other wetlands. (See EMR Project summary ‘The Waterways‘.)

The revegetation of 4 hectares of native grassland and 7 hectares of swamp scrub provided the opportunity to trial the re-establishment of non-vascular plant species, as well as the higher plants which are normally the focus of restoration efforts.

Method. A diversity of cryptogams including Thuidiopsis furfurosa, Hypnum cuppressiforme, Triquetrella papillata and some Rosulabryum and lichen species were collected in the field from nearby remnants of native vegetation threatened with imminent destruction by freeway construction and new housing estates. These were placed in a blender and made into a 2 litre, thick slurry and the slurry was then diluted into a 20 litre a firefighting backpack. The diluted slurry was then applied to bare soils in the revegetated areas at the Waterways in August 2002; some areas were left untreated as a control.

Results. It was not until the wet winter of 2016 that it became apparent how successful this technique had been. There are now quite large areas with a good cover of cryptogams, particularly in the restored grassland and swamp scrub areas. There are some cryptogams in the untreated areas, but the species richness and cover are much lower. Cryptogamic crust cover appears to suppress weed germination, reducing the need for herbicide application, yet provides recruitment opportunities for native forbs (see Photos 1-3).

Acknowledgements. Thanks are due to the Haines family who were the developers of “The Waterways”, and in particular Stephen Haines, for involving us in the revegetation of the site and allowing us scope to trial different ecological restoration techniques. 

Contact: Damien Cook (rakali2@outlook.com.au)

Photo 2. Swamp Scrub at Waterways. Note the dense layer of mosses in the understory, particularly Thuidiopsis furfurosa

Photo 3. Fruiting capsules of a species of Bryum in restored native grassland at Waterways

Recovery of indigenous plants and animals in revegetated areas at ‘The Waterways’, Victoria.

Photo 1.  Aerial view of Waterways from the west

By Damien Cook

 Introduction. Waterways is a 48-hectare restoration project located on Mordialloc Creek in Melbourne’s south- eastern suburbs which combines a housing estate with large areas of restored habitat set aside for indigenous fauna and flora in open space, lakes and other wetlands (see Photo 1).

Prior to restoration the land at Waterways was a property used for grazing horses and supported pasture dominated by exotic species such as Reed Fescue (*Festuca arundinacea) and Toowoomba Canary Grass (*Phalaris aquatica). (Note that an Asterix preceding a scientific name denotes that the species is not indigenous to the local area).

The habitats which are being restored at “The Waterways” reflect those that originally occurred in the Carrum Carrum Swamp, a vast wetland complex which, prior to being extensively drained in the 1870s, stretched from Mordialloc to Kananook and as far inland as Keysborough.

Local reference ecosystems were selected to act as a benchmark for what was to be achieved in each restored habitat in terms of species diversity and cover. Habitat Hectare assessments have been used to monitor the quality of restored vegetation (see Appendix 1).

A total of nine Ecological Vegetation Classes (EVCs, the standard unit of vegetation mapping in Victoria) are being re-established across the site across the following habitats

  • Open water, Submerged Aquatic Herbfields and Exposed Mudflats
  • Densely vegetated marshes
  • Swamp Paperbark Shrubland
  • Tussock Grassland
  • Plains Grassy Woodland

Photo 2. This sequence of photographs, taken over a nine-month period at the Waterways, shows vegetation establishment in a constructed wetland from newly constructed and bare of native species on the left to well vegetated with a high cover of indigenous plants and minimal weeds on the right.

Works undertaken. Restoration of the site commenced in October 2000. Extensive weed control and earthworks were carried out prior to the commencement of revegetation works, which involved planting, by 2003, over 2 million local provenance, indigenous plants.  Grassland species were planted out of hikos at a density of 5 to 6 per square meter into areas that had been treated with both knock-down and pre-emergent herbicide. Ongoing management of the site has included ecological burning and follow up weed control. When started the Waterways was the largest and most complex ecological restoration project ever undertaken in Victoria.

Results

Plants

Open water, Submerged Aquatic Herbfields and Exposed Mudflats.  Deep, open water areas cover an area of about 30 hectares of the site. Vegetation growing in this habitat includes submerged herb-fields of Pondweeds (Potamogeton species), Eel Grass (Vallisneria australis) and Stoneworts (Chara and Nitella species), which were planted over summer 2000/01.

Densely vegetated marshes. This habitat occupies about 10 hectares of the site, occurring where water is less than 1.5 meters deep around the fringes of the lakes and as broad bands across the wetlands. Swards of large sedges including Tall Spike-rush (Eleocharis sphacelata), Jointed Twig-sedge (Baumea articulata), Leafy Twig-sedge (Cladium procerum) and River Club-rush (Schoenoplectus tabernaemontani); aquatic herb-fields of Water Ribbons (Cycnogeton procerum), Upright Water-milfoil (Myriophyllum crispatum) and Running Marsh-flower (Ornduffia reniformis); as well as meadows supporting rushes, sedges and amphibious herbs. Localized areas with high salinity (4000 to 12 000 ppm) have been planted with a halophytic (salt tolerant) community including Sea Rush (Juncus krausii), Australian Salt-grass (Distichlis distichophylla), and Shiny Swamp-mat (Selliera radicans). Planting began in the marshes at the Waterways in October 2000 and vegetation established very rapidly in most areas (see Photo 2). This vegetation type provides habitat for the locally vulnerable Woolly Water-lily (Philydrum lanuginosum).

Swamp Paperbark Shrubland covers about 8 hectares, consisting of a 1ha remnant and additional areas that were planted in spring/summer 2001. As this shrubland habitat matures it is forming a dense canopy of species including Swamp Paperbark (Melaleuca ericifolia), Prickly Moses (Acacia verticillata subsp. verticillata), Manuka (Leptospermum scoparium), Woolly Tea-tree (Leptospermum lanigerum), Tree Everlasting (Ozothamnus ferrugineus) and Golden Spray (Viminerea juncea).

Photo 3. Rare plant species that have been established in restored native grasslands at “Waterways” include Grey Billy-buttons (Craspedia canens), Matted Flax-lily (Dianella amoena) and Pale Swamp Everlasting (Coronidium gunnianum).

Tussock Grassland covers about four hectares at the Waterways between two major wetland areas. About a third of this habitat was planted in spring 2001, with the remainder in spring 2002. The dominant plants of this habitat are tussock-forming grasses including wallaby grasses (Rytidosperma species), Kangaroo Grass (Themeda triandra) and Common Tussock Grass (Poa labillardierei var. labillardierei). A diverse array of native wildflowers occurs amongst these grasses. Rare plant species that have been established in this habitat zone include Grey Billy-buttons (Craspedia canens), Matted Flax-lily (Dianella amoena) and Pale Swamp Everlasting (Coronidium gunnianum, see Photo 3).

Plains Grassy Woodland This habitat type occurs in mosaic with Tussock grassland and differs in that it supportsscattered trees and clumps of shrubs. River Red Gum (Eucalyptus camaldulensis subsp. camaldulensis) and Swamp Gum (Eucalyptus ovata var. ovata) have been planted so that they will eventually form an open woodland structure. Other tree and tall shrub species planted in this habitat include Drooping Sheoak (Allocasuarina verticillata), Blackwood (Acacia melanoxylon) and the tree form of Silver Banksia (Banksia marginata), which is now very uncommon in the local area.

Seasonal Wetlands Small seasonal wetlands occur within Tussock Grassland (see Photo 4). Rare plant species that have been established in this habitat zone include Swamp Billy-buttons (Craspedia paludicola), Woolly Water-lily (Philydrum lanuginosum), Grey Spike-rush (Eleocharis macbarronii), Giant River Buttercup (Ranunculus amplus) and the nationally endangered Swamp Everlasting (Xerochrysum palustre).


Photo 4. Seasonal rain-filled wetland at Waterways

 Animals.

The Waterways is home to 19 rare and threatened fauna species including the nationally endangered Australasian Bittern (Botaurus poiciloptilus), Glossy Grass Skink (Pseudemoia rawlinsoni) and Magpie Goose (Anseranas semipalmata). The successful establishment of diverse vegetation has so far attracted 102 species of native birds, and the wetlands on the site are home to seven species of frogs.

Open water areas support large populations of Black Swans (Cygnus atratus), Ducks (Anas species), Eurasian Coots (Fulica atra), Cormorants (Phalacrocorax and Microcarbo species), Australian Pelicans (Pelecanus conspicillatus) and Australasian Darters (Anhinga novaehollandiae) that either feed on fish and invertebrates or the foliage and fruits of water plants.  As water levels recede over summer areas of mudflat are exposed. These flats provide ideal resting areas for water birds as well as feeding habitat for migratory wading birds including the Sharp-tailed Sandpiper (Calidris acuminata), Red-necked Stint (Calidris ruficollis) and Common Greenshank (Tringa nebularia) that fly from their breeding grounds as far away as Alaska and Siberia to spend the summer in Australia and are protected under special treaties between the Governments of countries through which they travel.

Photo 5. Magpie Geese (Anseranas semipalmata) at Waterways

In 2007 a small group of Magpie Geese (Anseranas semipalmata) became regular visitors to The Waterways (see Photo 5). This species was once extremely abundant in the Carrum Carrum Swamp. However, it was driven to extinction in southern Australia in the early 1900s by hunting and habitat destruction. The Magpie Goose seems to be making a recovery in Victoria, with numbers building up from birds captured in the Northern Territory and released in South Australia that are spreading across to areas where the species formerly occurred.

Seasonal wetlands are important breeding areas for frogs including the Banjo Frog (Limnodynastes dumerilii), Striped Marsh Frog (Limnodynastes peroni) and Spotted Grass Frog (Limnodynastes tasmaniensis) and a range of invertebrates that do not occur in the larger, more permanent storm water treatment wetlands such as Shield Shrimp (Lepidurus apus viridus). Birds which utilize these wetlands for feeding include the White-faced Heron (Egretta novaehollandiae) and Latham’s Snipe (Gallinago hardwickii).

Restored grassland provides an ideal hunting ground for several birds of prey, including the Brown Falcon (Falco berigora), Black-shouldered Kite (Elanus axillaris) and Australian Kestrel (Falco cenchroides). It also provides cover and feeding habitat for insect and seed-eating birds such as the Brown Quail (Coturnix ypsilophora). A flock of about 20 Blue-winged Parrots (Neophema chrysostoma) have been regularly seen in this habitat. These parrots are usually quite uncommon in the Melbourne area. Moist grasslands beside the wetland have been colonised by the vulnerable Glossy Grass Skink (Pseudemoia rawlinsoni) (see Photo 6).

Densely vegetated marshes provide habitat for a diversity of small, secretive birds such as Ballion’s Crake (Porzana pusilla), Little Grassbird (Megalurus gramineus) and Australian Reed Warbler (Acrocephalus australis), which find suitable refuges in the cover provided by dense vegetation. Dense thickets of Swamp Paperbark shrublands provide cover and feeding habitat for Ring-tail Possums (Pseudocheris peregrinus) and bushland birds such the Eastern Yellow Robin (Eopsaltria australis), thornbills (Acanthiza species), Superb Fairy-wren (Malurus cyaneus) and Grey Fantail (Rhipidura albiscapa). As the grassy woodlands mature they are providing structural habitat diversity and accommodating woodland birds such as cuckoos (Cacomantis and Chalcites species) and pardalotes (Pardalotus species).

It will take many years for the River Red Gums to reach a majestic size and stature, and to provide tree hollows which are essential for many species of native fauna. A limited number of tree hollows are provided in the dead trees (stags) that were placed in the Waterways wetlands.

Photo 6. The vulnerable Glossy Grass Skink (Pseudemoia rawlinsoni) at Waterways

The Future. The habitats that have been created at the Waterways are about 18 years old, yet they have already attracted a vast array of native fauna. Waterways is now home to 14 rare and threatened plant species and 19 threatened animal species. There is incredible potential for the area to provide vitally important habitat for an even greater diversity of rare plants and animals as these habitats mature.

If the area is to reach its full potential careful management of weeds and pest animals is required. Ongoing monitoring of flora and fauna is also necessary. These are both areas in which the local community is becoming involved.

Acknowledgements. The high standard of restoration achieved on the Waterways project was due to the project being appropriately funded and because it was managed by ecologists experienced in planning and implementing ecological restoration.  The project was partly funded by Melbourne Water, who are now the managers of the site, and partly by a developer, the Haines Family.  This unique relationship and the generosity and willingness to try something innovative by the developer were important factors in the success of the project.

Contact: Damien Cook (rakali2@outlook.com.au)

Appendix 1. Habitat Hectare results for four quadrats at Waterways, 2006

The ecological restoration of Te Motu Tapu a Taikehu, Hauraki Gulf, New Zealand

The Motutapu Restoration Trust 

Introduction. Te Motu Tapu a Taikehu (Motutapu Island, 1509 ha) is located in the Hauraki Gulf Marine Park, situated on the east coast of the north of New  Zealand’s North Island. It lies immediately adjacent to Rangitoto Island which is a volcano that last erupted approximately 500-550 years ago. This, and previous eruptions would have regularly devastated the forest and wetland ecosystems on Motutapu.

After a history of Maori settlement, European clearing and farming and use for military purposes during WWII, the Island was transferred to what is now the Department of Conservation (DOC) in 1970. The island is now designated a recreation reserve, open to the public.

Pollen records suggest that after the Rangitoto eruptions ceased around AD 1500, Motutapu recovered to be covered by a patchwork of lowland podocarp/broadleaf forest typical of that found in the Auckland region, and presumably was habitat to birds, reptiles, bats, fish and invertebrates similar to those on other Northland islands and the mainland.

Habitat loss through anthropogenic disturbances including fire, clearing for farming, and the introduction of mammalian predators saw many species of native bird, reptile and plants extirpated. Prior to restoration started in 1994, Motutapu was almost entirely covered by pastoral grassland dominated by exotic species, except for a few, very small forest remnants, and a depauperate native faunal communities.

Motutapu Island is a 40-minute ferry journey from Auckland City. Map: Department of Conservation

Restoration project

Planning of the ecological restoration program is undertaken by the Natural Heritage Committee of the Trust, a group of some 15 volunteers who meet monthly to plan, and discuss implementation. Members are highly qualified, skilled and enthusiastic practitioners. Together the committee  brings sound ecological theory and practice to the  restoration of flora and fauna. Published plans they work from include the 1994 Motutapu Restoration Working Plan and subsequent 2010 audit.

The objective is to return the island forest and wetland ecosystems to a post-eruption state, with a goal of reaching 500 ha of restored forest and wetland over coming decades. Although this area is far less than the full area of the island, it allows the conservation of cultural and archaeological sites, such as pā, WWII infrastructure, and farming landscapes. The post-eruption state can be described as lowland mixed broadleaf/podocarp forest, with a suite of seabirds, waders, forest birds, reptiles, bats and invertebrates interacting with each other so that natural evolutionary processes can once more resume for these taxa on the island.

Implementation of the ecological restoration of Motutapu has been underway for 23 years, since the formation of the Motutapu Restoration Trust (MRT) in 1994. To date,  in excess of 100 ha of pasture has been converted  to pioneer forest representing an estimated 450,000+ trees  planted. Volunteer hours total 21,462 between  2005 and 2015, and is currently in excess of 3,200 hours annually.

The major activities of the ecological restoration are:

  • Seed collecting from the island and wider Auckland region
  • Plant propagation in the island nursery – year round
  • Planting in the winter months
  • Weeding year round
  • Fauna translocation and monitoring (birds, reptiles, fish and crustacea) in conjunction with DOC

Planters in action: Photo: MRT

15,136 plants went into Hospital B paddock; one of the most difficult planting sites on the island.
Photo: MRT

Home Bay forest, with Motuihe Island and the Auckland mainland in the background. Photo: MRT

Revegetation. The original strategy (1994 – 2009) was to initiate successional processes by planting pioneer phase species, which would later give way to mature phase species dispersed naturally by birds. However, it was realized that mature phase species would be slow to arrive, as the island is isolated from native forests on nearby islands and seed dispersal from them is unlikely. If seed is dispersed from its own remnant forests, any new forest will continue to reflect the depauperate nature of these remnants.

In 2010, the planting strategy was updated to include enrichment planting of mature phase forest species into the forests planted up to 15 years earlier. Seeds for this were eco-sourced from the wider Auckland region, within boundaries agreed with DOC, and brought to the island nursery for propagation. This was an opportunity to return species to the island that are currently absent, including Swamp Maire (Syzygium maire), Tree  Fuchsia (Fuchsia excorticata),  Pigeonwood (Hedycarya  arborea), White Maire (Nestegis lanceolata), Black Maire (N. cunninghamii), Turepo (Streblus  banksii) and a number  of podocarps including Matai (Prumnopitys taxifolia), Miro (P. ferruginea) and Rimu (Dacrydium cupressinum).

The project has a large nursery, operated by one full time volunteer and supported by other volunteers during the week and weekends. The nursery provides all the plants for the planting programme. Seed is collected by a small team of collectors who travel Auckland’s and the Island’s forest remnants for seeds all year round. Growing media is supplied pro bono by Daltons and Living Earth and delivered by DOC boat. The risk of importing the introduced pests Rainbow Skink (Lampropholis delicata) as eggs and Argentine Ant (Linepithema humile) precludes bringing potted plants onto the island.

Weeds such as Woolly Nightshade (Solanum mauritianum),  Moth  Vine (Araujia  sericifera), Evergreen  Buckthorn (Rhamnus alaternus), Apple of Sodom (Solanum linnaeanum), pampas (Cortaderia  spp.), and Boneseed (Chrysanthemoides monilifera) have been  present on the  island for many years, and in pasture had been kept in check by grazing. However, when pasture is retired, populations of these weeds  explode and threaten the plantings on not only Motutapu  Island, but also by dispersal to neighbouring Hauraki Gulf Islands. In particular, Rangitoto Island is threatened by invasion of weeds from Motutapu.

Weeding of the planted forests takes place in a strategic and planned way year round. Volunteers routinely grid search the plantations and control the infestations (using the hip chain method). Sources of reinfestation on other parts of the island are addressed by contractors who have the training to get at inaccessible weeds (e.g., cliff faces). New drone technology is in the process of being recruited to  identify infestations of weeds  from the  air, where they cannot be seen from the ground, or where access is particularly hazardous (e.g., cliff faces).

Pest species management. The suite of mammalian predators and herbivores on the Island prior to 2009 were detrimental to both flora and fauna, and their continued presence would have meant that neither locally extinct bird and plant species could be reintroduced, nor palatable plant species thrive.  These pests included: rats (Rattus rattus,  R. norvegicus, R. exulans); House Mouse (Mus musculus); Stoat (Mustela erminea); feral Cat (Felis catus); Hedgehog  (Erinaceus  europaeus occidentalis) and the European Rabbit (Oryctolagus cuniculus).

The successful eradication of pests from Motutapu and Rangitoto Islands was undertaken by DOC in 2009 using helicopters to disperse broadifacoum. DOC employs a biosecurity ranger on the island who responds to any new rat, stoat or other incursions.

Recent arrivals of North Island brown kiwi bring the total to 26, closer to the target of 40 required for a founder population. Photo: MRT

Further releases of takahē will bring the breeding
pairs to a total of 20, the largest total outside Fiordland. Photo: MRT

Faunal translocations. A major milestone was the declaration in 2011 of pest-free status for the Island, and the subsequent re-introductions of birds and aquatic taxa that this allowed.

The island’s pest-free status gives safe refuge to some of New Zealand’s rarest bird species. Since it became pest-free, the following rare, endangered and non-threatened species have been translocated:

  • Coromandel Brown Kiwi (Apteryx mantelli)
  • Takahē (Porphyrio hochstetteri)
  • Tīeke (Philesturnus rufusater)
  • Shore Plover (Thinornis  novaeseelandiae)
  • Whitehead (Mohoua albicilla)
  • Pāteke (Anas chlorotis)
  • Redfin bully (Gobiomorphus huttoni)
  • Koura (Paranephrops planifrons)

Survey and Monitoring.  Annual surveys of terrestrial birds and shorebirds by the Ornithological Society of New Zealand have been undertaken since 2007. As well,  a survey of seabirds nesting on the island is underway, and monitoring of translocated birds by MRT volunteers in association with DOC is ongoing. Stream fauna and reptiles are surveyed and reported on annually by DOC.

The Island’s native and exotic plants are also being surveyed to ascertain progress of the recovery over time, and plant survival rates have been monitored informally via regular tours of the plantings to assess what is working and what is not.

Evidence that recovery processes are securely occurring on the island

It is clear that the 100ha of restored vegetation has resulted in natural processes of vegetation recovery occurring, with natural regeneration evident for many species. Once the fruiting forest is fully established on Motutapu Island we envisage that it will be fully self-sustaining via seed dispersal by frugivorous birds.

Populations of fauna, with four exceptions, appear to be self-sustainable on Island. Many of the reintroduced bird species are clearly reproducing on the island and populations are growing without human intervention as evidenced by our bird surveys. The exceptions are Shore plover and Pāteke which naturally disperse away from the Island, necessitating several translocations to ensure the populations build to create a resident population, and are viable. Kiwi and Takahē populations are still being built up to founder population size.

 Bird species (terrestrial diurnal including waders):

  • an increase from 50 species in 2010 to 60 in 2015
  • Re-introduced populations expanding: Takahē, Whitehead,  Tīeke
  • Self-introduced or now detectable: Kākāriki (Cyanoramphus novaezelandiae), Bellbird (Anthornis melanura), Spotless Crake (Porzana tabuensis), Little Blue Penguin (Eudyptula minor), Banded Rail (Gallirallus phillipensis), Grey-faced Storm Petrel (Pterodroma macroptera  gouldi).

Reptiles: Population and range expansions of the four native and one introduced species. The following are the natives:

  • Common Gecko (Woodworthia maculatus): up to ten-fold at some sites since 2008
  • Suter’s Skink (Oligosoma suteri): up to a hundred-fold at some sites since 2008 baseline
  • Copper Skink (Cyclodina aeneum): up to ten-fold at some sites since 2008 baseline
  • Moko Skink (Oligosoma moco): up to ten-fold at some sites since 2008

Fish:

  • Giant kokopu (Galaxius argenteus) now

Secure engagement with local  stakeholders.

There are a number of stakeholders that are fully engaged in the project through the MRT,  including:

  • Department of Conservation – MRT’s partner since the inception of the Trust in 1994, which has been responsible for some of our biggest milestones, such as the eradication of mammalian predators 2009-2011.
  • Motutapu Farms Ltd – leases the pasture from DOC to farm beef and sheep, becoming Auckland’s largest Another long-standing partner, helping the ecology of the island and wider Hauraki Gulf by farming organically.
  • Ngāi Tai ki Tamaki – the iwi who have mana whenua on the island and give their blessing to reintroduced fauna
  • Ngāti Paoa & Ngāti Tamaterā – Coromandel iwi who are kaitiaki of the North Island Brown Kiwi (Coromandel  subspecies) on
  • Motutapu Outdoor Education Centre (MOEC)  – use the island for accommodation of school groups gaining outdoor
  • Pāteke recovery
  • Takahē recovery group
  • Auckland Zoo – monitoring the populations of Redfin Bully ( Gobiomorphus huttoni) and Koura (Paranephrops planifrons).

Contact : Liz Brooks, Manager, Motutapu Restoration Trust, Newmarket, Auckland 1149, New Zealand.  Tel: +64 9 455 9634; PO Box 99 827; Email:  liz@motutapu.org.nz

Motuora Restoration Project, New Zealand

Key Words: Ecological restoration, reintroductions, island restoration, community engagement, Motuora Restoration Society

Motuora Restoration Society (http://motuora.org.nz) is recognised by the New Zealand Department of Conservation as the lead community agency for the restoration of Motuora, an 80 ha island in the Hauraki Gulf, New Zealand.  Since 2003 the Society has taken responsibility for the Island’s day-to-day management as well as developing and implementing the Island’s long term restoration strategy. Our aspiration is summed up in our  statement “It is our dream that future generations will enjoy a forest alive with native birds, reptiles and insects”.

Figure 1 – Aerial view of the Island before planting began. Area to bottom left has been sprayed in preparation for planting (Photo from cover of 2007 Motuora Native Species Restoration Plan).

Figure 1 – Aerial view of the Island before planting began. Area to bottom left has been sprayed in preparation for planting (Photo from cover of 2007 Motuora Native Species Restoration Plan).

 Figure 2 – Aerial view of the Island after completion of the pioneer planting. (Photo by Toby Shanley)


Figure 2 – Aerial view of the Island after completion of the pioneer planting. (Photo by Toby Shanley)

Background. Motuora is located on the east coast of New Zealand’s North Island near Auckland City. Motuora would once have been tree-covered and have hosted a wide range of native plants, invertebrates, reptiles and birds, particularly burrow-nesting seabirds. It was visited by early Polynesian settlers, later Māori, who would have initially camped, but later lived more permanently on the Island raising crops and harvesting fish, shellfish and presumably seabird eggs, chicks and adults. European settlers later occupied the Island, burning off most of the bush to encourage growth of grasses for their grazing livestock.

Towards the end of the farming period in the 1980s most of the Island’s native flora and fauna were gone. Interestingly however, there were never breeding populations of introduced mammalian pests on the Island so the remnant ecosystem had not been impacted by mice, rats, mustelids, hedgehogs, possums, goats, pigs or deer.

From about 1987 onwards both Government and members of the public began to take an interest in the Island and to promote the idea of adopting it as a predator-free bird habitat. Discussions continued over the next few years and by 1992 a sub-committee of the mid-North Royal Forest and Bird Protection Society had been formed and, in partnership with the Department of Conservation, drew up the first ‘strategy plan’ for the Island. Work parties began seed collecting, trial tree planting, weeding and fencing upgrades. By 1995 it had become apparent that the project could best proceed by way of an independent group dedicated to the task and the Motuora Restoration Society was formed.

The work on Motuora was designed to be a true restoration project combining firm ideas about the model ecosystem desired and a ‘bottom-up’ approach (vegetation-invertebrates-reptiles-birds) timing planting and introductions in a logical sequence. The historical presence of species on Motuora was inferred from comparisons with other less modified islands off the north east of the North Island, and particularly those from within the Rodney and Inner Gulf Ecological Districts, and using paleological information collected from the adjacent mainland.  Motuora Restoration Society has resisted the temptation to add iconic attractive species not originally present on the Island which might have raised the profile of the project.

Works carried out. The Society and its volunteers have contributed many thousands of hours to the restoration of the Island since 1995, raising and planting more than 300,000 native seedlings. This was particularly challenging with the logistics of working on an island without a regular ferry service or wharf. The project also included seabird and other species translocations, monitoring, weeding and track maintenance as well as fundraising.

The framework adopted began with reforestation so that appropriate habitat could be reinstated. A nursery was set up and seeds were collected from the Island, from nearby islands and, when necessary, from the mainland. With the exception of some areas of higher ground providing panoramic views from the Island, the land area was prepared (by weed-killing rampant kikuyu grass) and planted with hardy, wind and salt tolerant tree species. Once the trees were established, the canopy closed and sufficient shelter available, less hardy species and those requiring lower light levels were planted among the pioneers.  Today the planting of 400,000 trees of pioneer species is all but complete; and the raising and planting of ‘canopy’ and less hardy species continues.

In terms of fauna, invertebrate populations were surveyed and have been monitored as the forest has matured. One species, Wētāpunga (Deinacrida heteracantha) has been introduced.   Four reptiles have been introduced: Shore Skink (Oligosoma smithi), Duvaucel’s Gecko (Hoplodactylus duvaucelii),  Raukawa Gecko (Woodworthia maculata) and Pacific Gecko (Dactylocnemis pacificus).  One small land bird – Whitehead (Mohoua albicilla) has been translocated with 40 individuals moved to the Island.  Four seabird species have been attracted or translocated to the Island including the Common Diving Petrel (Pelecanoides urinatrix), and Pycroft’s Petrel (Pterodroma pycrofti).

Results. The project has restored Motuora from a pastoral farm (dominated by introduced grasses, weeds and only a small remnant fringe of naturally regenerating native forest) to a functioning native ecosystem, predominantly covered in early succession native forest with an intact canopy.

Initially the population of invertebrates was dominated by grassland species but the range and population size of forest dwellers has now much improved and the invertebrate fauna is now rich and plentiful (although rarer and endangered species are still to be added).  An initial suite of populations of flightless invertebrates remain depauperate.  Whitehead, an insectivorous bird species, has flourished with a current population of several hundred. At this early stage in the introduction of native fauna it is possible to report successful breeding and, for the most part, sufficient survival of initial colonisers of the species introduced to suggest that new populations will be established.  Sound attraction systems have led to initial breeding of Fluttering Shearwater (Puffinus gavia) and Australasian Gannet (Morus serrator).

Partnerships. Management of the Island is shared with the Department of Conservation (DOC) who administer the site on behalf of the Crown. DOC has legal commitments to engage with and act on behalf of the general public and particularly with iwi (Māori) who have generally expressed strong support for the restoration project and are expected to have co-management rights over the Island in the future.

Over the years the combined efforts of DOC staff, University researchers, the committee, thousands of volunteers and a host of donors and sponsors have worked hard to bring the Island to its present state.

Future directions. A sustained effort will continue to be required each year on biosecurity and weeding programmes. It will be many more decades before the forest matures and seabird and reptile populations reach capacity levels and a substantial workload is anticipated in managing and monitoring the emerging ecosystem for many years to come.

Acknowledgements: The success of the project is reinforced by the fact that the Society has maintained a close collaboration with a range of scientists and have inspired the active support and engagement of so many volunteers.  We thank all our inspiring volunteers and the following participating academics and researchers who have contributed to the project over the past ten years: Plants: Shelley Heiss Dunlop, Helen Lindsay (contractor). Reptiles: Marleen Baling (Massey University), Dylan van Winkel (consultant), Su Sinclair (Auckland Council), Manuela Barry (Massey University). Invertebrates: Chris Green (DOC), Robin Gardner-Gee (Auckland University), Jacqueline Beggs (Auckland University), Stephen Wallace (Auckland University). Birds: Robin Gardner-Gee (Auckland University), Jacqueline Beggs (Auckland University), Kevin Parker (Massey University), Richard Griffiths (DOC), Graeme Taylor (DOC), Helen Gummer (DOC contractor). The restoration project has been supported financially though grant aid received from a wide range of funders.

Contact: Secretary, Motuora Restoration Society, Email: secretary@motuora.org.nz; www: http://motuora.org.nz/

A water point design to facilitate seed dispersal into revegetation or pasture sites

Amanda N. D. Freeman

Introduction. Although perches have been shown to enhance seed dispersal into revegetation sites, the efficacy of providing a water source to attract seed dispersers is largely untested.  In a Griffith University-led study aimed at “kick-starting” conversion of pasture to forest www.wettropics.gov.au/cfoc , bird-attracting structures that included a perch and water trough at the base were shown to enhance frugivore-assisted seed dispersal.  A complementary study in the same sites has identified the seeds of over 40 bird dispersed species deposited in the water troughs (Amanda Freeman; The School for Field Studies, Centre for Rainforest Studies (SFS-CRS) and Griffith University; 2012-2014, unpublished data).  Although the water troughs demonstrably attracted frugivorous birds, most notably Pied Currawongs (Strepera graculina ) using the water to regurgitate, any seeds regurgitated into troughs would be unavailable to germinate (Fig 1.).

Figure 1. A Pied Currawong at a water trough in a “Kickstart” pasture conversion plot. [See Elgar, A.T., Freebody, K., Pohlman, C.P., Shoo, L.P. & Catterall, C.P. (2014) Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Frontiers in Plant Science 5: 200. http://dx.doi.org/10.3389/fpls.2014.00200]

Figure 1. A Pied Currawong at a water trough in a “Kickstart” pasture conversion plot. [See Elgar, A.T., Freebody, K., Pohlman, C.P., Shoo, L.P. & Catterall, C.P. (2014) Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Frontiers in Plant Science 5: 200. http://dx.doi.org/10.3389/fpls.2014.00200%5D

Preliminary trial. Using a commercially available automatic waterer used for poultry, we designed a water point with a water dispenser that is too small for birds to regurgitate or defecate into, allowing expelled seed to fall to the ground.  The device is also simple and relatively cheap to build (<$100 Australian).  Once installed, the device requires little attention because the water remains cool and evaporation is minimal so the water may last several months without replenishing. The waterer, a plastic container which distributes water to a small dish by the action of a float, sits on a sturdy metal base 1.5m high.  The base has a perch allowing birds of different sizes to access the water from several angles and an attachment for a camera to enable bird visits to be monitored.  We envisage that the water point may facilitate seed dispersal by attracting frugivorous birds that will regurgitate and/or defecate at or near the water point.

We conducted an initial trial at a revegetation site at SFS-CRS in February 2016.  For this trial we baited the water point with Kiwi Fruit (Actinidia sp.) but this was soon consumed by insects. During the trial we recorded two species of fruit-dispersing bird, Pied Currawong and Lewin’s Honeyeater (Meliphaga lewinii) using our prototype water point within one month of its installation in (Fig 2.).

figure-2

Figure 2. A Pied Currawong drinking from a water point (kiwi fruit bait in foreground).

Design of second trial. In July 2016 we established a small trial at SFS-CRS to test the relative efficacy of perches alone versus perches coupled with our water point device in facilitating seed dispersal into cleared sites that lack remnant or planted trees.  We have nine fenced 3m2 plots in ungrazed former pasture, 15m from the edge of primary rainforest (Fig 3.).  Six plots have a perch, 3-4m high, cut to standard form from Sarsaparilla (Alphitonia petriei) trees.  Three of these plots also have a water point placed close to the base of the perch and a camera monitoring visits to the water.  Three plots have no structures.

Grass in all plots will be suppressed by herbicide spray (on an ‘as needed’ basis) and seedling recruitment in the plots will be monitored. In the first three months, no birds have been recorded using the water points in the trial plots.

Figure 3. Perch and water device trial plots, September 2016.

Figure 3. Perch and water device trial plots, September 2016.

Contact: Amanda Freeman, Centre Director, The School for Field Studies, Centre for Rainforest Studies, PO Box 141, Yungaburra, QLD 4884, Tel: +61 (7) 40953656; Email:  afreeman@fieldstudies.org

 

 

 

A framework and toolbox for assessing and monitoring swamp condition and ecosystem health

Key words: Upland swamp, stygofauna, sedimentology, ecosystem processes, biological indicators, geomorphology

Introduction. Upland swamps are under increasing pressure from anthropogenic activities, including catchment urbanization, longwall mining, and recreational activities, all under the omnipresent influence of global climate change. The effective management of upland swamps, and the prioritisation of swamps for conservation and restoration requires a robust means of assessing ecosystem health. In this project we are developing a range of ecological and geomorphic indicators and benchmarks of condition specifically for THPSS. Based on a multi-metric approach to ecosystem health assessment, these multiple indicators and benchmarks will be integrated into an ultimate index that reflects the health of the swamp.

In this project we have adopted (and modified) the definition of ecosystem health applied to groundwater ecosystems by Korbel & Hose (2011). We define ecosystem health of a swamp as, i.e., “an expression of a swamp’s ability to sustain its ecological functioning (vigour and resilience) in accordance with its organisation while maintaining the provision of ecosystem goods and services”.

Design. Our approach to develop indicators of swamp health followed those used to develop multimetric indices of river and groundwater ecosystem health (e.g. Korbel & Hose 2011). We used the ‘reference condition’ approach in which a number of un- or minimally disturbed swamps were sampled and the variation in the metric or index then represents the range of acceptable conditions (Bailey et al. 1998; Brierley & Fryirs 2005).

We focused initially on swamps in the Blue Mountains area. Reference (nominally unimpacted) and test sites with various degrees and types of impacts were identified using the database developed by the concurrent THPSS mapping project (Fryirs and Hose, this volume).

Following our definition of ecosystem health, we selected a broad suite of indicators that reflect the ecosystem structure (biotic composition and geomorphic structure) and function, including those relating to ecosystem services such as microbially-mediated biogeochemical functions, geomorphic processes and hydrological function, as well as the presence of stressors, such as catchment changes. Piezometers and dataloggers have been installed in a number of swamps to provide continuous data on groundwater level fluctuations and sediment cores taken at the time of piezometer installation have provided detailed information on the sedimentary structure, function and condition of the swamps.

Results. Intact and channelised swamps represent two geomorphic condition states for THPSS. Not surprisingly, variables reflecting the degree of catchment disturbance (such as urbanization) were strongly correlated with degraded swamp condition. Variables related to the intrinsic properties of swamps had little relationship to their geomorphic condition (Fryirs et al. 2016). Intact and channelized swamps present with typically different sediment structures. There were significant differences in the texture and thickness of sedimentary layers, C: N ratios and gravimetric moisture content between intact swamps and channelised swamps (Friedman & Fryirs 2015). The presence and thickness of a layer of contemporary sand in almost all channelised swamps and its absence in almost all intact swamps is a distinctive structural difference.

Disturbed swamps have poorer water quality at their downstream end, and associated with this, lower rates of organic matter processing occurring within the streams (Hardwick unpublished PhD Data). Similarly, the richness and abundance of aquatic invertebrates living within swamp sediments (stygofauna) is poorer in heavily disturbed swamps than in undisturbed or minimally disturbed areas (Hose unpublished data).

Within the swamp sediments, important biogeochemical processes, such as denitrification and methanogenesis, are undertaken by bacteria. In this study we are measuring the abundance of the functional genes such as a surrogate for functional activity within the swamp sediments. There is large spatial variation in the abundance of functional genes even within a swamp, which complicates comparisons between swamps. Within our focus swamp, the location closest to large stormwater outlets had different functional gene abundances, in particular more methanogens, than in less disturbed areas of the swamp. There were greater abundances of denitrification genes, nirS and nosZ, in shallower depths despite denitrification being an anoxic process, which may reflect changes in the surficial sediments due to disturbance. Overall however, the abundance of functional genes seem to vary more with depth than with location, which means that comparisons between swamps must ensure consistency of depth when sampling sediments (Christiansen, unpublished PhD data).

The list of indicators currently being tested in this project and by others in this program (Table 1) will be refined and incorporated into the final assessment framework. Thresholds for these indicators will be determined based on the range of conditions observed at the reference sites. The overall site health metric will reflect the proportion of indicators which pass with respect to the defined threshold criteria. At this stage, the final metrics will be treated equally, but appropriate weightings of specific metrics within the final assessment will be explored through further stakeholder consultation.

Stakeholders and Funding bodies. This research has been undertaken as PhD research projects of Kirsten Cowley, Lorraine Hardwick and Nicole Christiansen at Macquarie University. The research was funded through the Temperate Highland Peat Swamps on Sandstone Research Program (THPSS Research Program). This Program was funded through an enforceable undertaking as per section 486A of the Environment Protection and Biodiversity Conservation Act 1999 between the Minister for the Environment, Springvale Coal Pty Ltd and Centennial Angus Place Pty Ltd.  Further information on the enforceable undertaking and the terms of the THPSS Research Program can be found at www.environment.gov.au/news/2011/10/21/centennial-coal-fund-145-million-research-program. This project was also partly funded by an ARC Linkage Grant (LP130100120) and a Macquarie University Research and Development Grant (MQRDG) awarded to A/Prof. Kirstie Fryirs and A/Prof. Grant Hose at Macquarie University. We also thank David Keith, Alan Lane, Michael Hensen, Marcus Schnell, Trevor Delves and Tim Green.

Contact information. A/Prof. Grant Hose, Department of Biological Sciences, Macquarie University (North Ryde, NSW 2109; +61298508367; grant.hose@mq.edu.au); and A/Prof. Kirstie Fryirs, Department of Environmental Sciences, Macquarie University (North Ryde, NSW 2109; +61298508367; kirstie.fryirs@mq.edu.au).

Table 1. List of indicators of swamp condition that are being trialled for inclusion in the swamp health assesment toolbox.

Functional indicators table